长沙理工大学概率论与数理统计下册考试参考题
- 格式:doc
- 大小:310.50 KB
- 文档页数:16
;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。
2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。
3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。
4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。
5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。
6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。
7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。
12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。
长沙理工大学考试试卷……………………………………………………………………………………………………… 试卷编号 01 拟题教研室(或教师)签名 教研室主任签名 ……………………………………………………………………………………………………… 课程名称(含档次) 概率论与数理统计B 课程代号专 业 层次(本、专) 本科(城南) 考试方式(开、闭卷) 闭一、填空题(本大题总分10分,每小题2分)1 . 某射手向一目标连续射击两次,用i A 表示事件“第i 次射击命中目标”,1,2i =,则12(A A )(⋃)A A 21表示事件( 两次射击中仅一次命中目标 )2 . 设(X ,Y)服从区域}4y x y){(x,D 22≤+=上的均匀分布,则=>+)3Y P(X 22( 1/4 )3 . 若随机变量X 的数学期望为μ,方差为σσ(,2>0),则用切比雪夫不等式估计得{3}P X μσ-≥≤( 1/9 )4 . 设X 服从区间[0,2]上的均匀分布,Y=X 2,则cov(X,Y)=( 2/3 )5 . 评价参数的估计量优劣的标准有( 无偏性 )、有效性和一致性。
二、单项选择题(本大题总分20分,每小题5分)则2 0.5 ②0.3 ③0.09 ④0.212 . 设(X ,Y)的概率密度为⎩⎨⎧≤≤≤≤=其它01y 1,0x 01y)f(x,,则随机变量X 与Y( ④ )① 相关 ② 不相关③ 不相关但不独立 ④ 不相关且独立3 . 从0,1,…,9十个数字中随机地有放回地接连抽取四个数字,则“8”至少出现一次的概率为( ② )4 0.1 ② 0.3439 ③ 0.4 ④ 0.6561 4 . 设随机变量X 的密度函数p(x)满足:p(x)x)p(=-,F(x)是X 的分布函数,则对任意a >0,则a)X P(>=( ① )①F(a)]2[1- ②12F(a)- ③F(a)2- ④)2F(a 1-第 1 页(共 2 页)三、计算题(本大题总60分,每小题12分)1 . 三人独立地去破译一个密码,他们能译出的概率分别为413151、、,求(1)将此密码译出的概率, (2)恰好有一个人译出此密码的概率. 1. 1.解.:设{},1,2,3i A i ==第i 人能破译,则 (1) ()()3i 123123i=1423P(A )11()()10.6534P A A A P A P A P A =-=-=-⨯⨯=(6分) (2) ()()()123123123P A A A P A A A P A A A ++(8分)()()()123123123()()()()()()P A P A P A P A P A P A P A P A P A =++(10分)1234134211353453453430=⨯⨯+⨯⨯+⨯⨯=2 . 令cos πY =求:(1)Y 的分布律;(2)E (Y )。
长沙理工大学概率论与数理统计模拟试卷第七套姓名: 班级: 学号: 得分: 一.判断题(10分,每题2分)1. 在古典概型的随机试验中,当且仅当是不可能事件 ( ) 2.连续型随机变量的密度函数与其分布函数相互唯一确定 ( ) 3.若随机变量与独立,且都服从的 (0,1) 分布,则( )4.设为离散型随机变量, 且存在正数k 使得,则的数学期望未必存在( )5.在一个确定的假设检验中,当样本容量确定时, 犯第一类错误的概率与犯第二类错误的概率不能同时减少 ( ) 二.选择题(15分,每题3分)1. 设每次试验成功的概率为,重复进行试验直到第次才取得次成功的概率为 . (a); (b);(c) ; (d) . 2. 离散型随机变量的分布函数为,则 .(a) ; (b) ;(c) ; (d) .3. 设随机变量服从指数分布,则随机变量的分布函数 .(a) 是连续函数; (b) 恰好有一个间断点; (c) 是阶梯函数; (d) 至少有两个间断点.4. 设随机变量的方差相关系数则方差 . (a) 40; (b) 34; (c) 25.6; (d) 17.65. 设为总体的一个样本,为样本均值,则下列结论中正确的是 .(a) ; (b) ;(c) ; (d) . 二. 填空题(28分,每题4分)1. 一批电子元件共有100个, 次品率为0.05. 连续两次不放回地从中任取一个, 则第二次才取到正品的概率为0)(=A P A )(x f )(x F X Y 1.0=p Y X =X 0)(=>k X P X )(X E )10(<<p p n )1(n r r ≤≤r n r r n p p C ----)1(11rn rr n p p C --)1(1111)1(+-----r n r r n p pC r n r p p --)1(X )(x F ==)(k x X P )(1k k x X x P ≤≤-)()(11-+-k k x F x F )(11+-<<k k x X x P )()(1--k k x F x F X )2003,(max X Y =),(Y X ,1)(,4)(==Y D X D ,6.0=XY ρ=-)23(Y X D ),,,(21n X X X )2,1(2N X )(~/21n t n X -)1,(~)1(4112n F X ni i ∑=-)1,0(~/21N n X -)(~)1(41212n X ni i χ∑=-2. 设连续随机变量的密度函数为,则随机变量的概率密度函数为3. 设为总体中抽取的样本()的均值, 则= .4. 设二维随机变量的联合密度函数为则条件密度函数为,当 时 ,5. 设,则随机变量服从的分布为 ( 需写出自由度 )6. 设某种保险丝熔化时间(单位:秒),取的样本,得样本均值和方差分别为,则的置信度为95%的单侧 置信区间上限为7. 设的分布律为1 2 3已知一个样本值,则参数的极大似然估计值 为三. 计算题(40分,每题8分)1. 已知一批产品中96 %是合格品. 检查产品时,一合格品被误认为是次品的 概率是0.02;一次品被误认为是合格品的概率是0.05.求在被检查后认 为是合格品的产品确实是合格品的概率2.设随机变量与相互独立,,分别服从参数为的指数 分布,试求的密度函数. 3.某商店出售某种贵重商品. 根据经验,该商品每周销售量服从参数为 的泊松分布. 假定各周的销售量是相互独立的. 用中心极限定理计算该商店一年内(52周)售出该商品件数在50件到70件之间的概率.4. 总体,为总体的一个样本. 求常数 k , 使为σ 的无偏估计量.5.(1) 根据长期的经验,某工厂生产的特种金属丝的折断力(单位:kg ). 已知kg , 现从该厂生产的一大批特种金属丝中 随机抽取10个样品,测得样本均值kg . 问这批特种金属丝的 平均折断力可否认为是570 kg ? () (2) 已知维尼纶纤度在正常条件下服从正态分布. 某日抽取 5个样品,测得其纤度为: 1.31, 1.55, 1.34, 1.40, 1.45 .)(x f Xe Y 3==)(yf Y X )4,3(~N X 4321,,,XX X X )51(<<-X P ),(Y X ⎩⎨⎧<<<=他其,0;10,,1),(x x y y x f =)(x y f X Y )(~m t X 2X Y =),(~2σμN X 16=n 36.0,152==S X μX X P 2θ)1(2θθ-2)1(θ-)1,2,1(),,(321=x x x X Y X Y )(,μλμλ≠Y X Z 23+=)(z f Z 1=λ),(~2σμN X ),,,(21n X X X X ∑=-ni i XX k 1),(~2σμN X 8=σ2.575=x %5=α)048.0,(2μN问 这天的纤度的总体方差是否正常?