测量不确定度评定(很实用)讲解学习
- 格式:ppt
- 大小:680.00 KB
- 文档页数:22
1.3测量不确定度的评定由于始终存在于测量过程中的随机误差影响和不可能完全消除或修正的系统误差影响,任何实际的测量都不可能获得被测量的真值,即测量结果总是不能准确确定的。
测量不确定度的评定就是要决定测量结果的不确定程度及其相应的置信概率,即给出一定置信概率的测量不确定度。
1.3.1 标准不确定度的A 类评定标准不确定度的A 类评定是对由重复性测量引起的不确定度分量进行评定。
对被测量X ,在重复性条件下进行n 次独立重复观测,观测值为i x (n ,,,i ⋅⋅⋅=21),算术平均值x 为∑==ni i x n x 11 (1.3.1) )x (s i 为单次测量的实验标准差,由贝塞尔公式计算得到112--=∑=n )x x ()x (s n i i i (1.3.2) )x (s 为平均值的实验标准差,其值为n )x (s )x (s i = (1.3.3)在某物理量的观测值中,若系统误差已消除或可以忽略不计,只存在随机误差,则观测值散布在其期望值附近。
当取若干组观测值,它们各自的平均值也散布在期望值附近,但比单个观测值更靠近期望值。
也就是说,多次测量的平均值比一次测量值更准确,随着测量次数的增多,平均值收敛于期望值。
因此,通常以样本的算术平均值作为被测量值的估计(即测量结果),以平均值的实验标准差)x (s 作为测量结果的标准不确定度,即A 类标准不确定度。
n /)x (s )x (u i = (1.3.4) 观测次数n 充分多,才能使A 类不确定度的评定可靠,一般认为n 应大于6。
但也要视实际情况而定,当该A 类不确定度分量对合成标准不确定度的贡献较大时,n 不宜太小,反之,当该A 类不确定度分量对合成标准不确定度的贡献较小时,n 小一些关系也不大。
1.3.2标准不确定度的B 类评定B 类不确定度主要来自于各种不同类型的仪器、不同的测量方法、方法的不同应用以及测量理论模型的不同近似等方面。
因此,B 类不确定度的评定主要从以上几个方面获得信息。
测量不确定度评定的方法以及实例1.标准不确定度方法:U =sqrt(∑(xi-x̅)^2/(n-1))其中,xi表示测量值,x̅表示测量值的平均值,n表示测量次数。
标准不确定度包含随机误差和系统误差等。
例如,对一组长度进行测量,测得的数据为10.2、10.3、10.1、10.2、10.3,计算平均值为10.22,标准差为0.069、则标准不确定度为0.069/√5≈0.031,即U=0.0312.扩展不确定度方法:扩展不确定度是在标准不确定度的基础上,考虑到误差的正态分布,对标准不确定度进行扩展得到的结果,通常以U'表示。
其计算公式如下:U'=kU其中,k表示不确定度的覆盖因子,代表了误差分布的概率密度曲线下的面积,一般取k=2例如,对上述例子中的长度进行测量,标准不确定度为0.031,取k=2,则扩展不确定度为0.031×2=0.062,即U'=0.0623.组合不确定度方法:4.直接测量法:直接测量法是通过多次测量同一物理量,统计测得值的离散程度来评估测量的不确定度。
该方法适用于一些简单的测量,如长度、质量等物理量的测量。
例如,对一些小球的直径进行测量,测得的数据为2.51 cm、2.49 cm、2.52 cm、2.50 cm,计算平均值为2.505 cm,标准差为0.013 cm。
则标准不确定度为0.013/√4≈0.007 cm,即U=0.0075.间接测量法:间接测量法是通过已知物理量之间的数学关系,求解未知物理量的方法来评估测量的不确定度。
该方法适用于一些复杂的测量,如测量速度、加速度等物理量的测量。
例如,测量物体的速度v,则有v=S/t,其中S为位移,t为时间。
