导数选择题精选
- 格式:pdf
- 大小:415.74 KB
- 文档页数:10
导数的运算精选题32道一.选择题(共11小题)1.已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f(x)<f′(x),且f (0)=2,则不等式的解集为()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,2)D.(2,+∞)2.若函数f(x)=x2+,则f′(﹣1)=()A.﹣1B.1C.﹣3D.33.函数f(x)=ax2+bx(a>0,b>0)在点(1,f(1))处的切线斜率为2,则的最小值是()A.10B.9C.8D.4.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+lnx,则f′(e)=()A.1B.﹣1C.﹣e﹣1D.﹣e5.设函数f(x)的导函数是f'(x),若,则=()A.﹣B.C.D.﹣6.已知,则=()A.B.C.D.7.已知f(x)=lnx,则f′(e)的值为()A.1B.﹣1C.e D.8.若f(x)=2xf′(1)+x2,则f′(0)等于()A.2B.0C.﹣2D.﹣49.已知函数f(x)=2x+3f′(0)•e x,则f′(1)=()A.e B.3﹣2e C.2﹣3e D.2+3e10.等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x﹣a1)(x﹣a2)…(x﹣a8),则f′(0)=()A.26B.29C.212D.21511.设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.ln2C.D.e二.多选题(共2小题)(多选)12.以下四个式子分别是函数在其定义域内求导,其中正确的是()A.()′=B.(cos2x)'=﹣2sin2xC.D.(lgx)′=(多选)13.若函数f(x)的导函数f′(x)的图象关于y轴对称,则f(x)的解析式可能为()A.f(x)=3cos x B.f(x)=x3+x C.D.f(x)=e x+x 三.填空题(共12小题)14.已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为.15.已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为.16.已知函数f(x)=f′()cos x+sin x,则f()的值为.17.设函数f(x)=,若f′(1)=,则a=.18.若函数y=f(x)满足f(x)=sin x+cos x,则=.19.若函数,则f'(1)=.20.已知函数f(x)=﹣+2xf'(2021)+2021lnx,则f′(2021)=.21.已知的导函数为f′(x),则f′(﹣1)=.22.设函数f(x)满足f(x)=x2+3f′(1)x﹣f(1),则f(4)=.23.已知:若函数f(x),g(x)在R上可导,f(x)=g(x),则f′(x)=g′(x).又英国数学家泰勒发现了一个恒等式e2x=a0+a1x+a2x2+…+a n x n+…,则a0=,=.24.已知函数f(x)=3x2﹣f'()x4,则f'()=.25.已知f(x)=x2+3xf′(2),则f′(2)=.四.解答题(共7小题)26.求下列函数的导数.(1)y=3x2+x cos x;(2)f(x)=.27.求下列函数的导数.(1)y=(2x2+3)(3x﹣1);(2)f(x)=;(3)y=ln.28.设f(x)=lnx,g(x)=f(x)+f′(x).(1)求g(x)的单调区间和最小值;(2)讨论g(x)与g()的大小关系.29.求下列函数的导数:(1)y=(2x2﹣1)(3x+1);(2)y=e x cos x;(3).30.求下列函数的导数(1)f(x)=lnx+xa x;(2).31.求下列函数的导数(1)y=(2x2+3)(3x﹣1);(2);(3)y=(1+cos2x)3.32.求下列函数的导数.(1)y=(2x2﹣1)(3x+1);(2).导数的运算精选题32道参考答案与试题解析一.选择题(共11小题)1.已知定义在R上的可导函数y=f(x)的导函数为f′(x),满足f(x)<f′(x),且f (0)=2,则不等式的解集为()A.(﹣∞,0)B.(0,+∞)C.(﹣∞,2)D.(2,+∞)【分析】根据条件构造函数g(x)=,利用导数求函数的单调性,即可解不等式.【解答】解:设g(x)=,则g′(x)=,∵f(x)<f′(x),∴g′(x)>0,即函数g(x)单调递增.∵f(0)=2,∴g(0)=,则不等式等价为,即g(x)>g(0),∵函数g(x)单调递增.∴x>0,∴不等式的解集为(0,+∞),故选:B.【点评】本题主要考查导数的应用,根据条件构造函数,利用函数的单调性和导数之间的关系是解决本题的关键.2.若函数f(x)=x2+,则f′(﹣1)=()A.﹣1B.1C.﹣3D.3【分析】可先求出导函数,把x换上﹣1即可求出f′(﹣1)的值.【解答】解:;∴f′(﹣1)=﹣2﹣1=﹣3.故选:C.【点评】考查基本初等函数的求导,已知函数求值的方法.3.函数f(x)=ax2+bx(a>0,b>0)在点(1,f(1))处的切线斜率为2,则的最小值是()A.10B.9C.8D.【分析】求出原函数的导函数,由f′(1)=2a+b=2,得,把变形为后整体乘以1,展开后利用基本不等式求最小值.【解答】解:由f(x)=ax2+bx,得f′(x)=2ax+b,又f(x)=ax2+bx(a>0,b>0)在点(1,f(1))处的切线斜率为2,所以f′(1)=2a+b=2,即.则=.当且仅当,即时“=”成立.所以的最小值是9.故选:B.【点评】本题考查了导数的运算,考查了利用基本不等式求最值,考查了学生灵活变换和处理问题的能力,是中档题.4.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(e)+lnx,则f′(e)=()A.1B.﹣1C.﹣e﹣1D.﹣e【分析】首先对等式两边求导得到关于f'(e)的等式解之.【解答】解:由关系式f(x)=2xf′(e)+lnx,两边求导得f'(x)=2f'(e)+,令x =e得f'(e)=2f'(e)+e﹣1,所以f'(e)=﹣e﹣1;故选:C.【点评】本题考查了求导公式的运用;关键是对已知等式两边求导,得到关于f'(x)的等式,对x取e求值.5.设函数f(x)的导函数是f'(x),若,则=()A.﹣B.C.D.﹣【分析】对函数f(x)的解析式求导,得到其导函数,把x=代入导函数中,列出关于f'()的方程,进而得到f'()的值,再求出f′()即可.【解答】解:,则f′(x)=﹣f′()sin x﹣cos x,∴f′()=﹣f′()sin﹣cos,∴f′()=0,∴f′(x)=﹣cos x,∴f′()=﹣,故选:A.【点评】本题主要考查了导数的运算,运用求导法则得出函数的导函数,求出常数f'()的值,从而确定出函数的解析式是解本题的关键,属于基础题.6.已知,则=()A.B.C.D.【分析】对f(x)进行求导,再将x=代入f′(x),进行求解,从而求出;【解答】解:∵,∴f′(x)=﹣×cos x+,∴f′()=﹣×cos+=﹣,∵f(π)==﹣,∴=﹣﹣=﹣,故选:D.【点评】此题主要考查导数的运算,解决此题的关键是能否对f(x)进行求导,是一道基础题;7.已知f(x)=lnx,则f′(e)的值为()A.1B.﹣1C.e D.【分析】利用导数的运算法则即可得出.【解答】解:∵,∴.故选:D.【点评】熟练掌握导数的运算法则是解题的关键.8.若f(x)=2xf′(1)+x2,则f′(0)等于()A.2B.0C.﹣2D.﹣4【分析】利用导数的运算法则求出f′(x),令x=1得到关于f′(1)的方程,解方程求出f′(1),求出f′(x);令x=0求出f′(0).【解答】解:∵f′(x)=2f′(1)+2x∴f′(1)=2f′(1)+2∴f′(1)=﹣2∴f′(x)=﹣4+2x∴f′(0)=﹣4故选:D.【点评】在求导函数值时,应该先利用导数的运算法则求出导函数,再求导函数值.9.已知函数f(x)=2x+3f′(0)•e x,则f′(1)=()A.e B.3﹣2e C.2﹣3e D.2+3e【分析】可求出导函数f′(x)=2+3f′(0)•e x,然后即可求出f′(0)=﹣1,从而得出f′(x)=2﹣3e x,然后即可求出f′(1)的值.【解答】解:f′(x)=2+3f′(0)•e x,∴f′(0)=2+3f′(0),解得f′(0)=﹣1,∴f′(x)=2﹣3e x,∴f′(1)=2﹣3e.故选:C.【点评】本题考查了基本初等函数的求导公式,已知函数求值的方法,考查了计算能力,属于基础题.10.等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x﹣a1)(x﹣a2)…(x﹣a8),则f′(0)=()A.26B.29C.212D.215【分析】对函数进行求导发现f′(0)在含有x项均取0,再利用等比数列的性质求解即可.【解答】解:考虑到求导中f′(0),含有x项均取0,得:f′(0)=a1a2a3…a8=(a1a8)4=212.故选:C.【点评】本题考查多项式函数的导数公式,重点考查学生创新意识,综合与灵活地应用所学的数学知识、思想和方法.11.设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.ln2C.D.e【分析】由题意求导f′(x)=lnx+1,从而得lnx0+1=2;从而解得.【解答】解:∵f′(x)=lnx+1;故f′(x0)=2可化为lnx0+1=2;故x0=e;故选:D.【点评】本题考查了导数的求法及应用,属于基础题.二.多选题(共2小题)(多选)12.以下四个式子分别是函数在其定义域内求导,其中正确的是()A.()′=B.(cos2x)'=﹣2sin2xC.D.(lgx)′=【分析】根据基本初等函数和复合函数的求导公式对每个选项函数进行求导即可.【解答】解:,(cos2x)′=﹣2sin2x,,.故选:BC.【点评】本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.(多选)13.若函数f(x)的导函数f′(x)的图象关于y轴对称,则f(x)的解析式可能为()A.f(x)=3cos x B.f(x)=x3+x C.D.f(x)=e x+x 【分析】根据题意,依次求出选项中函数的导数,分析其导函数的奇偶性,据此分析可得的答案.【解答】解:根据题意,依次分析选项:对于A,f(x)=3cos x,其导数f′(x)=﹣3sin x,其导函数为奇函数,图象不关于y 轴对称,不符合题意;对于B,f(x)=x3+x,其导数f′(x)=3x2+1,其导函数为偶函数,图象关于y轴对称,符合题意;对于C,f(x)=x+,其导数f′(x)=1﹣,其导函数为偶函数,图象关于y轴对称,符合题意;对于D,f(x)=e x+x,其导数f′(x)=e x+1,其导函数不是偶函数,图象不关于y轴对称,不符合题意;故选:BC.