(完整版)哈威多路阀结构及工作原理
- 格式:ppt
- 大小:7.44 MB
- 文档页数:4
多路阀工作原理
多路阀,又称多路换向阀,是一种液压控制系统中的关键部件,主要用于控制多个执行机构(如液压缸或液压马达)的方向、流量和压力。
其工作原理如下:
1. 结构组成:多路阀主要由阀体、阀芯(包括主阀芯和副阀芯)、操纵手柄(或电磁阀等控制元件)等部件构成。
阀体内有多条通道,通过阀芯在阀体内的移动或转动,实现对液压油流向的切换和控制。
2. 工作原理:
- 当操纵手柄或电磁阀动作时,驱动阀芯移动或转动,阀芯内部的孔道与阀体上的油路相通或断开,从而改变液压油的流动方向。
- 通过调整阀芯的位置,可以控制液压油流入不同的执行元件(如液压缸的两端腔室),实现执行元件的伸缩、旋转等动作。
- 部分多路阀还配备有压力补偿、流量控制等功能,以确保在负载变化时,各个执行元件的动作速度和力量得以均衡和稳定。
3. 流量分配:多路阀可以根据工作需要,通过调整阀芯位置,实现对各执行元件的流量按比例分配,以满足不同动作的速度需求。
4. 集成化设计:现代多路阀通常集成了多个功能单元,通过紧凑的空间布局和精密的设计,能够实现复杂系统的高效控制。
综上所述,多路阀在液压系统中起到“指挥中心”的作用,通过精细调节液压油的流向和流量,实现了对机械设备动作的精准控制。
多路换向阀结构原理
多路换向阀,也称为多通道换向阀,是一种常见的液压控制元件,用于控制液压系统中的流量和压力。
它的结构原理是基于流体力学和机械原理,通过多个通道和阀芯的相互配合来实现流体的换向和控制。
多路换向阀的结构通常由阀体、阀芯、弹簧、密封件等部分组成。
阀体是多路换向阀的外壳,内部有多个通道,用于控制不同的液压执行元件。
阀芯是多路换向阀的核心部件,通过在阀体内移动来控制流量和压力的方向和大小。
阀芯上的沟槽和孔道与阀体内的通道相对应,当阀芯在不同位置时,不同的流道将打开或关闭,从而实现流体的换向和控制。
多路换向阀的工作原理是通过改变阀芯的位置来控制液压系统中的流量和压力。
当阀芯处于初始位置时,通道被关闭,流体无法流动。
当阀芯移动时,沟槽与孔道对应,通道打开,流体开始流动。
通过控制阀芯的移动范围和速度,可以控制流量和压力的大小。
当阀芯移动到不同的位置时,不同的通道将打开或关闭,从而实现流体的换向和控制。
多路换向阀的应用非常广泛,特别是在工程机械、冶金设备、船舶和航空航天等领域中。
它可以用于控制液压缸的动作方向和速度,实现机械设备的运动和定位。
同时,多路换向阀还可以用于控制液
压系统中的流量分配和压力调节,确保系统的稳定和安全运行。
多路换向阀是一种重要的液压控制元件,通过多个通道和阀芯的相互配合,实现流体的换向和控制。
它的结构原理基于流体力学和机械原理,通过改变阀芯的位置来控制液压系统中的流量和压力。
多路换向阀在工程机械、冶金设备、船舶和航空航天等领域中有着广泛的应用,可以实现机械设备的运动和定位,同时确保液压系统的稳定和安全运行。
挖掘机多路阀工作原理
挖掘机多路阀工作原理主要包括以下几个方面:
1. 流体控制:多路阀可以根据操作者的指令,调整流体的流向、压力和流量。
它通过控制流体进入或离开不同的液压执行元件(如液压缸)来实现挖掘机的不同工作功能。
2. 液控设计:多路阀通常由液压阀芯和阀体组成。
液压阀芯上有不同的孔和隔板,通过控制阀芯的位置,可以打开或关闭不同的流体通道。
阀体上的油路设计复杂且精确,确保流体只能按照既定路径流动,从而实现流体的控制。
3. 操作方式:多路阀可以通过手动操作、电动操作或液压操作来控制。
手动操作通常需要转动阀柄或推动杆,以改变阀芯的位置;电动操作则通过电磁阀控制阀芯的位置;液压操作则通过液压元件控制阀芯的位置。