若S的不确定度为U_S,t的不确定度为U_t,则根据误差传递法则,计算得到v的不确定度为U_v = sqrt(U_S^2 + (U_t * (∂v/∂t))^2 )。
总之,测量不确定度评定的方法包括标准不确定度方法、扩展不确定度方法、组合不确定度方法、直接测量法和间接测量法。
第一节有关术语的定义3.量值 value of a quantity一般由一个数乘以丈量单位所表示的特定量的大小。
例: 5.34m 或 534cm, 15kg, 10s,- 40℃。
注:对于不可以由一个乘以丈量单位所表示的量,能够参照商定参照标尺,或参照丈量程序,或二者参照的方式表示。
4.〔量的〕真值 rtue value〔of a quantity〕与给定的特定量定义一致的值。
注:(1)量的真值只有经过完美的丈量才有可能获取。
(2)真值按其天性是不确立的。
(3)与给定的特定量定义一致的值不必定只有一个。
5.〔量的〕商定真值 conventional true value〔of a quantity〕对于给定目的拥有适合不确立度的、给予特定量的值,有时该值是商定采纳的。
例: a) 在给定地址,取由参照标准复现而给予该量的值人作为给定真值。
b) 常数委员会 (CODATA)1986年介绍的阿伏加得罗常数值 6.0221367 × 1023mol-1。
注:(1)商定真值有时称为指定值、最正确预计值、商定值或参照值。
(2)经常用某量的多次丈量结果来确立商定真值。
13.影响量 influence quantity不是被丈量但对丈量结果有影响的量。
例: a) 用来丈量长度的千分尺的温度;b)沟通电位差幅值丈量中的频次;c)丈量人体血液样品血红蛋浓度时的胆红素的浓度。
14.丈量结果 result of a measurement由丈量所获取的给予被丈量的值。
注:(1)在给出丈量结果时,应说明它是示值、示修正丈量结果或已修正丈量结果,还应表示它能否为几个值的均匀。
(2)在丈量结果的完好表述中应包含丈量不确立度,必需时还应说明有关影响量的取值范围。
15.〔丈量仪器的〕示值 indication〔of a measuring instrument〕丈量仪器所给出的量的值。
注:(1)由显示器读出的值可称为直接示值,将它乘以仪器常数即为示值。
测量不确定度评定方法与步骤一、测量不确定度评定资料名称资料名称为:XXXXX 测量结果不确定度评定其中“XXXXX ”表示被测量对象的名称(仪器的名称或参数的名称)。
如:被测量对象为普通压力表,测量方式为检定,则资料名称为:普通压力表检定结果不确定度评定;又如,被测量对象为光谱分析仪,测量方式为校准,则资料名称为:光谱分析仪校准结果不确定度评定;再如,被测量对象为XXX 工件内尺寸,测量方式为直接测量,则资料名称为:XXX 工件内尺寸测量结果不确定度评定。
二、评定步骤1.测量方法与测量数学模型 1.1测量方法当测量是按照相关的规程、规范或标准进行时,测量方法的描述为:依据XXX 规程、规范或标准的规定进行测量;当测量无直接相关的规程、规范或标准作依据,即按相应的测量操作进行测量时,测量方法的描述应简述操作的方法。
1.2测量数学模型1.2.1直接测量数学模型当被测对象的量值即是测量仪器的读数的情况(直接绝对测量),测量数学模型为:x y = (y 表示被测量值,x 表示测量仪器的读数)当被测对象的是求取测量误差的情况(直接相对测量),测量数学模型为:s x x e -= (e表示示值误差,x 表示被检定或校准的设备的读数,s x 表示检定或校准所用的测量标准设备的读数。
一般检定或校准所用的测量标准设备的读数应在不改变的情况下进行比较测量) 1.2.2间接测量数学模型当测量是按照相关的规程、规范或标准进行时,应原式引入规程、规范或标准上给出的被测量的计算公式;当测量无直接相关的规程、规范或标准作依据时,应使用相应的计算公式,如:长方形的面积 b a A ⨯= ; 电流强度 RU i =2.最佳测量值最佳测量值即是将各输入分量的平均值带入测量数学模型后计算并修约得到的结果。