【点评】本题考查导数的计算,涉及函数奇偶性的分析,属于基础题.三.填空题(共12小题)14.已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为3.【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)e x,∴f′(x)=2e x+(2x+1)e x,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.15.已知函数f(x)=e x lnx,f′(x)为f(x)的导函数,则f′(1)的值为e.【分析】根据导数的运算法则求出函数f(x)的导函数,再计算f′(1)的值.【解答】解:函数f(x)=e x lnx,则f′(x)=e x lnx+•e x;∴f′(1)=e•ln1+1•e=e.故答案为:e.【点评】本题考查了导数的运算公式与应用问题,是基础题.16.已知函数f(x)=f′()cos x+sin x,则f()的值为1.【分析】利用求导法则:(sin x)′=cos x及(cos x)′=﹣sin x,求出f′(x),然后把x 等于代入到f′(x)中,利用特殊角的三角函数值即可求出f′()的值,把f′()的值代入到f(x)后,把x=代入到f(x)中,利用特殊角的三角函数值即可求出f()的值.【解答】解:因为f′(x)=﹣f′()•sin x+cos x所以f′()=﹣f′()•sin+cos解得f′()=﹣1故f()=f′()cos+sin=(﹣1)+=1故答案为1.【点评】此题考查学生灵活运用求导法则及特殊角的三角函数值化简求值,会根据函数解析式求自变量所对应的函数值,是一道中档题.17.设函数f(x)=,若f′(1)=,则a=1.【分析】先求出函数的导数,再根据f′(1)=,求得a的值.【解答】解:∵f(x)=,∴f′(x)=,f′(1)==,∴=,则a=1,故答案为:1.【点评】本题主要考查求函数的导数,属于基础题.18.若函数y=f(x)满足f(x)=sin x+cos x,则=.【分析】由f(x)=sin x+cos x,利用导数的运算法则,再令x=,即可得出.【解答】解:∵f(x)=sin x+cos x,∴f′(x)=cos x﹣sin x,令x=,则=cos﹣sin,解得:=.故答案为:.【点评】本题考查了导数的运算法则、方程的解法、三角函数求值,考查了推理能力与计算能力,属于基础题.19.若函数,则f'(1)=.【分析】根据基本初等函数和商的导数的求导公式进行求导得出f′(x),然后即可求出f′(1)的值.【解答】解:∵,∴.故答案为:.【点评】本题考查了基本初等函数和商的导数的求导公式,已知函数求值的方法,考查了计算能力,属于基础题.20.已知函数f(x)=﹣+2xf'(2021)+2021lnx,则f′(2021)=2020.【分析】先求出导函数f'(x),再令x=2021求解即可.【解答】解:∵,∴,∴f'(2021)=﹣2021+2f'(2021)+1,∴f'(2021)=2020.故答案为:2020.【点评】本题考查了导数的运算,主要考查了常见导数的求导公式的应用以及导数的四则运算的应用,属于基础题.21.已知的导函数为f′(x),则f′(﹣1)=﹣4.【分析】先根据导数的运算法则求出f′(x),再求f'(﹣1).【解答】解:∵,∴,∴f'(﹣1)=﹣3﹣1=﹣4,故答案为:﹣4.【点评】本题主要考查导数的基本运算,属于基础题.22.设函数f(x)满足f(x)=x2+3f′(1)x﹣f(1),则f(4)=5.【分析】求函数的导数,先求出f′(1),f(1)的值,求出函数的解析式,即可得到结论.【解答】解:∵f(x)=x2+3f′(1)x﹣f(1),∴f′(x)=2x+3f′(1),令x=1,则f′(1)=2+3f′(1),即f′(1)=﹣1,则f(x)=x2﹣3x﹣f(1),令x=1,则f(1)=1﹣3﹣f(1),则f(1)=﹣1,即f(x)=x2﹣3x+1,则f(4)=42﹣3×4+1=16﹣12+1=5,故答案为:5.【点评】本题主要考查函数值的计算,根据导数的公式求出f(1),f′(1)的值以及函数的解析式是解决本题的关键.23.已知:若函数f(x),g(x)在R上可导,f(x)=g(x),则f′(x)=g′(x).又英国数学家泰勒发现了一个恒等式e2x=a0+a1x+a2x2+…+a n x n+…,则a0=1,=.【分析】令x=0,可得到a0=1,先求导数对比得到2a n=(n+1)a n+1,再把数列裂项求和即可.【解答】解:令x=0,则a0=e0=1,∵e2x=a0+a1x+a2x2+…+a n x n+…,∴(e2x)′=2e2x=a1+2a2x+…+na n x n﹣1+(n+1)a n+1x n+…,∴2a n=(n+1)a n+1,∴=,∴==2(﹣),∴=2(1﹣++•+﹣)=.故答案为:1;.【点评】本题主要考查导数的基本运算,数列裂项求和的应用,属于中档题.24.已知函数f(x)=3x2﹣f'()x4,则f'()=2.【分析】先求出f′(x),然后将代入解出即可.【解答】解:,所以,解得:.故答案为:2.【点评】本题主要是考查了导数的计算以及利用方程思想解决问题的能力.属于较易题.25.已知f(x)=x2+3xf′(2),则f′(2)=﹣2.【分析】把给出的函数求导,在其导函数中取x=2,则f′(2)可求.【解答】解:由f(x)=x2+3xf′(2),得:f′(x)=2x+3f′(2),所以,f′(2)=2×2+3f′(2),所以,f′(2)=﹣2.故答案为:﹣2.【点评】本题考查了导数的加法与乘法法则,考查了求导函数的值,解答此题的关键是正确理解原函数中的f′(2),f′(2)就是一个具体数,此题是基础题.四.解答题(共7小题)26.求下列函数的导数.(1)y=3x2+x cos x;(2)f(x)=.【分析】根据导数的公式即可得到结论.【解答】(1)f′(x)=6x+cos x﹣x sin x;(2)∵∴.【点评】本题主要考查导数的基本运算,比较基础.27.求下列函数的导数.(1)y=(2x2+3)(3x﹣1);(2)f(x)=;(3)y=ln.【分析】利用常见函数的导数公式以及和、差、积、商的求导公式、复合函数的求导公式求解即可.【解答】解:(1)函数y=(2x2+3)(3x﹣1),所以y'=(2x2+3)′(3x﹣1)+(2x2+3)(3x﹣1)′=4x•(3x﹣1)+3(2x2+3)=18x2﹣4x+9;(2)函数f(x)=,所以;(3)函数y=ln,所以.【点评】本题考查了导数的运算,主要考查了常见函数的导数,和、差、积、商的求导公式以及复合函数的求导公式的应用,解题的关键是熟练掌握公式,属于基础题.28.设f(x)=lnx,g(x)=f(x)+f′(x).(1)求g(x)的单调区间和最小值;(2)讨论g(x)与g()的大小关系.【分析】(1)利用导数研究函数g(x)的单调性极值最值即可得出.(2)令h(x)=g(x)﹣=2lnx+﹣x(x>0).可得h′(x)=≤0,函数h(x)在(0,+∞)上单调递减.由于h(1)=0,即可得出大小关系.【解答】解:(1)(x>0).∴g(x)=lnx+(x>0).∴=,令g′(x)=0,解得x=1.当0<x<1时,g′(x)<0,函数g(x)单调递减;当1<x时,g′(x)>0,函数g (x)单调递增.∴当x=1时,函数g(x)取得极小值即最小值,g(1)=1.综上可得:函数g(x)单调递减区间为(0,1);函数g(x)单调递增区间为[1,+∞),最小值为1.(2)g(x)=lnx+(x>0),=﹣lnx+x.令h(x)=g(x)﹣=2lnx+﹣x(x>0).∴h′(x)=﹣﹣1=≤0,∴函数h(x)在(0,+∞)上单调递减.当x=1时,h(1)=0,此时g(x)=.当0<x<1时,h(x)>0,此时g(x)>.当1<x时,h(x)<0,此时g(x)<.【点评】本题考查了利用导数研究函数的单调性,考查了分类讨论的思想方法、构造函数法,考查了推理能力与计算能力,属于难题.29.求下列函数的导数:(1)y=(2x2﹣1)(3x+1);(2)y=e x cos x;(3).【分析】利用常见函数的导数公式以及和、差、积、商的求导公式、复合函数的求导公式求解即可.【解答】解:(1)因为y=(2x2﹣1)(3x+1)=6x3+2x2﹣3x﹣1,所以y′=18x2+4x﹣3;(2)y′=(e x cos x)′=(e x)′cos x+e x(cos x)′=e x cos x﹣e x sin x=e x(cos x﹣sin x);(3)y′===.【点评】本题考查了导数的运算,主要考查了常见函数的导数,和、差、积、商的求导公式以及复合函数的求导公式的应用,解题的关键是熟练掌握公式,属于基础题.30.求下列函数的导数(1)f(x)=lnx+xa x;(2).【分析】(1)直接利用常见导数的求导公式以及导数的运算法则进行求解即可;(2)利用常见函数的求导公式结合复合函数的求导法则进行求解即可.【解答】解:(1)因为f(x)=lnx+xa x,所以;(2)因为,所以.【点评】本题考查了导数的运算,涉及了常见函数的求导公式的运用、导数的求导法则的运用、复合函数求导法则的应用,属于基础题.31.求下列函数的导数(1)y=(2x2+3)(3x﹣1);(2);(3)y=(1+cos2x)3.【分析】(1)(2)(3)根据导数的运算法则求导即可.【解答】解:(1)方法一:y'=(2x2+3)′(3x﹣1)+(2x2+3)(3x﹣1)′=4x(3x﹣1)+3(2x2+3)=18x2﹣4x+9,方法二:∵y=(2x2+3)(3x﹣1)=6x3﹣2x2+9x﹣3,∴y'=18x2﹣4x+9.(2)=,(3)y′=3(1+cos 2x)2•(1+cos 2x)′=3(1+cos 2x)2•(﹣sin 2x)•(2x)′=﹣6sin 2x•(1+cos 2x)2=﹣6sin 2x•(2cos2x)2=﹣6sin 2x•4cos4x=﹣48sin x cos5x.【点评】本题考查了导数的运算,熟练掌握导数的运算法则是解题的关键,是基础题.32.求下列函数的导数.(1)y=(2x2﹣1)(3x+1);(2).【分析】(1)直接利用常见函数的导数公式以及导数的运算律求解即可;(2)直接利用常见函数的导数公式以及导数的运算律求解即可.【解答】解:(1)因为y=(2x2﹣1)(3x+1)=6x3+2x2﹣3x﹣1,所以y'=18x2+4x﹣3;(2)=.【点评】本题考查了导数的运算,解题的关键是掌握常见函数的导数公式以及导数的运算律,属于基础题.。
导数及其应用一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()lim h f x h f x h h→+-- 的值为( )A .'0()f xB .'02()f xC .'02()f x -D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________;3.函数sin x y x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________;5.函数5523--+=x x x y 的单调递增区间是___________________________。