4. 安全保护:挖掘机多路阀通常还具备某些安全保护机制,例如过载保护、溢流保护和回路保护等。
这些保护机制可以在挖掘机工作过程中,遇到异常情况时起到保护作用,防止设备损坏或人员伤害。
综上所述,挖掘机多路阀通过流体控制、液控设计、不同的操作方式以及安全保护机制,实现对挖掘机不同工作功能的控制和保护。
它是挖掘机液压系统中不可或缺的关键元件。
阀门的工作原理和结构嘿呀!今天咱们就来好好聊聊“阀门的工作原理和结构”。
阀门呢,在我们的日常生活和工业生产中那可是起着至关重要的作用呀!它就像是一个神奇的开关,控制着流体的流动。
先来说说阀门的工作原理吧!哎呀呀,简单来讲,阀门就是通过改变通道的截面积来控制流体的流量、压力和流向。
比如说截止阀,它通过阀杆带动阀瓣沿阀座中心线上下移动,从而实现阀门的开启和关闭。
当阀瓣下降,与阀座紧密接触时,阀门就关闭啦,阻止流体通过;而当阀瓣上升,与阀座之间出现空隙,流体就能顺畅地流过。
再看看闸阀,哇,它的工作原理又有所不同!闸阀是通过闸板的升降来控制流体的流动。
闸板垂直于流体流动方向,当闸板升起时,流体可以毫无阻碍地通过;当闸板降下,就像一道坚固的屏障,把流体拦住了。
还有蝶阀呢!蝶阀的阀瓣是一个圆盘,绕着阀杆旋转。
当圆盘平行于流体流动方向时,阀门打开;当圆盘垂直于流体流动方向时,阀门关闭。
接下来咱们聊聊阀门的结构。
哎呀呀,阀门的结构可是多种多样的!以常见的球阀为例,它主要由阀体、球体、阀杆、密封件等组成。
球体就是控制流体的关键部件,它上面有通孔,通过旋转阀杆带动球体旋转,使通孔与管道对齐或错开,从而实现开关。
而截止阀的结构呢,通常包括阀体、阀盖、阀瓣、阀杆、填料函等部分。
阀瓣和阀座的配合精度直接影响着阀门的密封性能。
闸阀的结构相对复杂一些,有阀体、闸板、阀杆、密封装置等。
闸板的形状和材质对于阀门的性能有着重要影响。
蝶阀的结构较为简单,主要有阀体、蝶板、阀杆和密封件。
蝶板的材质和形状决定了阀门的流量特性和密封效果。
总之呢,阀门的工作原理和结构是相互关联、相互影响的。
不同类型的阀门在不同的工况下发挥着各自独特的作用。
哇!了解了阀门的这些知识,是不是对我们的工业世界又多了一份认识呀?在实际应用中,选择合适的阀门至关重要。
要考虑流体的性质、工作压力、温度、流量等诸多因素。
哎呀呀,一个小小的阀门,背后竟然有这么多的学问!。
B77001,概述负载敏感原理可以用于液压系统的全部控制;在这些液压系统中,其主要目的是能够与其变化的负载无关地控制执行元件的流量.该流量应当保持恒定,或是按照一个任意的比例控制信号以最小的滞后进行变化.这就是需要一个控制机构(三通流量调节阀),使流量在工作期间与变化的负载持续地匹配;该控制机构的一侧持续地作用着的负载信号和一个弹簧力,另一侧作用着系统压力.这种方法只是根据负载的情况将泵的剩余压力(控制压差P)与弹簧力互相作用,从而确定了三通流量调节阀阀芯的浮动位置。
当通往执行元件的流量通过动作滑阀的节流口时,就会产生一个所需要的与弹簧力平衡的剩余压力.三通流量调节阀阀芯随着节流口面积变化而变化,用这种方法来改变旁通回油箱的流量.液压系统基本上有三种不同的供油方式:1.恒压系统(节流控制)该系统使用一个定量泵,用供油节流②的方法进行.多余的流量通过限压阀④旁通回油箱;泵总是在溢流压力下工作.2.恒流量系统该系统由一台定量①供油.通往执行元件的流量由三通流量调节阀⑥决定:三通流量调节阀阀芯的位置由可调节流孔⑤处的控制压差P确定.多余的流量直接通过三通流量调节阀⑥中的通道返回油箱.泵总是在执行元件的压力加上控制压差P下工作.3.变量泵系统该系统使用一台变量泵⑦,在可调节流孔⑤处产生的控制压差P影响着组合式压力/流量控制器⑧;该控制器有作用于泵的调节装置⑨.于是,泵就调整到它只提供所需大流量(执行元件所需流量+泄漏量),并且总是在执行元件压力加控制压差P下运转.与恒压系统⑴相比较,恒流量系统⑵,具有较少的内部损失.通往执行元件的流量越接近供油流量,损失也就越小.如果采用恒压系统,所有多余的流量将通过系统的限压阀4返回油箱,因而泵总是在全负荷下运转.与以上两种系统相比,变量泵系统的效率更高,因为避免了多余的流量.该系统的效率主要取决于泵的效率.通常,三通流量调节阀的控制压差P(大约10bar)小于其他种类的组合压力/流量调节方式的控制压差P(大约15bar)。