试用作假设检验. 四. 证明题(7分)设随机变量相互独立且服从同一贝努利分布. 试证明随机变量与相互独立.附表: 标准正态分布数值表 分布数值表 t 分布数值表%10=αZ Y X ,,),1(p B Y X +Z 2χ6103.0)28.0(=Φ488.9)4(205.0=χ1315.2)15(025.0=t 975.0)96.1(=Φ711.0)4(295.0=χ7531.1)15(05.0=t 9772.0)0.2(=Φ071.11)5(205.0=χ1199.2)16(025.0=t 9938.0)5.2(=Φ145.1)5(295.0=χ7459.1)16(05.0=t长沙理工大学模拟试卷第七套概率论与数理统计试卷答案一. 判断题(10分,每题2分) 是 非 非 非 是 . 二. 选择题(15分,每题3分) (a)(d)(b)(c)(d). 三. 填空题(28分,每题4分)1.1/22 ;2. ;3.0.9772 ;4. 当时; 5. 6. 上限为 15.263 . 7. 5 / 6 . 四. 计算题(40分,每题8分)1. 被查后认为是合格品的事件, 抽查的产品为合格品的事件. (2分), (4分)(2分)2.(1分)时,,从而 ; (1分) 时,(2分)(2分)所以[] (2分) 3. 设为第i 周的销售量, (1分)则一年的销售量为 ,, . (2分)由独立同分布的中心极限定理,所求概率为(4分) . (1分)⎩⎨⎧≤>=000)])3/[ln()(1y y y f y f yY 10<<x ⎩⎨⎧<<-=他其0)2/(1)(xy x x x y f X Y ),1(m F A B 9428.005.004.098.096.0)()()()()(=⨯+⨯=+=B A P B P B A P B P A P .998.09428.0/9408.0)(/)()()(===A P B A P B P A B P ⎩⎨⎧>=-其他00)(x e x f xX λλ⎩⎨⎧>=-其他00)(y e y f yY μμ0≤z 0)(=z F Z 0)(=z f Z 0≤z ⎰∞+-∞-=dxx z f x f z f Y X Z ]2/)3[()()(21)(232/3/3/0]2/)[(21z z z x z x e e dx e μλμλλμλμλμ-------==⎰⎪⎩⎪⎨⎧≤>--=--0,00),(23)(2/3/z z e e z f z z Z μλλμλμ⎪⎩⎪⎨⎧≤>--=--0,00),(32)(3/2/z z e e z f z z Z μλλμλμiX 52,,2,1 =i i X)1(~P ∑==521i iX Y 52)(=Y E 52)(=Y D 1522521852185252522)7050(-⎪⎪⎭⎫⎝⎛Φ+⎪⎪⎭⎫ ⎝⎛Φ≈⎪⎪⎭⎫ ⎝⎛<-<-=<<Y P Y P 6041.016103.09938.01)28.0()50.2(=-+=-Φ+Φ=4. 注意到5. (1) 要检验的假设为(1分)检验用的统计量, 拒绝域为. (2分),落在拒绝域内,故拒绝原假设,即不能认为平均折断力为570 kg .[, 落在拒绝域外,故接受原假设,即可以认为平均折断力为571 kg . ] (1分)(2) 要检验的假设为 (1分)[]检验用的统计量 , 拒绝域为 或(2分)570:,570:10≠=μμH H )1,0(~/0N nX U σμ-=96.1)1(025.02==-≥z n z U α96.106.21065.010/85702.5750>==-=U 0H 96.1632.0102.010/92.5695710<==-=U 0H 221220048.0:,048.0:≠=σσH H 22122079.0:,79.0:≠=σσH H )1(~)(2202512--=∑=n X Xi iχσχ488.9)4()1(205.022==->χχχαn 711.0)4()1(295.02122==-<-χχχαn ()n i i X X n X X nX X ---+--=- )1(121)2(1)(,0)(2分σnn X X D X X E i i -=-=-)1(1,0~2分⎪⎭⎫⎝⎛--σn n N X X i dze n n z X X E nn z i 2212121|||)(|σσπ--∞+∞-⎰-=-dze nn znn z 221201212σσπ--∞+⎰-=)3(122分σπnn -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-∑∑==ni i n i i X X E k X X k E 11||||σπn n kn 122-=σ令=)分(2)1(2-=n n k π[], 落在拒绝域内,[,落在拒绝域内,]故拒绝原假设,即认为该天的纤度的总体方差不正常 . (1分)五、证明题 (7分) 由题设知0 1 0 1 2(2分) ;;;;;. 所以 与相互独立. (5分)41.1=x 49.1=x 488.9739.150023.0/0362.020>==χ711.0086.06241.0/0538.020<==χ0H X Y X +P p qP 2q pq 22p )0()0()0,0(3==+====+Z P Y X P q Z Y X P )1()0()1,0(2==+====+Z P Y X P pq Z Y X P )0()1(2)0,1(2==+====+Z P Y X P pq Z Y X P )1()1(2)1,1(2==+====+Z P Y X P pq Z Y X P )0()2()0,2(2==+====+Z P Y X P pq Z Y X P )1()2()1,2(3==+====+Z P Y X P p Z Y X P Y X +Z。
一、填空题(每小题3分,共30分)1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 .2、设()0.7,()0.3P A P AB ==,则()P A B =________________.3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 .4、设随机变量X 的分布律为(),(1,2,,8),8aP X k k ===则a =_________.5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= .6、设随机变量X 的分布律为21011811515515kX p -- 则2Y X =的分布律是 .7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ .8、设129,,,X X X 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是. 9、设总体()~10,X b p ,12,,,n X X X 是来自总体X 的样本,则参数p 的矩估计量为 .10、设123,,X X X 是来自总体X 的样本,12311ˆ23X X X μλ=++是()E X μ=的无偏估计,则λ= .二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率;(2)若取出的一件产品为次品,问这件产品是乙企业生产的概率.三、(本题12分)设随机变量X 的概率密度为,03()2,3420,kx x x f x x ≤<⎧⎪⎪=-≤≤⎨⎪⎪⎩其它 (1)确定常数k ; (2)求X 的分布函数()F x ;(3)求712P X ⎧⎫<≤⎨⎬⎩⎭.四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立?为什么?五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X .六、(本题12分)设离散型随机变量X 的分布律为(),0,1,2,!x e P X x x x θθ-=== , 0θ<<+∞其中θ为未知参数,n x x x ,,,21 为一组样本观察值,求θ的极大似然估计值.七、(本题10分)某种零件的尺寸方差为2 1.21σ=,对一批这类零件检查6件得尺寸数据(毫米):32.56, 29.66, 31.64, 30.00, 21.87, 31.03设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05α=)? (附:()()()0.0250.0250.0250.050.0255 2.5706,6 2.4469,7 2.3646, 1.65, 1.96,6 2.45t t t z z ======一、填空题(每小题3分,共30分) 1、ABC 或A BC2、0.63、2156311C C C 或411或0.3636 4、15、136、2014131555kX p 7、1 8、(2,1)N - 9、10X 10、16二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求: (1)求取出的产品为次品的概率;(2)若取出的一件产品为次品,问这件产品是乙企业生产的概率.