三、解答题1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。
2.求函数()()()y x a x b x c =---的导数。
【巩固练习】一、选择题1.设函数310()(12)f x x =-,则'(1)f =( )A .0B .―1C .―60D .602.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( )A.(0,1)B.()(),10,1-∞-C. ()()1,01,-+∞D.()1,+∞3.(2014春 永寿县校级期中)下列式子不正确的是( )A.()'23cos 6sin x x x x +=-B. ()'1ln 22ln 2x x x x -=- C. ()'2sin 22cos 2x x = D.'2sin cos sin x x x x x x -⎛⎫= ⎪⎝⎭ 4.函数4538y x x =+-的导数是( ) A .3543x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为'()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( )A. 2B.-2C.94 D.94- 6.设曲线1(1)1x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12D .―2 7.23log cos (cos 0)y x x =≠的导数是( )A .32log tan e x -⋅B .32log cot e x ⋅C .32log cos e x -⋅D .22log cos e x 二、填空题8.曲线y=sin x 在点,12π⎛⎫ ⎪⎝⎭处的切线方程为________。
9.设y=(2x+a)2,且2'|20x y ==,则a=________。
10.31sin x x '⎛⎫-= ⎪⎝⎭____________,()2sin 25x x '+=⎡⎤⎣⎦____________。
导数的应用试卷一、选择题(每题5分,共30分)1. 设函数f(x)在区间(a,b)内可导,若f'(x)>0,则函数f(x)在(a,b)内()A. 单调递减B. 单调递增C. 是常数函数D. 有极大值答案:B。
解析:根据导数的性质,导数大于零函数单调递增。
2. 函数y = x³ - 3x的极小值点为()A. -1B. 1C. 0D. 不存在答案:A。
解析:先求导y' = 3x² - 3,令y' = 0,解得x = ±1,再通过判断导数在x = - 1两侧的正负性可知x = - 1为极小值点。
3. 函数y = sinx在区间[0,2π]上,导数为零的点有()个。
A. 1B. 2C. 3D. 4答案:C。
解析:y' = cosx,在[0,2π]上cosx = 0时,x = π/2,3π/2,5π/2,有3个点。
二、填空题(每题5分,共20分)1. 函数y = lnx的导数是______。
答案:1/x。
解析:根据对数函数的求导公式。
2. 曲线y = x²在点(1,1)处的切线方程为______。
答案:y = 2x - 1。
解析:先求导得y' = 2x,在点(1,1)处切线斜率为2,再利用点斜式得到切线方程。
三、解答题(每题20分,共40分)1. 求函数y = x⁴ - 2x² + 3的单调区间和极值。
答案:先求导y' = 4x³ - 4x = 4x(x² - 1)=4x(x + 1)(x - 1)。
令y' = 0,解得x = - 1,0,1。
当x < - 1时,y' < 0,函数单调递减;当- 1 < x < 0时,y' > 0,函数单调递增;当0 < x < 1时,y' < 0,函数单调递减;当x > 1时,y' > 0,函数单调递增。
高考数学导数的概念与运算选择题1. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率2. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的导数是()A. 2B. 3C. 4D. 53. 下列关于导数的定义,错误的是()A. 函数f(x)在某一点x0处的导数定义为f(x0+h)-f(x0)/h,当h趋近于0时B. 导数表示函数在某一点的瞬时变化率C. 导数可以表示函数在某一点的切线斜率D. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率4. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值25. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-16. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率7. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值28. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-19. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率10. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值211. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-112. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率13. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值214. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-115. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率16. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值217. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-118. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率19. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2C. 最大值2,最小值1D. 最大值3,最小值220. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-121. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率22. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1D. 最大值3,最小值223. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-124. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率25. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值126. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-127. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率28. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值229. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-130. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率31. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值232. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-133. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率34. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值235. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-136. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率37. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值238. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()B. y=2x+1C. y=-2x+1D. y=-2x-139. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率40. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值241. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1C. y=-2x+1D. y=-2x-142. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率43. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值244. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1D. y=-2x-145. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率46. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值247. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+148. 下列关于导数的说法中正确的是()A. 导数是函数在某一点的瞬时变化率B. 导数可以表示函数在某一点的切线斜率C. 导数表示函数在某一点的切线斜率,同时也可以表示函数在某一点的瞬时变化率D. 导数可以表示函数在某一点的切线斜率,但不是瞬时变化率49. 函数f(x)在x=1处的导数f'(1)为2,则f(x)在区间[1, 2]上的最大值和最小值分别是()A. 最大值4,最小值2B. 最大值3,最小值1C. 最大值2,最小值1D. 最大值3,最小值250. 设函数f(x)在x=1处可导,且f'(1)=2,则f(x)在x=1处的切线方程为()A. y=2x-1B. y=2x+1C. y=-2x+1D. y=-2x-1。