哈威多路阀的工作原理
哈威多路阀是液压传动系统中的一种液压元件,它由一个主阀和多个并联的滑阀组成。
主阀内部设有多个可控制的油路通道,通过操纵主阀阀芯的移动,可以实现对各个油路通道的控制,从而控制油液的流动方向和流量大小。
具体来说,哈威多路阀的工作原理如下:
1. 当主阀芯受到操纵移动时,阀芯上的通口会发生变化,使得不同的油路通道被打开或关闭,从而控制油液的流动方向和流量大小。
2. 在哈威多路阀中,主阀阀芯通常由一个控制油液驱动,控制油液由一个单独的油源提供,也可以是系统中的其他油路提供。
通过控制油液的压力和流量,可以实现对主阀芯的移动速度和位置的控制。
3. 哈威多路阀可以实现多个油路的并联控制,可以同时控制多个执行元件的运动。
在控制过程中,各油路之间相互独立,互不影响,从而保证了系统的稳定性和可靠性。
4. 哈威多路阀具有结构简单、工作可靠、维护方便等优点,因此在液压传动系统中得到了广泛应用。
它可以用于实现机械臂的夹紧、油缸的伸出和缩回、压力控制等多种功能。
5. 哈威多路阀的常见故障包括阀芯卡滞、内泄漏、外泄漏等。
为了延长阀的使用寿命和提高系统的可靠性,需要定期对阀进行检查和维护,确保其正常工作。
6. 随着技术的不断发展,哈威多路阀也在不断改进和完善。
未来,哈威多路阀将继续发挥其优点,为液压传动系统的发展做出更大
的贡献。
总之,哈威多路阀是液压传动系统中不可或缺的一种液压元件,其工作原理和控制方式对于保证系统的正常工作具有重要的意义。
德国哈威(HAWE)PSL型比例多路阀基本工作原理该阀为负载感应工作阀片,含二通压力补偿定差减压阀,负载感应梭阀,安全溢流阀,电磁溢流阀,比例减压阀。
通常,工作阀片成组配置,进口阀块内置三通压力补偿旁通溢流阀(逻辑元件,当多路阀停止操作,且各阀均在中位时,该阀则以补偿压力(6-·12BAR)旁通主油路流量。
当某一阀工作时,该阀在负载压力作用下旁通口减少,根据负载压力提供所需的流量。
负载感应梭阀:负载感应梭阀将各工作阀片的负载压力传至进口阀块的压力补偿旁通溢流阀。
二通压力补偿定差减压阀:当多个工作片阀同时工作时,负载压力传至该阀的弹簧侧。
此时,通过阀心的负反馈作用,来自动调节节流阀口两端的压力差, 使其基本保持不变。
在其作用下各阀的流量均保持恒定,且不受负载变化的影响。
安全溢流阀:通常用于工作机构极限保护,例如变幅油缸。
电磁溢流阀:用于工作机构的超限保护,例如:起重机的力矩限制,三圈保护等。
比例减压阀:位于工作阀片手拉杆的相对一侧,为直动式比例减压阀,驱动滑阀实现比例换向,注意:直动式比例减压阀的比例换向相对于手动比例换向,微动性能不好,若用于流量控制精度较高的应用,应采用比例伺服驱动配置的工作阀片。
REXROTH, BUCHER, DELTA POWER, SAUER-DANFOSS 均有伺服驱动的比例多路阀。
该阀手动比例多路阀为全负载感应阀和非负载感应混合配置阀组该阀手动比例多路阀为全负载感应阀和非负载感应混合配置阀组,可以实现单支路和多支路同步工作。
左侧第一片阀为进口阀片,从下向上,(1) CP3三通式定差旁通式压力补偿流量阀,(2)RV安全溢流阀, 通常设定为系统最高压力35Mpa,(3)RPM减压阀为工作阀片的比例减压阀提供先导供油(1.5-2.5Mpa),可以看到减压阀下的一条虚线连线两条虚线,并连通每个工作阀片的一对比例减压阀。