解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ========...............2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯=......................................7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== ......................................................................12分三、(本题12分)设随机变量X 的概率密度为,03()2,3420,kx x x f x x ≤<⎧⎪⎪=-≤≤⎨⎪⎪⎩其它(1)确定常数k ; (2)求X 的分布函数()F x ; (3)求712P X ⎧⎫<≤⎨⎬⎩⎭.解 (1)由概率密度的性质知340391()21224x f x dx kxdx dx k +∞-∞⎛⎫=+-=+= ⎪⎝⎭⎰⎰⎰故16k =. .................................................................................................................................3分(2)当0x ≤时,()()0xF x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰;当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩..............................................................................9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭.............................................................12分四、(本题12分)设二维随机向量(,)X Y 的联合分布律为\01210.10.20.120.10.2Y X a 试求:(1) a 的值; (2)X 和Y 的边缘分布律; (3)X 与Y 是否独立?为什么? 解 (1)由分布律的性质知 01.0.20.10.10.a +++++=故0.3a = ..................................................................................................................................4分 (2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................................................................6分120.40.6Y p .................................................................................................................8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故 {}{}{}0,101P X Y P X P Y ==≠== 所以X 与Y 不相互独立. .........................................................................................................12分 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他求()(),E X D X . 解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰............................6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ ...........................................................9分 221()()[()].6D XE X E X =-= ............................................................................................12分 六、(本题12分)设离散型随机变量X 的分布律为(),0,1,2,!x e P X x x x θθ-===,0θ<<+∞其中θ为未知参数,n x x x ,,,21 为一组样本观察值,求θ的极大似然估计值.解 似然函数()1111!!niii x nnx n i i i i eL e x x θθθθθ=--==∑==∏∏ ............................................................................4分对数似然函数()111ln ln ln !nn i i i i L n x x θθθ===-+⋅+∑∏..........................................................................6分 1ln Lni i x d n d θθ==-+∑ .......................................................................................................8分 解似然方程ln L 0d d θ=得11ˆn i i x x n θ===∑. ................................................................................10分 所以θ的极大似然估计值为ˆ.x θ= ........................................................................................12分七、(本题10分)某种零件的尺寸方差为2 1.21σ=,对一批这类零件检查6件得尺寸数据(毫米):32.56, 29.66, 31.64, 30.00, 21.87, 31.03设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05α=)?(附:()()()0.0250.0250.0250.050.0255 2.5706,6 2.4469,7 2.3646, 1.65, 1.96t t t z z =====)解 总体()2~,X N μσ,总体方差已知,检验总体期望值μ是否等于32.50.(1) 提出待检假设0010:32.50;:32.50.H H μμμμ==≠= ...........................................1分 (2) 选取统计量0/X Z nμσ-=,在0H 成立的条件下(0,1)Z ~N ......................................2分(3) 对于给定的检验水平0.05α=,查表确定临界值/20.025 1.96z z α==于是拒绝域为(, 1.96)(1.96,).W =-∞-+∞ ...........................................................................5分(4) 根据样本观察值计算统计量Z 的观察值:()132.5629.6631.6430.0021.8731.0329.445, 1.16x σ=+++++== 0029.44532.50 2.45 6.8041.1/x z n μσ--==⨯=- ........................................................8分(5)判断: 由于0z W ∈,故拒绝H 0,即不能认为这批零件的平均尺寸是32.50毫米...............................................................................................................................................10分。