导数单元测试题班级姓名一、选择题1.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( ) A.0.40 B.0.41 C.0.43 D.0.442.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率ΔyΔx等于( )A.4 B.4+2Δx C.4+2(Δx)2D.4x3.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( ) A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直4.曲线y=-1x在点(1,-1)处的切线方程为( )A.y=x-2 B.y=x C.y=x+2 D.y=-x-25.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π4的是( )A.(0,0) B.(2,4) C.(14,116) D.(12,14)6.已知函数f(x)=1x,则f′(-3)=( )A.4 B.19C.-14D.-197.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( )A.1个B.2个C.3个D.4个10.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分别是( )A.f(2),f(3) B.f(3),f(5) C.f(2),f(5) D.f(5),f(3)11.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( )A.-10 B.-71 C.-15 D.-2212.一点沿直线运动,如果由始点起经过t秒运动的距离为s=14t4-53t3+2t2,那么速度为零的时刻是( )A.1秒末 B.0秒 C.4秒末 D.0,1,4秒末二、填空题13.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________.14.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则ba=________.15.函数y=x e x的最小值为________.16.有一长为16 m的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m2.三、解答题17.求下列函数的导数:(1)y=3x2+x cos x; (2)y=x1+x; (3)y=lg x-e x.18.已知抛物线y=x2+4与直线y=x+10,求:(1)它们的交点; (2)抛物线在交点处的切线方程.19.已知函数f(x)=13x3-4x+4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.导数单元测试题答案班级 姓名一、选择题1.已知函数y =f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44解析:选B.Δy =f (2.1)-f (2)=2.12-22=0.41.2.函数f (x )=2x 2-1在区间(1,1+Δx )上的平均变化率Δy Δx等于( )A .4B .4+2ΔxC .4+2(Δx )2D .4x解析:选B.因为Δy =[2(1+Δx )2-1]-(2×12-1)=4Δx +2(Δx )2,所以Δy Δx=4+2Δx ,故选B.3.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直解析:选B.函数在某点处的导数为零,说明相应曲线在该点处的切线的斜率为零.4.曲线y =-1x在点(1,-1)处的切线方程为( )A .y =x -2B .y =xC .y =x +2D .y =-x -2解析:选A.f ′(1)=li m Δx →0 -11+Δx +11Δx =li mΔx →0 11+Δx =1,则在(1,-1)处的切线方程为y +1=x -1,即y =x -2.5.下列点中,在曲线y =x 2上,且在该点处的切线倾斜角为π4的是( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)故选D.6.已知函数f (x )=1x,则f ′(-3)=( )A .4 B.19C .-14D .-19解析:选D.∵f ′(x )=-1x 2,∴f ′(-3)=-19.7.函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解析:选D.f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x, 令f ′(x )>0,解得x >2,故选D.8.“函数y =f (x )在一点的导数值为0”是“函数y =f (x )在这点取极值”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B.对于f (x )=x 3,f ′(x )=3x 2,f ′(0)=0,不能推出f (x )在x =0处取极值,反之成立.故选B.9.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极小值点有()A .1个B .2个C .3个D .4个解析:选A.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如题图所示,函数f (x )在开区间(a ,b )内有极小值点即函数由减函数变为增函数的点,其导数值为由负到正的点,只有1个.10.函数f (x )=-x 2+4x +7,在x ∈[3,5]上的最大值和最小值分别是( )A .f (2),f (3)B .f (3),f (5)C .f (2),f (5)D .f (5),f (3) 解析:选B.∵f ′(x )=-2x +4, ∴当x ∈[3,5]时,f ′(x )<0, 故f (x )在[3,5]上单调递减,故f (x )的最大值和最小值分别是f (3),f (5).11.函数f (x )=x 3-3x 2-9x +k 在区间[-4,4]上的最大值为10,则其最小值为( )A .-10B .-71C .-15D .-22解析:选B.f ′(x )=3x 2-6x -9=3(x -3)(x +1). 由f ′(x )=0得x =3,-1.又f (-4)=k -76,f (3)=k -27, f (-1)=k +5,f (4)=k -20. 由f (x )max =k +5=10,得k =5, ∴f (x )min =k -76=-71.12.一点沿直线运动,如果由始点起经过t 秒运动的距离为s =14t 4-53t 3+2t 2,那么速度为零的时刻是( ) A .1秒末 B .0秒 C .4秒末 D .0,1,4秒末解析:选D.∵s ′=t 3-5t 2+4t ,令s ′=0,得t 1=0,t 2=1,t 3=4,此时的函数值最大,故选D. 二、填空题13.设函数y =f (x )=ax 2+2x ,若f ′(1)=4,则a =________. 答案:1 14.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则b a=________.答案:215.函数y =x e x的最小值为________.解析:令y ′=(x +1)e x=0,得x =-1. 当x <-1时,y ′<0;当x >-1时,y ′>0.∴y min =f (-1)=-1e.答案:-1e16.有一长为16 m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m 2. 解析:设矩形的长为x m ,则宽为16-2x 2=(8-x ) m(0<x <8),∴S (x )=x (8-x )=-x 2+8x∴S ′(x )=-2x +8,令S ′(x )=0, 则x =4,又在(0,8)上只有一个极值点, 且x ∈(0,4)时,S (x )单调递增, x ∈(4,8)时,S (x )单调递减, 故S (x )max =S (4)=16. 答案:16 三、解答题17.求下列函数的导数: (1)y =3x 2+x cos x ;(2)y =x1+x;(3)y =lg x -e x.解:(1)y ′=6x +cos x -x sin x .(2)y ′=1+x -x +x 2=1+x2.(3)y ′=(lg x )′-(e x)′=1x ln10-e x. 18.已知抛物线y =x 2+4与直线y =x +10,求: (1)它们的交点;(2)抛物线在交点处的切线方程.解:(1)由⎩⎪⎨⎪⎧y =x 2+4,y =x +10,得x 2+4=10+x ,即x 2-x -6=0,∴x =-2或x =3.代入直线的方程得y =8或13. ∴抛物线与直线的交点坐标为(-2,8)或(3,13).(2)∵y =x 2+4,∴y ′=lim Δx →0 x +Δx 2+4-x 2+Δx=lim Δx →0 Δx 2+2x ·ΔxΔx=lim Δx →0 (Δx +2x )=2x . ∴y ′|x =-2=-4,y ′|x =3=6,即在点(-2,8)处的切线斜率为-4,在点(3,13)处的切线斜率为6. ∴在点(-2,8)处的切线方程为4x +y =0; 在点(3,13)处的切线方程为6x -y -5=0.19.已知函数f (x )=13x 3-4x +4.(1)求函数的极值;(2)求函数在区间[-3,4]上的最大值和最小值.解:(1)f ′(x )=x 2-4,解方程x 2-4=0, 得x 1=-2,x 2=2.当从上表可看出,当x =-2时,函数有极大值,且极大值为3;而当x =2时,函数有极小值,且极小值为-43.(2)f (-3)=13×(-3)3-4×(-3)+4=7,f (4)=13×43-4×4+4=283,与极值比较,得函数在区间[-3,4]上的最大值是283,最小值是-43.。