如测量数学模型:),,,(21N x x x f y = 先计算得到各个输入分量的平均值,?=i x带入测量数学模型后计算得到: ?),,,(21==N x x x f y3.方差及灵敏系数3.1方差(依据测量数学模型写出方差)3.1.1当各输入量之间相互独立(即不相关的情况),对任意的测量数学模型,方差形式均为:)()()(222i iC x u x f y u ∑∂∂=()(y u C 表示被测量y 的合成标准不确定度) 特别地,当测量数学模型形如N pN ppx x Cx y 2121=时,方差可写成相对合成式:2.2.)]([)(i rel i i rel C x u p y u ∑=3.1.2当各输入量之间相互不独立(即不相关的情况),对任意的测量数学模型,方差(包含协方差)形式为: ),(2)()()(222j i ji i iC x x u x fx f x ux fy u ∂∂∂∂+∂∂=∑∑∑其中:协方差)()(),(),(j i j i j i x u x u x x r x x u = 式中),(j i x x r 为输入量i x 和j x 之间的相关系数,其绝对值小于或等于1 。
测量不确定度的评定.第一章入门1、测量1.1 什么是测量?测量告知我们关于某物的属性。
物体有多重,或有多热,或有多长。
测量赋予这种属性一个数。
测量总是用某种仪器来实现。
测量结果由部分组成:数,测量单位。
1.2什么不是测量有些过程看起来像是测量,然而并不是。
两根绳子作比较,不是测量。
计数通常也不认为是测量。
对于只回答“是或非”的答案,或者“合格或不合格”的结果的检测(test)往往不是测量。
2、测量不确定度1.1 什么是测量不确定度?测量不确定度是对任何测量的结果存有怀疑。
对每一次测量,即使是最仔细的,总是会有怀疑的余量。
可以表述为“出入”,例如一根绳子可能2米长,有1厘米“出入”。
2.2测量不确定度表述回答“余量有多大?”和“怀疑有多差?”定量给出不确定度,需要两个数。
余量(或称区间的宽度;置信概率,说明“真值”在该余量范围内有多大把握。
比如:棍子的长度测定为20厘米加或减1厘米,有95%置信概率。
写成:20cm±1cm,置信概率为95%。
表明棍子长度在19厘米到21厘米之间有95%的把握。
2.3 测量不确定度度重要性考虑测量不确定度更特殊的理由;校准——在证书上报告测量不确定度。
检测——不确定度来确定合格与否。
允差——不确定是否符合允差以前,你需要知道不确定度。
3、关于数字集合的基本统计学3.1操作误差“测量再而三,只为一剪子”,两、三次核对测量,减少出错的风险。
任何测量至少进行三次,防止出操作误差。
3.2基本统计计算两项最主要的统计计算,一组数值的平均值或算术平均值,以及它们的标准偏差。
3.3获得最佳估计值——取多次读数的平均值重复测量出不同结果的原因:进行的测量有自然变化;测量的器具没有工作在完全稳定状态;重复读数时读数有变化,最好多次读数并取平均值.平均值是“真值”的估计值。
3.4多少次读数求平均10次是普遍选择的.根据经验通常取4至10次读数就够了。
3.5分散范围—标准偏差重复测量给出不同结果时,要了解读数分散范围有多宽.量值的分散范围告诉测量不确定度的情况.对分散范围定量的常见形式是标准偏差。
测量不确定度评定与表示一、准则要求(CNAS-CL01-2006检测和校准实验室能力认可准则)5.4.6.2 检测实验室应具有并应用评定测量不确定度的程序。
某些情况下,检测方法的性质会妨碍对测量不确定度进行严密的计量学和统计学上的有效计算。