概率论与数理统计试题库及答案(考试必做)概率论试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,P (A)=0.5,P(B)=0.6,P(BA)=0.8。
则P(B A)=3.若事件A和事件B相互独立, P(A)= ,P(B)=0.3,P(A B)=0.7,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词__的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X分布律为P{X k} 5A(1/2)A=______________7. 已知随机变量X的密度为f(x)k(k 1,2, )则ax b,0 x 1,且P{x 1/2} 5/8,则0,其它a ________b ________28. 设X~N(2, ),且P{2 x 4} 0.3,则P{x 0} _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x+ x+1=0有实根的概率是280,则该射手的命8111.设P{X 0,Y 0}34,P{X 0} P{Y 0} ,则P{max{X,Y} 0} 7712.用(X,Y)的联合分布函数F(x,y)表示P{a X b,Y c} 13.用(X,Y)的联合分布函数F(x,y)表示P{X a,Y b} 14.设平面区域D 由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15.已知X~N( 2,0.4),则E(X 3)=16.设X~N(10,0.6),Y~N(1,2),且X与Y相互独立,则17.设X的概率密度为f(x)22D(3X Y)x2,则D(X)=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,2),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)= 219.设D(X) 25,D Y 36, xy 0.4,则D(X Y) 20.设X1,X2, ,Xn, 是独立同分布的随机变量序列,且均值为,方差为,那么当n充分大时,近似有X~或2~。
长沙理工大学数计学院概率论与数理统计 模拟试题一考试类别:闭 考试时量:120 分钟一.填空题(每空2分,共32分):1.设7.0)(,4.0)(=⋃=B A P A P ,若B A ,互不相容,则=)(B P 0.3 ; 若B A ,独立,则=)(B P 0.5 .2.若)4,1(~N X ,则~21-=X Y )1,0(N .3.已知6.0)(,8.0)(=-=B A P A P ,则=⋃)(B A P 0.8 ,=)|(A B P 0.25 . 4.从(0,1)中随机地取两个数b a ,,则b a -大于0的概率为 0.5 .5.若],2,0[~πU X 则12-=X Y 的概率密度函数为=)(y f . 6.随机变量),2(~2σN X ,若3.0)40(=<<X P ,则=<)0(X P . 7.设X 的分布列为5.0)1()1(===-=X P X P ,则X 的分布函数为=)(x F .8.设随机变量X 有分布函数⎪⎩⎪⎨⎧≥<≤<=2,120,s i n 0,0)(ππx x x A x x F , 则=A ,=<)6|(|πX P .9.一颗均匀骰子被独立重复地掷出10次,若X 表示3点出现的次数,则X ~ . 10.设),(Y X 的联合分布列为则=a ,Y 的分布列为 ;若令2)2(-=X Z ,则Z 的分布列为 .11.若)9,2(~N X ,且)()(c X P c X P >=≤,则=c .二.选择题(每题3分,共12分):1.设B A ,为两事件,且1)(0<<A P ,则下列命题中成立的是 ( )A. B A ,独立)|()|(A B P A B P =⇔B. B A ,独立⇔B A ,互不相容C. B A ,独立⇔Ω=⋃B AD. B A ,独立⇔0)(=AB P2.设⎪⎪⎩⎪⎪⎨⎧≥<≤<=1,110,20,0)(x x x x x F , 则 ( )A . )(x F 是一个连续型分布函数 B. )(x F 是一个离散型分布函数C. )(x F 不是一个分布函数D. 5.0)1(==X P3.设随机变量X 的概率密度函数为)(x f ,且)()(x f x f =-,)(x F 是X 的分布函数,则对任意实数a ,有 ( ) A.⎰-=-adxx f a F 0)(1)( B.⎰-=-adx x f a F 0)(21)(C. )()(a F a F =-D. 1)(2)(-=-a F a F4.设随机变量}5{},4{).5,(~),4,(~2122+≥=-≤=u Y P p u X P p u N Y u N X ,则 ( )A . 对任意实数21,p p u = B. 对任意实数21,p p u < C. 只对u 的个别值才有21p p = D. 对任意实数21,p p u >三.某工厂甲、乙、丙三车间生产同一种产品,产量分别占25%,35%,40%,废品率分别为5%,4%和2%.产品混在一起,求总的废品率及抽检到废品时,这只废品是由甲车间生产的概率. (9分)四.箱中装有5个黑球,3个白球,无放回地每次取一球,直至取到黑球为止.若X 表示取球次数,求X 的分布列,并求)31(≤<X P .( 9分) 五.设随机变量),(Y X 的联合概率密度函数为⎩⎨⎧<<<<=,010,10,),(2y x cxy y x f , 求: 1)常数c ; 2) )241,210(<<<<Y X P ;3)43(>X P ); 4))(Y X P >. (16分)六.在一盒子里有12张彩票,其中有2张可中奖.今不放回地从中抽取两次,每次取一张,令Y X ,分别表示第一、第二次取到的中奖彩票的张数,求),(Y X 的联合分布列.其它七.设12,,,,n X X X ⋅⋅⋅是来自下列两参数指数分布的样本:()()1121211,120;,x e x x f x θθθθθθθ--≥≤⎧⎪=⎨⎪⎩其中()1,θ∈-∞+∞,()20,θ∈+∞,试求出1θ和2θ的最大似然估计. (16分)长沙理工大学数计学院概率论与数理统计 模拟试题二考试类别:闭卷 考试时量:120分钟 试卷类型: A 卷一.填空题(每空2分,共40分) 1.已知6.0)(,8.0)(=-=B A P A P ,则=⋃)(B A P , =)|(A B P.2. 从9,,2,1,0 这十个数字中任选三个不相同的数字,1A ={三个数字中不含0和5},2A ={三个数字中含有0和5},则=)(1A P ,=)(2A P .3. 设X ~)1(P ,Y ~)2(P ,且X 与Y 独立,则==+)2(Y X P .4. 若X ~)1,0(N ,Y ~)8,2(N ,X 与Y 独立,则32-+Y X ~ .5.设X 与Y 独立,2,1==DY DX ,则=-)32(Y X D .6.已知,4.0,36,25,===Y X DY DX ρ则=),(Y X Cov , =+)(Y X D.7. 设X 的分布函数=)(x F ⎪⎩⎪⎨⎧>≤<--≤1,111,5.01,0x x x ,则X 的分布列为 .8. 随机变量),2(~2σN X ,若3.0)40(=<<X P ,则=<)0(X P . 9. 设),(Y X 的联合分布列为则=a ,Y 的分布列为 ;若令2)2(-=X Z ,则=EZ .10. 若)9,2(~N X ,且)()(c X P c X P >=≤,则=c . 11. 设随机变量X 的期望,1=EX 方差2=DX ,由车贝晓夫不等式知><-)3|1(|X P .12. 设Y X ,独立同分布,有共同的概率密度函数)(x f ,则=<)(Y X P.13. 设 ,,,1n X X 独立同分布,且11=EX ,则−→−∑=Pn i i X n 11 .14. 设74)0()0(,73)0,0(=≥=≥=≥≥Y P X P Y X P ,则=≥)0),(max(Y X P.15. 设 ,,,1n X X 独立同分布, ]2,0[~1U X ,则=≤∑=∞→)11(lim 1ni i n X n P .二. 