导数专项训练100题 姓名:一、选择题:1.函数221y x =+在闭区间[1,1]x+∆内的平均变化率为( ) A.12x +∆ B.2x +∆ C.32x +∆ D.42x +∆2. 若函数2y x=,则当1x =-时,函数的瞬时变化率为( )A.1B.1-C.2D.2-3. 函数31y x x=-的导数'y =( )A.2213x x -B.1332x -C.2213x x +D.221x x + 4. 已知函数()ln f x x =,则'()ef e 的值等于( )A.1B.eC.1eD.2e 5. 已知函数2()22f x x x =-+在区间[1,1],[1,1](01)x x x -∆+∆<∆<的平均变化率分别为12,k k ,则下列关系成立的是( ) A.120k k +=B.120k k +<C.120k k +<D.120k k ->6.()f x 在(,)a b 内可导,则'()0f x <是()f x 在(,)a b 内单调递减的( )A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件7.函数214yx x=+的单调增区间为( ) A.(0,)+∞ B.1(,)2+∞C.(,1)-∞-D.1(,)2-∞-8.在下列结论中,正确的结论共有( )(1) 单调增函数的导数也是单调增函数; (3)单调减函数的导数也是单调减函数; (2) 单调函数的导数也是单调函数; (4)导函数是单调的,则原函数也是单调的。
A.0个 B.2个 C.3个 D.4个 9. 若在区间(,)a b 内有'()0f x >,且()0f a ≥,则在(,)a b 内有( )A.()0f x >B.()0f x <C.()0f x =D.不能确定10. 三次函数3()1yf x ax ==-在(,)-∞+∞内是减函数,则( )A.1a =B.2a =C.13a = D.0a <11.已知函数(),()f x g x 都是(,)a b 上的可导函数,在[,]a b 上连续且'()'(),()()f x g x f a g a >=,则当(,)x a b ∈时有( )A.()()f x g x >B.()()f x g x <C.()()f x g x =D.大小关系不能确定12.3()3f x x x =-为递增函数的区间是( ) A.(,1)-∞- B.(1,)+∞ C.(1,1)-D.(,1)(1,)-∞-+∞13.设32()(0)f x ax bx cx d a =+++>,则()f x 为增函数的充要条件是( )A.240b ac ->B.0,0b c >>C.0,0b c =>D.230b ac -<14.下列说法正确的是( ) A. 当0'()0f x =时,则0()f x 为()f x 的极大值 B. 当0'()0f x =时,则0()f x 为()f x 的极小值 C. 当0'()0f x =时,则0()f x 为()f x 的极值 D. 当0()f x 为()f x 的极值时,0'()0f x =.15.已知函数()1sin ,(0,2)f x x xx π=+-∈,则函数()f x ( ) A. 在(0,2)π上是增函数, B. 在(0,2)π上是减函数C. 在(0,2)π上是增函数,在(,2)ππ上是减函数D. 在(0,2)π上是减函数,在(,2)ππ上是增函数 16.若函数()f x 可导,则“'()0f x =有实根”是“()f x 有极值”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件17.已知函数()y f x =是定义在区间[,]a b 上的连续函数,在开区间(,)a b 内可导,且'()0f x >,则在(,)a b 上下列各结论中正确的是( ) A.()f a 是极小值,()f b 是极大值 B. ()f a 是极大值,()f b 是极小值 C. ()f x 有极值,但不是(),()f a f b D. ()f x 没有极值18.函数3()33f x x bx b=-+在(0,1)内有极小值,则( )A.0b <B.1b <C.0b >D.12b <19.三次函数当1x=时有极大值4,当3x =时有极小值0,且函数过原点,则此函数是( ) A.3269y x x x =++ B.3269y x x x =-+ C.3269y x x x =-- D.3269y x x x =+-20.函数3()3(||1)f x x x x =-<,那么( )A. 有最大值,无最小值B. 有最大值,也有最小值C. 无最大值,也无最小值D. 既有最大值,又有最小值 21.若(3)2,'(3)2f f ==-,则323()lim3x x f x x →--的值为( )A.4-B.8C.0D.322.若函数()f x 为可导函数,且满足0(1)(1)lim12x f f x x→--=,则过曲线()f x y =上的点(1,(1))f 处的切线的斜率为( )A.2B.1-C.1D.2-23.若曲线4()2f x x x =-+在点P 处的切线与直线310x y +-=垂直,则点P 的坐标为( ) A.(1,0) B.(1,2) C.(1,4)- D.(1,0)- 24.已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为( )A.2()(1)3(1)f x x x =-+-B.()2(1)f x x =-C.2()2(1)f x x =-D.()1f x x =- 25.曲线cos y x =和tan y x =交点处两曲线的切线的交角为( )A.3π B.4π C.4π D.2π26.如果过曲线313yx =上点P 的切线l 的方程为12316x y -=,那么点P 的坐标为( ) A.8(2,)3 B.4(1,)3- C.28(1,)3-- D.20(3,)327.如果一直线过原点且与曲线11y x =+相切与点P ,那么切点P 的坐标为( )A.1(,2)2-B.12(,)23-C.(2,1)--D.1(2,)328.若在曲线sin (0)y x x π=<<上取一点M ,使过M点的切线与直线y x =平行,则点M 的坐标为( )A.(3πB.(,3π±C.1(,)62πD.(6π 29.若函数()f x 既是周期函数又是偶函数,则其导函数'()f x 为( )A. 既是周期函数,又是偶函数B. 既是周期函数,又是奇函数C. 不是周期函数,但是偶函数D. 不是周期函数,但是奇函数30.已知抛物线2y ax bx c =++过点(1,1),且在点(2,1)-处的切线方程为3y x =-,则a 、b 、c 的值分别是( ) A.3,11,9- B.11,3,9- C.9,11,3- D.9,3,11-31.如果一个球的半径r 以0.2/cm s 的速度增加,那么当球的半径20r cm =时,它的体积增加的速度为( )3/cm s A.310π B.320π C.330π D.360π32.若函数()f x 在0x 处可导,则000()()lim h f x f x h h→--为( )A.(0)fB.'(0)fC.0'()f xD.0'()f x -33.若函数()f x 在0x 处可导,那么000()()lim x x f x f x x x →--为( )A.可能不存在B.0'()f x -C.0'()f xD.0()f x34.若函数()f x 在x a =处可导,且'()f a m =,则(2)(2)limx a f x a f a x x a →----为( ) A.m B.2mC.3mD.m -35. 若f (x )=sin α-cos x ,则f ‘(α)等于( ) A 、sin αB 、cos αC 、sin α+cos αD 、2sin α36.f (x )=ax 3+3x 2+2,若f ‘(-1)=4,则a 的值等于( )A 、319 B 、316 C 、313 D 、310 37.f (x )与g(x )是定义在R 上的两个可导函数,若f (x ),g(x )满足f ′(x )=g ′(x ),则f (x )与g (x )满足( )A 、f (x )=g (x )B 、f (x )-g (x )为常数函数C 、f (x )=g (x )=0D 、f (x )+g (x )为常数函数38. 曲线()nyx n N =∈在点P 2n)处切线斜率为20,那么n 为 ( )A . 7B .6C .5D .439.函数()f x = ( )A .0)x > B .0)x > C 0)x > D .0)x >40.函数f(x)=(x+1)(x 2-x+1)的导数是 ( )A . x 2-x+1B .(x+1) (2x-1)C .3x 2D .3x 2+141.函数yx =的导数为 ( )A .'y x x = B .'y x =C.'y x = D .'y x = 42.函数y= ( )A .'2cos sin x x x y x += B.'2cos sin x x x y x -=. C.'2sin cos x x x y x -= D .'2sin cos x x x y x +=43.函数21(31)y x =-的导数是 ( ) A .'36(31)y x =- B .'26(31)y x =- C.'36(31)y x =-- D .'26(31)y x =--44.函数3sin (3)4y x π=+的导数 ( )A.23sin (3)cos(3)44x x ππ++B.29sin (3)cos(3)44x x ππ++C.29sin (3)4x π+D.29sin (3)cos(3)44x x ππ-++ 45.下列导数数运算正确的是 ( )A .'211()1x x x +=+ B .'21(log )ln 2x x = C.'3(3)3log x xe = D .2'(cos )2sin x x x x =-46.函数2ln(32)y x x =--的导数 ( )A .23x + B .2132x x -- C .22223x x x ++- D .22223x x x -+-47.函数22(0,1)x xy aa a -=>≠,那么'y 为 ( )A . 22ln xxa a - B .222ln xxa a - C.222(1)ln xxx a a -- D .22(1)ln xxx a a --48.若000(2)()13limx f x x f x x∆→+∆-=∆,则'0()f x = ( )A .23B .32C .3D .249. 已知函数y=f(x)在区间(a,b)内可导,且x0∈(a,b)则hhxfhxfn)()(lim--+→的值为()A、f’(x0)B、2 f’(x0)C、-2 f’(x0)D、050.f(x)=ax3+3x2+2,若f’(-1)=4,则a的值为()A.19/3 B.16/3 C.13/3 D.10/351.设y=8x2-lnx,则此函数在区间(0,1/4)和(1/2,1)内分别为()A.单调递增,单调递减 B、单调递增,单调递增 C、单调递减,单调递增 D、单调递减,单调递减52.设y=tanx,则y’=( )A.sec2xB.secx·tanxC.1/(1+x2)D.-1/(1+x2)53.曲线y=x3+x-2 在点P0处的切线平行于直线y=4x-1,则点P0点的坐标是()54.(0,1) B.(1,0) C.(-1,0) D.(1,4)54.给出下列命题:(1)若函数f(x)=|x|,则f’(0)=0;(2)若函数f(x)=2x2+1,图像上P(1,3)及邻近上点Q(1+Δx,3+Δy),则xy∆∆=4+2Δx;(3)加速度是动点位移函数S(t)对时间t的导数;(4)y=2cosx+lgx,则y’=-2cosx·sinx+x1.其中正确的命题有()A. 0个B.1个C.2个 D。