这种情况下,实验室至少应努力找出不确定度的所有分量且作出合理评定,并确保结果的报告方式不会对不确定度造成错觉。
合理的评定应依据对方法特性的理解和测量范围,并利用诸如过去的经验和确认的数据。
注1:测量不确定度评定所需的严密程度取决于某些因素,诸如:——检测方法的要求;——客户的要求;——据以作出满足某规范决定的窄限。
注2:某些情况下,公认的检测方法规定了测量不确定度主要来源的值的极限,并规定了计算结果的表示方式,这时,实验室只要遵守该检测方法和报告的说明(5.10),即被认为符合本款的要求。
5.4.6.3 在评定测量不确定度时,对给定情况下的所有重要不确定度分量,均应采用适当的分析方法加以考虑。
二、定义:JJF1059—1999《测量不确定度评定与表示》中所使用的术语及其定义与JJF1001-1998《通用计量术语及定义》一致。
1、量值:一般有一个数乘以一个测量单位表示特定量的大小。
比如:1L,1Kg,1M。
2、真值:与给定的特定量的定义一致的值。
●量的真值只有通过完善的测量才有可能获得。
●真值按其本性是不确定的。
●真值存在,但测量不到。
3、约定真值:对于给定目的具有适当不确定度的、赋予特定量的值,有时该值是约定采用的。
●约定真值有时称为指定值、最佳估计值、约定值。
●常用某量的多次测量结果来确定约定真值。
4、被测量作为测量对象的特定量。
●对被测量的详细描述,可要求包括对其他有关量(如时间、温度和压力)作出说明。
●实践中,被测量应根据所需准确度予以完整定义,以便对所有的测量,其值是单一的。
例如:一根标称值为1m长的钢棒其长度需测至微米级准确度,其技术说明应包括给定温度和压力。
测量不确定度评定步骤1. 明确被测量,尽可能用方框图说明测量方法 2.建立数学模型(或称测量模型)在实际测量中,被测量Y (输出量)不能直接得到。
而是由N 个其他量NX X X ,,21 (输入量)通过函数关系f来确定,即()N X X X f Y ,,,21 =在测量不确定度评定中,所有的测量值均应是测量结果的最佳估计值(即对所有测量结果中系统效应的影响均应进行修正),Y 和X的最佳估计值为y 和x,这时,()n x x x f y ,,,21 =由此,i x 的不确定度是y的不确定度来源。
关于数学模型的几点说明:① 数学模型不是唯一的。
如果采用不同的测量方法和测量程序,就可能有不同的模型,如一个随温度t 变化的电阻器两端的电压为V ,在温度t 时的电阻为R ,电阻器的温度系数为α,则电阻器的损耗功率(输出量)为()()[]00201,,,t t R Vt R V f P -+==αα如采用端电压V 和流经电阻的电流I 来获得P ,则()VI I V f P ==,② 数学模型是测量不确定度评定的依据。
模型中应包含能影响测量结果及其不确定度的全部输入量,即必须包含那些对测量结果影响不大,但对不确定度有不可忽略影响的输入量,也就是说,数学模型或者说测量模型可能和计算公式不一致,例如,对电阻器的P 的准确度要求很高,则除了考虑上述公式中的输入量外,还需考虑公式中没有包含的输入量。
公式中被忽略的输入量对测量不确定度的影响可以忽略时,数学模型才和计算公式相同。
③ 数学模型可以很复杂,也可以很简单。
如X 本身还取决于其他量,甚至包括具有系统效应的修正值,从而导致一个很复杂的函数关系式,以至于f不能明确表示出来。
有时,模型也可以简单到Y=X ,如用一卡尺测量工件的尺寸,则工件的尺寸Y 就等于卡尺的示值X 。
又如,在评定电子电压表示值误差测量不确定度时,将被检表接到标准电压源上,标准电压源输出为V ,被检表的示值V ,示值偏移为d ,则数学模型为0V V d -=④ 在理论上,数学模型可以由测量原理导出,如上述可以用已知的物理公式求得,但实际上,却不一定都能做到。