单选题(在本题的每一小题的备选答案中,请把你认为正确答案的题号,填入题干的括号内,多选不给分.每题3分,共15分) 1. 设随机变量X 的概率密度函数为)(x f ,且)()(x f x f =-,)(x F 是X 的分布函数,则对任意实数a ,有( )①. ⎰-=-adxx f a F 0)(1)( ②. ⎰-=-adx x f a F 0)(21)(③. )()(a F a F =- ④. 1)(2)(-=-a F a F2. 设8.0)|(,7.0)(,8.0)(===B A P B P A P ,则 ( )①. A,B 互不相容 ②. A,B 相互独立 ③. B ⊂A ④. P(A-B)=0.13. 如果随机变量Y X ,满足)()(Y X D Y X D -=+,则必有 ( ) ①. X 与Y 独立 ②. X 与Y 不相关 ③. 0)(=Y D ④. 0)(=X D4. 4次独立重复实验中,事件A 至少出现一次的概率为80/81,则 ( ) ①. 21②. 31 ③. 32 ④. 415. 设随机变量X 服从指数分布)3(E ,则=),(DX EX ( )①. (31,31) ②. )3,3( ③. )91,31( ④. )9,3(三. 计算题(共45分)1. 一仓库有10箱同种规格的产品,其中由甲,乙,丙三厂生产的分别为5箱,3箱,2箱,三厂产品的次品率依次为0.1,0.2,0.3,从这10箱产品中任取一箱,再从这箱中任取一件,求取得正品的概率?若确实取得正品,求正品由甲厂生产的概率.(8分)2. 设随机向量),(Y X 的联合密度函数为:⎩⎨⎧≤≤≤≤+=,020,10,),(2y x bxy x y x f求①常数b; ②)1(≥+Y X P ; ③)21|1(<>X Y P ; ④讨论Y X ,的独立性. (12分)3. 袋中有5个红球,3个白球,无放回地每次取一球,直到取出红球为止,以X 表示取球的次数,求①X 的分布列,②))31(≤<X P ,③EX . (9分)4. 某教室有50个座位,某班有50位学生,学号分别为1到50.该班同学上课时随机地选择座位,X 表示该班同学中所选座位与其学号相同的数目,求X 的期望EX .(8分)5.设12,,,n X X X 为总体X 的一个样本,X 的密度函数:(1),01()0,x x f x ββ⎧+<<=⎨⎩其他, 0β>, 求参数β的矩估计量和极大似然估计量。
长沙理⼯⼤学概率论与数理统计下册考试参考题长沙理⼯⼤学模拟试卷第⼋套概率论与数理统计试卷⼀、填空题(每⼩题2分,共2×10=20分).1、假设1x,2x,…,n x是样本1ξ,2ξ,…,nξ的⼀个样本值或观测值,则样本均值x表⽰样本值的集中位置或平均⽔平,样本⽅差S2和样本修正⽅差S*2表⽰样本值对于均值x的_________________.2、样本⽅差S2和样本修正⽅差S*2之间的关系为_________________.3、矩估计法由英国统计学家⽪尔逊(Pearson)于1894年提出,它简便易⾏,性质良好,⼀直沿⽤⾄今. 其基本思想是:以样本平均值(⼀阶原点矩)ξ作为相应总体ξ的____________________;以样本⽅差(⼆阶中⼼矩)2S或者以样本修正⽅差2*S作为相应总体ξ的___________________________.4、总体未知参数θ的最⼤似然估计θ?就是___________________函数的极⼤值点.5、我们在估计某阶层⼈的⽉收⼊时可以说:“⽉收⼊1000元左右”,也可以说:“⽉收⼊在800元⾄1200元间”. 前者⽤的是___________,后者就是_________________.6、在确定的样本点上,置信区间的长度与事先给定的信度α直接有关. ⼀般来讲,信度α较⼤,其置信度(1-α)较⼩,对应置信区间长度也较短,此时这⼀估计的精确度升⾼⽽可信度降低;相反地,信度α较⼩,其置信度(1-α)较______,对应置信区间长度也较_______,此时这⼀估计的精确度_________⽽可信度_____________.σ是否已知,正态总体均值µ的置信区间的中⼼都是7、⽆论总体⽅差2_________________.8、假设检验中统计推断的唯⼀依据是样本信息.样本信息的不完备性和随机性,决定了判断结果有错误是不可避免的.这种错误判断有两种可能:第⼀类错误为弃真错误,显著⽔平α就是犯这类错误的概率;第⼆类为取伪错误,记犯这类错误的概率为β. 则关系式α+β=1是________________(正确、错误)的.9、假设检验中做出判断的根据是______________________________________________.10、对于单正态总体,当均值µ已知时,对总体⽅差 2σ的假设检验⽤统计量及分布为__________________________________.⼆、简答题(每⼩题2分,共2×10=10分).1、若临界概率α=0.05,求临界值2αu .答:2、若临界概率α=0.01,⾃由度k =14,求临界值)1401.0(2;χ.答:3、若临界概率α=0.05,⾃由度k =10,求临界值)1005.0(;t . 答:5、设1ξ,2ξ,…,n ξ是ξ的样本,且ξ~ N(µ,2σ),试求:E ξ、D ξ、E 2*S .答:6、对于总体ξ有E ξ=µ,D ξ=2σ,1ξ,2ξ,3ξ是ξ的样本,下列⽆偏估计量中哪⼀个最有效?1?µ=1ξ,2?µ=1(31ξ+2ξ+3ξ)答:7、设总体ξ服从⼆项分布b(n ,p ),p 为待估参数,),,,(21n ξξξ为ξ的⼀个样本,求p 的矩估计量. 答:8、假设初⽣婴⼉的体重服从正态分布,随机抽取12名初⽣男婴,测得其体重为(单位:g):2950,2520,3000,3000,3000,3160,3560,3320,2880,2600,3400,2540. 当以95%的置信度求初⽣男婴的平均体重的置信区间时,应该选⽤什么统计量?答:9、某种电⼦元件,要求使⽤寿命不得低于1000 h .现从⼀批这种元件中随机抽取25 件,测其寿命,算得其平均寿命950 h ,设该元件的寿命ξ~N (µ,1002),在α=0.05的检验⽔平下,要确定这批元件是否合格需⽤什么检验⽅法?答:10、某卷烟⼚⽣产两种⾹烟,现分别对两种烟的尼古丁含量作6次测量,结果为甲⼚:25 28 23 26 29 22 ⼄⼚:28 23 30 35 21 27若⾹烟中尼古丁含量服从正态分布,且⽅差相等,要判断这两种⾹烟中尼古丁含量有⽆显著差异(α=0.05),应该使⽤什么检验⽅法?答:三、应⽤题(每⼩题10分,共6×8=48分)1、设总体ξ服从泊松分布,即分布列为P(ξ=m)=λλ-e m m!,λ>0为参数,m =1,2,…,试求样本(1ξ,2ξ,…,n ξ)的联合分布列.2、设总体ξ服从指数分布,分布密度为)(x p =??λ>0为待估参数,n x x x ,,,21 为ξ的⼀个观察值,求λ的最⼤似然估计值.3、已知某⼚⽣产的电⼦零件的长度ξ~N (12.5,2σ),从某天⽣产的零件中随机抽取4个,测得长度为(单位:mm )12.6 13.4 12.8 13.2,求2σ的置信度为0.95的置信区间.4、已知某种⽊材横纹抗压⼒的实验值ξ~N (µ,2σ),对10个试件作横纹抗压⼒试验,得数据如下(单位:公⽄/平⽅厘⽶):578 572 570 568 572 570 570 596 584 572.试对2σ进⾏区间估计(α=0.05).5、已知舞阳钢铁公司的铁⽔含碳量在正常情况下服从正态分布N(4.53,0.1082),某⽇随机测定了9炉铁⽔,含碳量如下:4.43 4.50 4.58 4.42 4.47 4.60 4.53 4.46 4.42 若已知总体⽅差⽆变化,能否认为该⽇⽣产的铁⽔的平均含碳量仍为4.53(α=0.05)?6、已知神马集团⽣产的维尼纶的纤度(纤维的粗细程度)在正常情况下服从正态分布N (1.405,0.0482),某⽇随机测定了5根纤维,纤维度如下: 1.32 1.55 1.36 1.40 1.44 问这天维尼纶纤度波动情况是否正常(α=0.05)?四、论述题(每⼩题10分,共2×6=12分)1、假设检验的基本原理是什么?2、请你谈谈学习数理统计的⽬的及⽅法?长沙理⼯⼤学模拟试卷第⼋套⼀、填空题(每⼩题2分,共2×10=20分). 1、离散程度.2、S 2=2*1S n n -.3、期望;⽅差.4、似然.5、点估计,区间估计.6、⼤,长,降低,升⾼.7、ξ.8、错误.9、⼩概率事件实际不可能发⽣原理.)(σµξ~2χ(n).⼆、简答题(每⼩题2分,共2×10=10分).1、2αu =025.0u =1.96.2、)1401.0(2;χ=)14(201.0χ=29.141.3、)1005.0(;t =)10(05.0t =1.8125 4、)15,1005.0(;F =)15,10(05.0F =2.54 5、E ξ=µ,D ξ=n2σ,E 2S =21σn n -,E 2*S =2σ.6、2?