利用导数研究函数的单调性精选题21道一.选择题(共6小题)1.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)2.若函数f(x)=x﹣sin2x+a sin x在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣] 3.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a4.若函数f(x)=x2+ax+在是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)5.若函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)6.已知f(x)=x2+sin,f′(x)为f(x)的导函数,则f′(x)的图象是()A.B.C.D.二.填空题(共9小题)7.已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是.8.函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为.9.函数f(x)=x﹣lnx的单调减区间为.10.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是.11.函数f(x)=(x﹣3)e x的单调递增区间是.12.已知函数f(x)=mx2+lnx﹣2x在定义域内是增函数,则实数m的取值范围为.13.函数y=x2﹣lnx的单调递减区间为.14.已知三次函数f(x)=x3+x2+cx+d(a<b)在R上单调递增,则的最小值为.15.设定义域为R的函数f(x)满足f'(x)>f(x),则不等式e x﹣1f(x)<f(2x﹣1)的解为.三.解答题(共6小题)16.已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.17.设函数f(x)=(1﹣x2)•e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求实数a的取值范围.18.已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.19.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.20.已知函数f(x)=2sin x﹣x cos x﹣x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.21.已知函数f(x)=x3﹣a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.利用导数研究函数的单调性精选题21道参考答案与试题解析一.选择题(共6小题)1.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(﹣∞,﹣1)∪(0,1)B.(﹣1,0)∪(1,+∞)C.(﹣∞,﹣1)∪(﹣1,0)D.(0,1)∪(1,+∞)【分析】由已知当x>0时总有xf′(x)﹣f(x)<0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(﹣∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)>0等价于x•g(x)>0,数形结合解不等式组即可.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.故选:A.【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.2.若函数f(x)=x﹣sin2x+a sin x在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cos x(﹣1≤t≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+a sin x的导数为f′(x)=1﹣cos2x+a cos x,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+a cos x≥0,即有﹣cos2x+a cos x≥0,设t=cos x(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cos x(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.3.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(﹣log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.b<c<a【分析】由奇函数f(x)在R上是增函数,则g(x)=xf(x)偶函数,且在(0,+∞)单调递增,则a=g(﹣log25.1)=g(log25.1),则2<log25.1<3,1<20.8<2,即可求得b<a<c【解答】解:奇函数f(x)在R上是增函数,当x>0,f(x)>f(0)=0,且f′(x)>0,∴g(x)=xf(x),则g′(x)=f(x)+xf′(x)>0,∴g(x)在(0,+∞)单调递增,且g(x)=xf(x)偶函数,∴a=g(﹣log25.1)=g(log25.1),则2<log25.1<3,1<20.8<2,由g(x)在(0,+∞)单调递增,则g(20.8)<g(log25.1)<g(3),∴b<a<c,故选:C.【点评】本题考查函数奇偶性,考查函数单调性的应用,考查转化思想,属于基础题.4.若函数f(x)=x2+ax+在是增函数,则a的取值范围是()A.[﹣1,0]B.[﹣1,+∞)C.[0,3]D.[3,+∞)【分析】由函数在(,+∞)上是增函数,可得≥0在(,+∞)上恒成立,进而可转化为a≥﹣2x在(,+∞)上恒成立,构造函数求出﹣2x在(,+∞)上的最值,可得a的取值范围.【解答】解:∵在(,+∞)上是增函数,故≥0在(,+∞)上恒成立,即a≥﹣2x在(,+∞)上恒成立,令h(x)=﹣2x,则h′(x)=﹣﹣2,当x∈(,+∞)时,h′(x)<0,则h(x)为减函数.∴h(x)<h()=3∴a≥3.故选:D.【点评】本题考查的知识点是利用导数研究函数的单调性,恒成立问题,是导数的综合应用,难度中档.5.若函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题.6.已知f(x)=x2+sin,f′(x)为f(x)的导函数,则f′(x)的图象是()A.B.C.D.【分析】先化简f(x)=x2+sin=x2+cos x,再求其导数,得出导函数是奇函数,排除B,D.再根据导函数的导函数小于0的x的范围,确定导函数在(﹣,)上单调递减,从而排除C,即可得出正确答案.【解答】解:由f(x)=x2+sin=x2+cos x,∴f′(x)=x﹣sin x,它是一个奇函数,其图象关于原点对称,故排除B,D.又f″(x)=﹣cos x,当﹣<x<时,cos x>,∴f″(x)<0,故函数y=f′(x)在区间(﹣,)上单调递减,故排除C.故选:A.【点评】本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.二.填空题(共9小题)7.已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是[﹣1,].【分析】求出f(x)的导数,由基本不等式和二次函数的性质,可得f(x)在R上递增;再由奇偶性的定义,可得f(x)为奇函数,原不等式即为2a2≤1﹣a,运用二次不等式的解法即可得到所求范围.【解答】解:函数f(x)=x3﹣2x+e x﹣的导数为:f′(x)=3x2﹣2+e x+≥﹣2+2=0,可得f(x)在R上递增;又f(﹣x)+f(x)=(﹣x)3+2x+e﹣x﹣e x+x3﹣2x+e x﹣=0,可得f(x)为奇函数,则f(a﹣1)+f(2a2)≤0,即有f(2a2)≤﹣f(a﹣1)由f(﹣(a﹣1))=﹣f(a﹣1),f(2a2)≤f(1﹣a),即有2a2≤1﹣a,解得﹣1≤a≤,故答案为:[﹣1,].【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题.8.函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为(﹣1,+∞).【分析】构建函数F(x)=f(x)﹣(2x+4),由f(﹣1)=2得出F(﹣1)的值,求出F(x)的导函数,根据f′(x)>2,得到F(x)在R上为增函数,根据函数的增减性即可得到F(x)大于0的解集,进而得到所求不等式的解集.【解答】解:设F(x)=f(x)﹣(2x+4),则F(﹣1)=f(﹣1)﹣(﹣2+4)=2﹣2=0,又对任意x∈R,f′(x)>2,所以F′(x)=f′(x)﹣2>0,即F(x)在R上单调递增,则F(x)>0的解集为(﹣1,+∞),即f(x)>2x+4的解集为(﹣1,+∞).故答案为:(﹣1,+∞)【点评】本题考查学生灵活运用函数思想求解不等式,解题的关键是构建函数,确定函数的单调性,属于中档题.9.函数f(x)=x﹣lnx的单调减区间为{x|0<x<1}.【分析】先求函数f(x)的导数,然后令导函数小于0求x的范围即可.【解答】解:∵f(x)=x﹣lnx∴f'(x)=1﹣=令<0,则0<x<1故答案为:{x|0<x<1}【点评】本题主要考查函数的单调性与其导函数的正负情况之间的关系.属基础题.10.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(﹣1)=0,当x>0时,xf′(x)﹣f(x)<0,则使得f(x)>0成立的x的取值范围是(﹣∞,﹣1)∪(0,1).【分析】构造函数g(x)=,利用g(x)的导数判断函数g(x)的单调性与奇偶性,画出函数g(x)的大致图象,结合图形求出不等式f(x)>0的解集.【解答】解:设g(x)=,则g(x)的导数为:g′(x)=,∵当x>0时总有xf′(x)<f(x)成立,即当x>0时,g′(x)恒小于0,∴当x>0时,函数g(x)=为减函数,又∵g(﹣x)====g(x),∴函数g(x)为定义域上的偶函数又∵g(﹣1)==0,∴函数g(x)的大致图象如图所示:数形结合可得,不等式f(x)>0⇔x•g(x)>0⇔或,⇔0<x<1或x<﹣1.∴f(x)>0成立的x的取值范围是(﹣∞,﹣1)∪(0,1).故答案为:(﹣∞,﹣1)∪(0,1).【点评】本题考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式的应用问题,是综合题目.11.函数f(x)=(x﹣3)e x的单调递增区间是(2,+∞).【分析】先求出函数的导数,令导函数大于0,解不等式求出即可.