工作片阀位于中位不工作时,CP3功能等同于流量旁通控制阀。
规格 设计形式
规格3,5 (板接式) D7700-F
规格5 (组合式) D7700-5
规格2 (组合式) D7700-2
规格3 (组合式) D7700-3
December 2007-00
三规格多路阀三通流量阀结构二规格多路阀三通流量阀结构
* PSL阀为负载反馈原理一旦LS信号受阻也会造成系统无法建压,
梭阀卡死;LS信号油路受阻,检查LS通路,曾经出现过在自行拆装阀件时未按工作章程操作将油路的O型密封圈堵住了负载反馈信号。
在自行组装
* 如果使用的三规格尾板为E2或E5型检查
是否未堵死或完全未堵。
二次限压阀
SL3-E5尾板
4.1.2某执行元件无压力或压力较低
现象:如果就某一片换向阀无法建压,而其他阀阻可以正常使用:
* 检查二次限压是否设定于正常的压力值,是否在二次拆装时压力已有变动。
* 检查二次限压内部阀芯是否有污物卡死,检查二次限压阀的阀芯及其基座是否有磨损。
换向阀芯
手柄座限位结构
如果是二个或多个执行机构同时工作,泵的流量小于多个执行元件需求流量的总和,压力高的
二通流量补偿阀
弹簧定位腔
整套阀电控无流量输出
所有阀片的电液控制都没有动作,而手动操作可
检查装在接口M中的精过滤器,拆下并清洗。
连接
块中大过滤器被脏物堵住了 * 拆下先导减压阀
检查所有的运动零件是否有污物,动作是否平常,
尾板单向阀
电控减压阀位置
PSL3规格产品。
手柄座结构
阀的设定压力应高于泵的设定压力20%左右,以确保变量泵的及时工
3
4
6.4 板式规格:
备忘: 20。
多路阀换向阀的工作原理通常,工作阀片成组配置,进口阀块内置三通压力补偿旁通溢流阀。
逻辑元件,当多路阀换向阀停止操作,且各阀均在中位时,该阀则以补偿压力(6-·12BAR)旁通主油路流量。
当某一阀工作时,该阀在负载压力作用下旁通口减少,根据负载压力提供所需的流量。
负载感应梭阀将各工作阀片的负载压力传至进口阀块的压力补偿旁通溢流阀。
二通压力补偿定差减压阀:当多个工作片阀同时工作时,负载压力传至该阀的弹簧侧。
此时,通过阀心的负反馈作用,来自动调节节流阀口两端的压力差,使其基本保持不变。
在其作用下各阀的流量均保持恒定,且不受负载变化的影响。
机械设计,机械加工,设计软件,机械工程师,设备管理,焊接,液压,铸造,密封,测量,工程机械,粉末冶金,轴承,齿轮,泵阀,工业自动化。
安全溢流阀:通常用于工作机构极限保护,例如变幅油缸。
电磁溢流阀:用于工作机构的超限保护,例如:起重机的力矩限制,三圈保护等。
比例减压阀:位于工作阀片手拉杆的相对一侧,为直动式比例减压阀,驱动滑阀实现比例换向,注意:直动式比例减压阀的比例换向相对于手动比例换向,微动性能不好,若用于流量控制精度较高的应用,应采用比例伺服驱动配置的工作阀片。
REXROTH,BUCHER,DELTAPOWER均有伺服驱动的比例多路阀换向阀。
根据使用场所、用途,多路换向阀且了解有关法规、规格、标准、方针、许用认可后既可选用适合各种要求的阀门,确认阀门的工作条件、适用介质、工作压力、介质温度,确定与管道相匹配的公称通径多路换向阀:DN(mm),确定与管道相连接方式:法兰式、内(外)螺纹式、焊接式、对夹式、卡箍式、卡套式等,确定阀门的密封性能要求、多路阀密封等级或密封泄漏量,确定阀门的防护涂层要求、包装要求、运输要求。
特殊需要的多路换向阀还应确定:结构长度、阀门高度、外型尺寸、流阻、排放能力、流量特性、防护等级、防爆性能等参数,确定阀门的安装位置及姿势,确定阀门的操作方式,多路换向阀蜗轮动、气动、电动、液动、电磁动、电液动等。