µ最有效.7、因µ=E ξ=np ,所以p =n µ. ⼜µ=ξ,所以 p ?=n µ=n ξ. 8、t 检验法. 9、u 检验法. 10、t 检验法.三、应⽤题(每⼩题10分,共4×12=48分)1、解设(1x ,2x ,…,n x )为(1ξ,2ξ,…,n ξ)的任⼀组样本值,则样本(1ξ,2ξ,…,n ξ)的联合分布列为P(1ξ=1x ,2ξ=2x ,…,n ξ=n x )=∏=ni 1P(iξ=iλλ-e x i xi!=λλn ni i x e x ni i-=∏∑=1!1.2、解由L );,,,(21θn x x x =∏=ni i x P i 1);(θξ知,λ的似然函数为L );,,,(21θn x x x =∏=-ni x ie 1)(λλ=∑-=ni ix ne1λλ.相应的对数似然函数为lnL );,,,(21θn x x x =两边对λ求导,并令⼀阶导数等于0可得∑=-ni ix n 1λ=0,解之得,λ的最⼤似然估计值为λ? =∑=ni ixn1=x 1.3、解因∑=-412)(i iµξ=(12.6-12.5)2+(13.4-12.5)2+(12.8-12.5)2+(13.2-12.5)2=1.4.⼜ 1-α=0.95,α=0.05,查附表3得22αχ=2025.0χ(4)=11.143,221αχ-=2975.0χ(4)=0.484.故置信度为0.95的置信区间为(143.114.1,484.045、解设该⽇⽣产的铁⽔含碳量ξ~N (µ,2σ),已知σ= 0.108, n =9,则待检假设为Ho :µ=4.53, H 1:µ≠4.53. 当Ho 成⽴时,有统计量u =9/108.053.4-ξ~N (0,1)对于给定显著⽔平α=0.05,查标准正态分布函数数值表(附表2)得2αu =1.96,使得P (|u|>1.96)=0.05.由样本观察值计算得x =4.49,于是有 |u|=|9/108.053.449.4-|=1.11<1.96,因⼩概率事件没有发⽣,故接受Ho ,即在显著⽔平α=0.05下,可认为该⽇⽣产的铁⽔的平均含碳量仍为4.53.6、解设该⽇⽣产的维尼纶的纤度ξ~N (µ,2σ),已知µ=1.405,σ=0.048, n =5,则待检假设为Ho :2σ=0.0482,H 1:2σ≠0.0482.当Ho 成⽴时,有统计量2χ=∑=-5122048.0)405.1(i i ξ~2χ(5).对于给定显著⽔平α=0.05,查2χ分布临界值表(附表3)得22αχ=12.833和221αχ>12.833)=2α,P (2χ<0.83)=2α.由样本观察值计算2χ得,2χ=13.683. 于是有2χ=13.683>12.833因⼩概率事件发⽣,故拒绝Ho ,即在显著⽔平α=0.05下,可认为该⽇⽣产的维尼纶的纤度的均⽅差不正常.四、论述题(每⼩题10分,共2×6=12分) 1、略. 2、略.长沙理⼯⼤学模拟试卷第九套概率论与数理统计试卷⼀、填空题(每⼩题2分,共2×10=20分).1、在进⾏抽样时,样本的选取必须是随机的,即总体中每个个体都有同等机会被选⼊样本. 因此,抽取样本1ξ,2ξ,…,n ξ,要求满⾜下列两个特性:1)_________;2)_________. 具备这两个特性的样本称为简单随机样本,简称样本.2、假设1x ,2x ,…,n x 是样本1ξ,2ξ,…,n ξ的⼀个样本值或观测值,则样本均值x 表⽰样本值的集中位置或平均⽔平,样本⽅差S 2和样本修正⽅差S *2表⽰样本值对于均值x 的__________________.3、样本⽅差S 2和样本修正⽅差S *2之间的关系为__________________.4、矩估计法由英国统计学家⽪尔逊(Pearson )于1894年提出,它简便易⾏,性质良好,⼀直沿⽤⾄今. 其基本思想是:以样本平均值(⼀阶原点矩)ξ作为相应总体ξ的____________________;以样本⽅差(⼆阶中⼼矩)2S 或者以样本修正⽅差2*S 作为相应总体ξ的___________________________.5、θ?具有⽆偏性的意义是:θ?取值因随机性⽽偏离θ的真值,但_________________即没有系统的偏差.6、设1?θ和2?θ都是⽆偏估计量,如果________________,则称1?θ⽐2?θ有效.7、在确定的样本点上,置信区间的长度与事先给定的信度α直接有关. ⼀般来讲,信度α较⼤,其置信度(1-α)较⼩,对应置信区间长度也较短,此时这⼀估计的精确度升⾼⽽可信度降低;相反地,信度α较⼩,其置信度(1-α)较______,对应置信区间长度也较_______,此时这⼀估计的精确度_________⽽可信度_____________.8、假设检验中统计推断的唯⼀依据是样本信息.样本信息的不完备性和随机性,决定了判断结果有错误是不可避免的.这种错误判断有两种可能:第⼀类错误为__________________,第⼆类为__________________.9、常⽤的假设检验⽅法有四种,分别为1)__________________、2)__________________、3)__________________、3)__________________.10、对于单正态总体,当均值µ已知时,对总体⽅差 2σ的假设检验⽤统计量及分布为____________________________________.⼆、简答题(每⼩题2分,共2×10=10分).1、若α=0.05,求2αu .答:3、若α=0.05,k =10,求)1005.0(;t . 答:4、若α=0.05<0.5,k 1=10,k 2=15,求)15,1005.0(;F . 答:5、设1ξ,2ξ,…,n ξ是ξ的样本,且ξ~ N(µ,2σ),试求:E ξ、D ξ、E 2*S .答:6、对于总体ξ有E ξ=µ,D ξ=2σ,1ξ,2ξ,3ξ是ξ的样本,下列统计量中哪⼀个最有效?1?µ=1ξ,2?µ=134ξ-231ξ,3?µ=1(31ξ+2ξ+3ξ)答:7、设总体ξ服从⼆项分布b(n ,p ),p 为待估参数,),,,(21n ξξξ为ξ的⼀个样本,求p 的矩估计量. 答:8、已知⼀批元件的长度测量误差ξ服从N (µ,2σ),µ,2σ为未知参数,现从总体ξ中抽出⼀个容量是6的样本值-1.20,-0.85,-0.30,0.45,0.82,0.12,σ的最⼤似然估计值.求µ,2答:9、已知洛阳轴承⼚⽣产的滚珠直径ξ~N(µ,2σ),其中2σ为已知,µ为待估参数. 从某天⽣产的滚珠中随机抽取⼀个样本1ξ,2ξ,…,nξ,对于事先给定的信度α,试写出总体均值µ的置信区间.答:10、已知洛阳轴承⼚⽣产的滚珠直径ξ~N(µ,2σ),其中2σ为未知知,µ为待估参数. 从某天⽣产的滚珠中随机抽取⼀个样本1ξ,2ξ,…,nξ,对于事先给定的信度α,试写出总体均值µ的置信区间.答:三、应⽤题(每⼩题10分,共4×12=48分)σ的置信度为0.95的置信区间.求22、已知某种⽊材横纹抗压⼒的实验值ξ~N(µ,2σ),对10个试件作横纹抗压⼒试验,得数据如下(单位:公⽄/平⽅厘⽶):578 572 570 568 572 570 570 596 584 572.σ进⾏区间估计(α=0.05).试对23、已知某炼铁⼚的铁⽔含碳量在正常情况下服从正态分布N(4.53,0.1082),某⽇随机测定了9炉铁⽔,含碳量如下:4.43 4.50 4.58 4.42 4.47 4.60 4.53 4.46 4.42若已知总体⽅差⽆变化,能否认为该⽇⽣产的铁⽔的平均含碳量仍为4.53(α=0.05)?4、已知某涤纶⼚⽣产的维尼纶的纤度(纤维的粗细程度)在正常情况下服从正态分布N(1.405,0.0482),某⽇随机测定了5根纤维,纤维度如下:1.32 1.55 1.36 1.40 1.44问这天维尼纶纤度总体的均⽅差是否正常(α=0.05)?四、论述题(每⼩题10分,共2×6=12分)1、假设检验的基本原理是什么?2、请你谈谈学习数理统计的意义?长沙理⼯⼤学模拟试卷第九套⼀、填空题(每⼩题2分,共2×10=20分). 1、1)独⽴性等;2)代表性. 2、离散程度.3、S2=2*1S n n -.4、期望;⽅差.5、E θ?=θ.6、D 1?θ<D 2?θ.7、⼤,长,降低,升⾼. 8、“弃真”,“取伪”.9、1)U 检验法、2)t 检验法、3)2χ检验法、3)F 检验法.10、2χ=∑=-ni i 122⼆、简答题(每⼩题2分,共2×10=10分).1、2αu =025.0u =1.96.2、)1401.0(2;χ=)14(201.0χ=29.141.3、)1005.0(;t =)10(05.0t =1.8125 4、)15,1005.0(;F =)15,10(05.0F =2.54 5、E ξ=µ,D ξ=n2σ,E 2S =21σn n -,E 2*S =2σ.6、3?