【解答】解:∵f′(x)=(x﹣2)e x,令f′(x)>0,解得:x>2,∴f(x)在(2,+∞)递增,故答案为:(2,+∞).【点评】本题考查了函数的单调性,导数的应用,是一道基础题.12.已知函数f(x)=mx2+lnx﹣2x在定义域内是增函数,则实数m的取值范围为[1,+∞).【分析】函数f(x)=mx2+lnx﹣2x在定义域(x>0)内是增函数⇔≥0⇔对于任意x>0.⇔.利用导数即可得出.【解答】解:∵函数f(x)=mx2+lnx﹣2x在定义域(x>0)内是增函数,∴≥0,化为.令g(x)=,=﹣,解g′(x)>0,得0<x<1;解g′(x)<0,得x>1.因此当x=1时,g(x)取得最大值,g(1)=1.∴m≥1.故答案为[1,+∞).【点评】正确把问题等价转化、利用导数研究函数的单调性、极值与最值是解题的关键.13.函数y=x2﹣lnx的单调递减区间为(0,1].【分析】根据题意,先求函数的定义域,进而求得其导数,即y′=x﹣=,令其导数小于等于0,可得≤0,结合函数的定义域,解可得答案.【解答】解:对于函数,易得其定义域为{x|x>0},y′=x﹣=,令≤0,又由x>0,则≤0⇔x2﹣1≤0,且x>0;解可得0<x≤1,即函数的单调递减区间为(0,1],故答案为(0,1]【点评】本题考查利用导数求函数的单调区间,注意首先应求函数的定义域.14.已知三次函数f(x)=x3+x2+cx+d(a<b)在R上单调递增,则的最小值为3.【分析】由题意得f'(x)=ax2+bx+c在R上恒大于或等于0,得a>0,Δ=b2﹣4ac≤0,将此代入,将式子进行放缩,以为单位建立函数关系式,最后构造出运用基本不等式的模型使问题得到解决.【解答】解:由题意f'(x)=ax2+bx+c≥0在R上恒成立,则a>0,Δ=b2﹣4ac≤0.∴≥令,≥≥3.(当且仅当t=4,即b=c=4a时取“=”)故答案为:3【点评】本题考查了利用导数工具研究三次函数的单调性以及函数与方程的综合应用问题,属于中档题.15.设定义域为R的函数f(x)满足f'(x)>f(x),则不等式e x﹣1f(x)<f(2x﹣1)的解为(1,+∞).【分析】令g(x)=,求出函数的导数,根据函数的单调性得到关于x的不等式,解出即可.【解答】解:令g(x)=,则g′(x)=>0,故g(x)在R递增,不等式e x﹣1f(x)<f(2x﹣1),即<,故g(x)<g(2x﹣1),故x<2x﹣1,解得:x>1,故答案为:(1,+∞)【点评】本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道常规题.三.解答题(共6小题)16.已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.【分析】(1)求出函数的定义域和导数,利用函数单调性和导数之间的关系进行求解即可.(2)将不等式进行等价转化,构造新函数,研究函数的单调性和最值即可得到结论.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+=﹣,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式Δ=a2﹣4,①当0<a≤2时,△≤0,即g(x)≥0,即f′(x)≤0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:)综上当a≤2时,f (x)在(0,+∞)上是减函数,当a>2时,在(0,)和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,不妨设x1<x2,则0<x 1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x 2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,则lnx1﹣ln>x1﹣,即lnx1+lnx1>x1﹣,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2成立.(2)另解:注意到f()=x﹣﹣alnx=﹣f(x),即f(x)+f()=0,不妨设x1<x2,由韦达定理得x1x2=1,x1+x2=a>2,得0<x1<1<x2,x1=,可得f(x2)+f()=0,即f(x1)+f(x2)=0,要证<a﹣2,只要证<a﹣2,即证2alnx2﹣ax2+<0,(x2>1),构造函数h(x)=2alnx﹣ax+,(x>1),h′(x)=≤0,∴h(x)在(1,+∞)上单调递减,∴h(x)<h(1)=0,∴2alnx﹣ax+<0成立,即2alnx2﹣ax2+<0,(x2>1)成立.即<a﹣2成立.【点评】本题主要考查函数的单调性的判断,以及函数与不等式的综合,求函数的导数,利用导数的应用是解决本题的关键.综合性较强,难度较大.17.设函数f(x)=(1﹣x2)•e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求实数a的取值范围.【分析】(1)求出函数的导数,求出极值点,利用导函数的符号,判断函数的单调性即可.(2)化简f(x)=(1﹣x)(1+x)e x.f(x)≤ax+1,下面对a的范围进行讨论:①当a≥1时,②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x >0),推出结论;③当a≤0时,推出结果,然后得到a的取值范围.法二:x≥0时,g(x)=e x(x2﹣1)+ax+1≥0恒成立,推出g'(x),求解[g'(x)]',当g'(0)=a﹣1≥0时,判断函数的单调性,判断满足题意,当g'(0)=a﹣1<0时,推出g(m)<g(0)=0,不合题意,得到结果.【解答】解:(1)因为f(x)=(1﹣x2)e x,x∈R,所以f′(x)=(1﹣2x﹣x2)e x,令f′(x)=0可知x=﹣1±,当x<﹣1﹣或x>﹣1+时f′(x)<0,当﹣1﹣<x<﹣1+时f′(x)>0,所以f(x)在(﹣∞,﹣1﹣),(﹣1+,+∞)上单调递减,在(﹣1﹣,﹣1+)上单调递增;(2)由题可知f(x)=(1﹣x)(1+x)e x.下面对a的范围进行讨论:①当a≥1时,设函数h(x)=(1﹣x)e x,则h′(x)=﹣xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,又因为h(0)=1,所以h(x)≤1,所以f(x)=(1+x)h(x)≤x+1≤ax+1;②当0<a<1时,设函数g(x)=e x﹣x﹣1,则g′(x)=e x﹣1>0(x>0),所以g(x)在[0,+∞)上单调递增,又g(0)=1﹣0﹣1=0,所以e x≥x+1.因为当0<x<1时f(x)>(1﹣x)(1+x)2,所以(1﹣x)(1+x)2﹣ax﹣1=x(1﹣a﹣x﹣x2),取x0=∈(0,1),则(1﹣x0)(1+x0)2﹣ax0﹣1=0,所以f(x0)>ax0+1,矛盾;③当a≤0时,取x0=∈(0,1),则f(x0)>(1﹣x0)(1+x0)2=1≥ax0+1,矛盾;综上所述,a的取值范围是[1,+∞).(2)法二:x≥0时,g(x)=e x(x2﹣1)+ax+1≥0恒成立,g'(x)=e x(x2+2x﹣1)+a,[g'(x)]'=e x(x2+4x+1)>0(x≥0),g'(x)在x≥0时单调递增,当g'(0)=a﹣1≥0时,x>0时g'(x)>0恒成立,g(x)单调递增,则x≥0时,g(x)≥g(0)=0,符合题意,当g'(0)=a﹣1<0时,g'(|a|)>0,于是存在m>0使得g'(m)=0,当0<x<m时,g'(x)<0,g(x)单调递减,有g(x)<g(0)=0,不合题意,所以a≥1.综上所述,a的取值范围是[1,+∞).【点评】本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力.18.已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图),由e x+2a=0,可得x=ln(﹣2a),由ln(﹣2a)=1,解得a=﹣,若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(ln(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.19.已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值.【分析】(1)通过对函数f(x)=x﹣1﹣alnx(x>0)求导,分a≤0、a>0两种情况考虑导函数f′(x)与0的大小关系可得结论;(2)通过(1)可知lnx≤x﹣1,进而取特殊值可知ln(1+)<,k∈N*.一方面利用等比数列的求和公式放缩可知(1+)(1+)…(1+)<e,另一方面可知(1+)(1+)…(1+)>2,从而当n≥3时,(1+)(1+)…(1+)∈(2,e),比较可得结论.【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1﹣=,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,故当0<x<1时,f(x)<f(1)=0,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f(a),若a≠1,则f(a)<f(1)=0,从而与f(x)≥0矛盾;所以a=1;(2)由(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1+)<,k∈N*.ln(1+)+ln(1+)+…+ln(1+)<++…+=1﹣<1,即(1+)(1+)…(1+)<e;因为m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m成立,当n=3时,(1+)(1+)(1+)=,所以m的最小值为3.【点评】本题是一道关于函数与不等式的综合题,考查分类讨论的思想,考查转化与化归思想,考查运算求解能力,考查等比数列的求和公式,考查放缩法,注意解题方法的积累,属于难题.20.已知函数f(x)=2sin x﹣x cos x﹣x,f′(x)为f(x)的导数.(1)证明:f′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.【分析】(1)令g(x)=f′(x),对g(x)再求导,研究其在(0,π)上的单调性,结合极值点和端点值不难证明;(2)利用(1)的结论,可设f′(x)的零点为x0,并结合f′(x)的正负分析得到f (x)的情况,得出结论.【解答】解:(1)证明:∵f(x)=2sin x﹣x cos x﹣x,∴f′(x)=2cos x﹣cos x+x sin x﹣1=cos x+x sin x﹣1,令g(x)=cos x+x sin x﹣1,则g′(x)=﹣sin x+sin x+x cos x=x cos x,当x∈(0,)时,x cos x>0,当x时,x cos x<0,∴当x=时,极大值为g()=>0,又g(0)=0,g(π)=﹣2,∴g(x)在(0,π)上有唯一零点,即f′(x)在(0,π)上有唯一零点;(2)由题设知f(π)⩾aπ,f(π)=0,可得a⩽0.由(1)知,f′(x)在(0,π)上有唯一零点x0,使得f′(x0)=0,且f′(x)在(0,x0)为正,在(x0,π)为负,∴f(x)在[0,x0]递增,在[x0,π]递减,结合f(0)=0,f(π)=0,可知f(x)在[0,π]上非负,∴当x∈[0,π]时,f(x)≥0,又当a≤0,x∈[0,π]时,ax≤0,∴f(x)≥ax,∴a的取值范围是(﹣∞,0].【点评】此题考查了利用导数研究函数的单调性,零点等问题,和数形结合的思想方法,难度较大.21.已知函数f(x)=x3﹣a(x2+x+1).(1)若a=3,求f(x)的单调区间;(2)证明:f(x)只有一个零点.【分析】(1)利用导数,求出极值点,判断导函数的符号,即可得到结果.(2)分离参数后求导,先找点确定零点的存在性,再利用单调性确定唯一性.【解答】解:(1)当a=3时,f(x)=x3﹣3(x2+x+1),所以f′(x)=x2﹣6x﹣3时,令f′(x)=0解得x=3,当x∈(﹣∞,3﹣2),x∈(3+2,+∞)时,f′(x)>0,函数是增函数,当x∈(3﹣2时,f′(x)<0,函数是单调递减,综上,f(x)增区间(﹣∞,3﹣2),(3+2,+∞),减区间(3﹣2.(2)证明:因为x2+x+1=(x+)2+,所以f(x)=0等价于,令,则,仅当x=0时,g′(x)=0,所以g(x)在R上是增函数;g(x)至多有一个零点,从而f(x)至多有一个零点.又因为f(3a﹣1)=﹣6a2+2a﹣=﹣6(a﹣)2﹣<0,f(3a+1)=>0,故f(x)有一个零点,综上,f(x)只有一个零点.【点评】本题主要考查导数在研究函数中的应用.考查发现问题解决问题的能力,转化思想的应用.。
一、选择题(每题只有一个选项是正确的,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
)1.某函数的导数为y′=12(x-1),那么这个函数可能是 ()A.y=ln1-x B.y=ln11-xC.y=ln(1-x) D.y=ln11-x2.(2021•江西)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,那么曲线y=f(x)在点(1,f(1))处切线的斜率为 ()A.4 B.-14 C.2 D.-123.(2021•辽宁)曲线y=xx-2在点(1,-1)处的切线方程为 ()A.y=x-2 B.y=-3x+2C.y=2x-3 D.y=-2x+14.曲线y=ex在点(2,e2)处的切线与坐标轴所围成三角形的面积为 ()A.94e2 B.2e2 C.e2 D.e225.函数y=f(x),y=g(x)的导函数的图象如图,那么y=f(x),y=g(x)的图象可能是()6.设y=8x2-lnx,那么此函数在区间(0,14)和(12,1)内分别 ()A.单调递增,单调递减B.单调递增,单调递增C.单调递减,单调递增D.单调递减,单调递减7.以下关于函数f(x)=(2x-x2)ex的判断正确的选项是 ()①f(x)>0的解集是{x|0<x<2};②f(-2)是极小值,f(2)是极大值;③f(x)没有最小值,也没有最大值.A.①③ B.①②③C.② D.①②8.f(x)=-x3-x,x∈[m,n],且f(m)•f(n)<0,那么方程f(x)=0在区间[m,n]上() A.至少有三个实根 B.至少有两个实根C.有且只有一个实根 D.无实根9.函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,那么实数a的取值范围是() A.-1<a<2 B.-3<a<6 C.a<-3或a>6 D.a<-1或a>210.要做一个圆锥形漏斗,其母线长为20cm,要使其体积最大,其高应为 ()A.2033cm B.100cm C.20cm D.203cm11.(2021•河南省实验中学)假设函数f(x)=(2-m)xx2+m的图象如下图,那么m的范围为 ()A.(-∞,-1) B.(-1,2) C.(1,2) D.(0,2)12.定义在R上的函数f(x)满足f(4)=1.f′(x)为f(x)的导函数,函数y=f′(x)的图象如下图.假设两正数a,b满足f(2a+b)<1,那么b+2a+2的取值范围是 ()A.(13,12) B.(-∞,12)∪(3,+∞)C.(12,3) D.(-∞,-3) 二、填空题(本大题共4小题,每题5分,共20分,请将答案填在题中的横线上。
导数练习题及答案导数练习题及答案导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
以下是导数练习题及答案,欢迎阅读。
一、选择题1.函数在某一点的导数是( )A.在该点的函数值的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无限趋近的常数,故应选C.2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )A.6 B.18C.54 D.81[答案] B[解析] ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.当Δt→0时,ΔsΔt→18,故应选B.3.y=x2在x=1处的导数为( )A.2x B.2C.2+Δx D.1[答案] B[解析] ∵f(x)=x2,x=1,∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2∴ΔyΔx=2+Δx当Δx→0时,ΔyΔx→2∴f′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的`瞬时速度为( ) A.37 B.38C.39 D.40[答案] D[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故应选D.5.已知函数y=f(x),那么下列说法错误的是( )A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx之间的平均变化率C.f(x)在x0处的导数记为y′D.f(x)在x0处的导数记为f′(x0)[答案] C[解析] 由导数的定义可知C错误.故应选C.6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( )A.f′(x0)=f(x0+Δx)-f(x0)B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]C.f′(x0)=f(x0+Δx)-f(x0)ΔxD.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx[答案] D[解析] 由导数的定义知D正确.故应选D.7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )A.4a B.2a+bC.b D.4a+b[答案] D[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx=4a+b+aΔx,∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=4a+b.故应选D.8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A.圆 B.抛物线C.椭圆 D.直线[答案] D[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选D.9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )A.0 B.3C.-2 D.3-2t[答案] B[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.10.设f(x)=1x,则limx→a f(x)-f(a)x-a等于( )A.-1a B.2aC.-1a2 D.1a2[答案] C[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limΔx→0f(x0-Δx)-f(x0)Δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-112[解析] limΔx→0 f(x0-Δx)-f(x0)Δx=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)-f(x0)Δx=-12f′(x0)=-112.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵Δy=1+Δx+11+Δx-1+11=Δx-1+1Δx+1=(Δx)2Δx+1,∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.[答案] 2[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.14.已知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可化为limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、解答题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义有f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+Δx)Δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s=12at2∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2∴ΔsΔt=at0+12aΔt,∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx=(1+Δx)2+3-12-3Δx=2+Δx.(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx=limΔx→0 (2+Δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)Δy=f(0+Δx)-f(0)=f(Δx)=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)∴limx→0+ΔyΔx=limΔx→0+ (1+Δx)=1,limΔx→0-ΔyΔx=limΔx→0- (-1-Δx)=-1,∵limΔx→0-ΔyΔx≠limΔx→0+ΔyΔx,∴Δx→0时,ΔyΔx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。