µ最有效.7、因µ=E ξ=np ,所以p =n µ. ⼜µ=ξ,所以 p ?=n µ=n ξ. 8、µ≈ξ=61[(-1.20)+(-0.85)+(-0.30)+0.45+0.82+0.12]=-0.16. 2σ≈2S =61[(-1.20+0.16)2+(-0.85+0.16)2+(-0.30+0.16)2+(0.45+0.16)2+(0.82+0.16)2+(0.12+0.16)2]=0.4980.9、(ξ2ασu n-,ξ+)2ασu n.10、(ξnS t 2*2α-,ξ+)2*2nS t α.三、应⽤题(每⼩题10分,共4×12=48分) 1、解因∑=-412)(i iµξ=(12.6-12.5)2+(13.4-12.5)2+(12.8-12.5)2+(13.2-12.5)2=1.4.⼜ 1-α=0.95,α=0.05,查附表3得22αχ=2025.0χ(4)=11.143,221αχ-=2975.0χ(4)=0.484.故置信度为0.95的置信区间为(143.114.1,484.04.1),即(0.13,2.89).2、解(35.83,252.43).3、解设该⽇⽣产的铁⽔含碳量ξ~N (µ,2σ),已知σ= 0.108, n =9,则待检假设为Ho :µ=4.53, H 1:µ≠4.53. 当Ho 成⽴时,有统计量u =9/108.053.4-ξ~N (0,1)对于给定显著⽔平α=0.05,查标准正态分布函数数值表(附表2)得2αu =1.96,使得P (|u|>1.96)=0.05.由样本观察值计算得x =4.49,于是有|u|=|9/108.053.449.4-|=1.11<1.96,因⼩概率事件没有发⽣,故接受Ho ,即在显著⽔平α=0.05下,可认为该⽇⽣产的铁⽔的平均含碳量仍为4.53.4、解设该⽇⽣产的维尼纶的纤度ξ~N (µ,2σ),已知µ=1.405,σ=0.048, n =5,则待检假设为Ho :2σ=0.0482,H 1:2σ≠0.0482.当Ho 成⽴时,有统计量2χ=∑=-5122048.0)405.1(i i ξ~2χ(5).对于给定显著⽔平α=0.05,查2χ分布临界值表(附表3)得22αχ=12.833和221αχ-=0.83使得P (2χ>12.833)=2α,P (2χ<0.83)=2α.由样本观察值计算2χ得,2χ=13.683. 于是有2χ=13.683>12.833因⼩概率事件发⽣,故拒绝Ho ,即在显著⽔平α=0.05下,可认为该⽇⽣产的维尼纶的纤度的均⽅差不正常.四、论述题(每⼩题10分,共2×6=12分)1、略. 2、略。
2020年大学基础课概率论与数理统计必考题及答案(精选版)一、单选题1、设为来自正态总体的一个样本,若进行假设检验,当__ __时,一般采用统计量(A)(B) (C) (D)【答案】C2、设X ~(1,)p β 12,,,,,n X X X ⋅⋅⋅是来自X 的样本,那么下列选项中不正确的是(A)当n 充分大时,近似有X ~(1),p p N p n -⎛⎫ ⎪⎝⎭(B){}(1),k k n k n P X k C p p -==-0,1,2,,k n =⋅⋅⋅(C ){}(1),k k n k n k P X C p p n-==-0,1,2,,k n =⋅⋅⋅(D ){}(1),1k k n k i n P X k C p p i n -==-≤≤ 【答案】B3、设离散型随机变量(,)X Y 的联合分布律为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)1/61/91/181/3X Y P αβ且Y X ,相互独立,则 A ) 9/1,9/2==βα B ) 9/2,9/1==βαC ) 6/1,6/1==βαD ) 18/1,15/8==βα【答案】A4、设 ()2~,X N μσ,其中μ已知,2σ未知,1234,,,X X X X 为其样本, 下列各项不是统计量的是____ (A)4114i i X X ==∑ (B)142X X μ+- (C)42211()i i K X X σ==-∑ (D)4211()3i i S X X ==-∑ n X X X ,,,21 2(,)N μσX t =220μσσ未知,检验=220μσσ已知,检验=20σμμ未知,检验=20σμμ已知,检验=【答案】C5、已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( )X X A +)( +A ∑=-n i i X n B 1211)( a X C +)( +10 131)(X a X D ++5 【答案】B6、 设123,,X X X 相互独立同服从参数3λ=的泊松分布,令1231()3Y X X X =++,则2()E Y =A )1.B )9.C )10.D )6.【答案】C7、设X ~2(,)N μσ,那么当σ增大时,{}P X μσ-<= A )增大 B )减少 C )不变 D )增减不定。
第一章 概率论的基本概念 练习1.1 样本空间、随机事件一、写出以下随机试验的样本空间:1.从两名男乒乓球选手B A ,和三名女乒乓球选手,,C D E 中选拔一对选手参加男女混合双打,观察选择结果。
2.10件产品中有4件次品,其余全是正品,从这10件产品中连续抽取产品,每次一件,直到抽到次品为止,记录抽出的正品件数。
二、有三位学生参加高考,以i A 表示第i 人考取(1,2,3i =).试用i A 表示以下事实: 1.至少有一个考取;2.至多64738291有两人考取;3.恰好有两人落榜。
三、投掷一枚硬币5次,问下列事件A 的逆事件A 是怎样的事件?1. A 表示至少出现3次正面;2. A 表示至多出现3次正面;3. A 表示至少出现3次反面。
四、袋中有十个球,分别编有1至10共十个号码,从其中任取一个球,设事件A 表示“取得的球的号码是偶数”, 事件B 表示“取得的球的号码是奇数”, 事件C 表示“取得的球的号码小于5”,则,,,,,C A C AC A C A B AB ⋃-⋃分别表示什么事件?五、在某系的学生中任选一名学生,令事件A 表示“被选出者是男生”;事件B 表示“被选出者是三年级学生”;事件C 表示“被选出者是运动员”。
(1)说出事件C AB 的含义;(2)什么时候有恒等式C C B A = ; (3) 什么时候有关系式B C ⊆正确; (4)什么时候有等式B A =成立。
练习1.2 概率、古典概型一、填空1.已知事件A ,B 的概率()0.7,()0.6P A P B ==,积事件AB 的概率()0.4P AB =,则()P A B ⋃= , ()P A B -= , ()P A B ⋃= , ()P A B ⋃= ,()P AB = , ()P A AB ⋃= .2. 设B A ,为两个事件,7.0)(=B P ,()0.3P AB =,则=+)(B A P .3. 设B A ,为两个任意不相容事件,,则=-)(B A P .4. 设B A ,为两个事件,5.0)(=A P ,=-)(B A P 0.2,则=)(AB P . 5. 已知,41)()()(===C P B P A P =)(AB P 0,61)()(==BC P AC P ,则C B A ,,全不发生的概率为 .二、设B A ,是两事件,且()0.6P A =,()0.7P B =,求(1) 在什么条件下,()P AB 取到最大值? (2) 在什么条件下,()P AB 取到最小值? 三、一批产品20件,其中3件次品,任取10件,求(1) 其中恰有一件次品的概率;(2) 至少有一件次品的概率。
长沙理工大学模拟试卷第八套概率论与数理统计试卷一、填空题(每小题2分,共2×10=20分).1、假设1x,2x,…,n x是样本1ξ,2ξ,…,nξ的一个样本值或观测值,则样本均值x表示样本值的集中位置或平均水平,样本方差S2和样本修正方差S*2表示样本值对于均值x的_________________.2、样本方差S2和样本修正方差S*2之间的关系为_________________.3、矩估计法由英国统计学家皮尔逊(Pearson)于1894年提出,它简便易行,性质良好,一直沿用至今. 其基本思想是:以样本平均值(一阶原点矩)ξ作为相应总体ξ的____________________;以样本方差(二阶中心矩)2S或者以样本修正方差2*S作为相应总体ξ的___________________________.4、总体未知参数θ的最大似然估计θˆ就是___________________函数的极大值点.5、我们在估计某阶层人的月收入时可以说:“月收入1000元左右”,也可以说:“月收入在800元至1200元间”. 前者用的是___________,后者就是_________________.6、在确定的样本点上,置信区间的长度与事先给定的信度α直接有关. 一般来讲,信度α较大,其置信度(1-α)较小,对应置信区间长度也较短,此时这一估计的精确度升高而可信度降低;相反地,信度α较小,其置信度(1-α)较______,对应置信区间长度也较_______,此时这一估计的精确度_________而可信度_____________.σ是否已知,正态总体均值μ的置信区间的中心都是7、无论总体方差2_________________.8、假设检验中统计推断的唯一依据是样本信息.样本信息的不完备性和随机性,决定了判断结果有错误是不可避免的.这种错误判断有两种可能:第一类错误为弃真错误,显著水平α就是犯这类错误的概率;第二类为取伪错误,记犯这类错误的概率为β. 则关系式α+β=1是________________(正确、错误)的.9、假设检验中做出判断的根据是______________________________________________.10、对于单正态总体,当均值μ已知时,对总体方差 2σ的假设检验用统计量及分布为__________________________________.二、简答题(每小题2分,共2×10=10分).1、若临界概率α=0.05,求临界值2αu .答:2、若临界概率α=0.01,自由度k =14,求临界值)1401.0(2;χ.答:3、若临界概率α=0.05,自由度k =10,求临界值)1005.0(;t . 答:4、若临界概率α=0.05,自由度k 1=10,k 2=15,求临界值)15,1005.0(;F . 答:5、设1ξ,2ξ,…,n ξ是ξ的样本,且ξ~ N(μ,2σ),试求:E ξ、D ξ、E 2*S .答:6、对于总体ξ有E ξ=μ,D ξ=2σ,1ξ,2ξ,3ξ是ξ的样本,下列无偏估计量中哪一个最有效?1ˆμ=1ξ,2ˆμ=1(31ξ+2ξ+3ξ) 答:7、设总体ξ服从二项分布b(n ,p ),p 为待估参数,),,,(21n ξξξ 为ξ的一个样本,求p 的矩估计量. 答:8、假设初生婴儿的体重服从正态分布,随机抽取12名初生男婴,测得其体重为(单位:g):2950,2520,3000,3000,3000,3160,3560,3320,2880,2600,3400,2540. 当以95%的置信度求初生男婴的平均体重的置信区间时,应该选用什么统计量? 答:9、某种电子元件,要求使用寿命不得低于1000 h .现从一批这种元件中随机抽取25 件,测其寿命,算得其平均寿命950 h ,设该元件的寿命ξ~N (μ,1002),在α=0.05的检验水平下,要确定这批元件是否合格需用什么检验方法?答:10、某卷烟厂生产两种香烟,现分别对两种烟的尼古丁含量作6次测量,结果为甲厂:25 28 23 26 29 22 乙厂:28 23 30 35 21 27若香烟中尼古丁含量服从正态分布,且方差相等,要判断这两种香烟中尼古丁含量有无显著差异(α=0.05),应该使用什么检验方法?答:三、应用题(每小题10分,共6×8=48分)1、设总体ξ服从泊松分布,即分布列为P(ξ=m)=λλ-e m m!,λ>0为参数,m =1,2,…,试求样本(1ξ,2ξ,…,n ξ)的联合分布列.2、设总体ξ服从指数分布,分布密度为)(x p =⎩⎨⎧≤>-0 00x x e x λλ,λ>0为待估参数,n x x x ,,,21 为ξ的一个观察值,求λ的最大似然估计值.3、已知某厂生产的电子零件的长度ξ~N (12.5,2σ),从某天生产的零件中随机抽取4个,测得长度为(单位:mm )12.6 13.4 12.8 13.2,求2σ的置信度为0.95的置信区间.4、已知某种木材横纹抗压力的实验值ξ~N (μ,2σ),对10个试件作横纹抗压力试验,得数据如下(单位:公斤/平方厘米):578 572 570 568 572 570 570 596 584 572.试对2σ进行区间估计(α=0.05).5、已知舞阳钢铁公司的铁水含碳量在正常情况下服从正态分布N(4.53,0.1082),某日随机测定了9炉铁水,含碳量如下:4.43 4.50 4.58 4.42 4.47 4.60 4.53 4.46 4.42 若已知总体方差无变化,能否认为该日生产的铁水的平均含碳量仍为4.53(α=0.05)?6、已知神马集团生产的维尼纶的纤度(纤维的粗细程度)在正常情况下服从正态分布N (1.405,0.0482),某日随机测定了5根纤维,纤维度如下: 1.32 1.55 1.36 1.40 1.44 问这天维尼纶纤度波动情况是否正常(α=0.05)?四、论述题(每小题10分,共2×6=12分)1、假设检验的基本原理是什么?2、请你谈谈学习数理统计的目的及方法?长沙理工大学模拟试卷第八套一、填空题(每小题2分,共2×10=20分). 1、离散程度.2、S 2=2*1S n n -.3、期望;方差.4、似然.5、点估计,区间估计.6、大,长,降低,升高.7、ξ.8、错误.9、小概率事件实际不可能发生原理.10、2χ=∑=-ni i 122)(σμξ~2χ(n).二、简答题(每小题2分,共2×10=10分).1、2αu =025.0u =1.96.2、)1401.0(2;χ=)14(201.0χ=29.141.3、)1005.0(;t =)10(05.0t =1.8125 4、)15,1005.0(;F =)15,10(05.0F =2.54 5、E ξ=μ,D ξ=n2σ,E 2S =21σn n -,E 2*S =2σ.6、2ˆμ最有效.7、因μ=E ξ=np ,所以p =n μ. 又μˆ=ξ,所以 p ˆ=n μˆ=n ξ. 8、t 检验法. 9、u 检验法. 10、t 检验法.三、应用题(每小题10分,共4×12=48分)1、解 设(1x ,2x ,…,n x )为(1ξ,2ξ,…,n ξ)的任一组样本值,则样本(1ξ,2ξ,…,n ξ)的联合分布列为P(1ξ=1x ,2ξ=2x ,…,n ξ=n x )=∏=ni 1P(iξ=ix )=∏=ni 1λλ-e x i xi!=λλn ni i x e x ni i-=∏∑=1!1.2、解 由L );,,,(21θn x x x =∏=ni i x P i 1);(θξ知,λ的似然函数为L );,,,(21θn x x x =∏=-ni x ie 1)(λλ=∑-=ni ix ne1λλ.相应的对数似然函数为lnL );,,,(21θn x x x =∑=-ni ix n 1ln λλ.两边对λ求导,并令一阶导数等于0可得∑=-ni ix n 1λ=0,解之得,λ的最大似然估计值为λˆ =∑=ni ixn1=x 1.3、解 因∑=-412)(i iμξ=(12.6-12.5)2+(13.4-12.5)2+(12.8-12.5)2+(13.2-12.5)2=1.4.又 1-α=0.95,α=0.05,查附表3得22αχ=2025.0χ(4)=11.143,221αχ-=2975.0χ(4)=0.484.故置信度为0.95的置信区间为(143.114.1,484.04.1),即(0.13,2.89). 4、解(35.83,252.43).5、解 设该日生产的铁水含碳量ξ~N (μ,2σ),已知σ= 0.108, n =9,则待检假设为Ho :μ=4.53, H 1:μ≠4.53. 当Ho 成立时,有统计量u =9/108.053.4-ξ~N (0,1)对于给定显著水平α=0.05,查标准正态分布函数数值表(附表2)得2αu =1.96,使得P (|u|>1.96)=0.05.由样本观察值计算得x =4.49,于是有 |u|=|9/108.053.449.4-|=1.11<1.96,因小概率事件没有发生,故接受Ho ,即在显著水平α=0.05下,可认为该日生产的铁水的平均含碳量仍为4.53.6、解 设该日生产的维尼纶的纤度ξ~N (μ,2σ),已知μ=1.405,σ=0.048, n =5,则待检假设为Ho :2σ=0.0482,H 1:2σ≠0.0482.当Ho 成立时,有统计量2χ=∑=-5122048.0)405.1(i i ξ~2χ(5).对于给定显著水平α=0.05,查2χ分布临界值表(附表3)得22αχ=12.833和221αχ-=0.83使得P (2χ>12.833)=2α,P (2χ<0.83)=2α.由样本观察值计算2χ得,2χ=13.683. 于是有2χ=13.683>12.833因小概率事件发生,故拒绝Ho ,即在显著水平α=0.05下,可认为该日生产的维尼纶的纤度的均方差不正常.四、论述题(每小题10分,共2×6=12分) 1、略. 2、略.长沙理工大学模拟试卷第九套概率论与数理统计试卷一、填空题(每小题2分,共2×10=20分).1、在进行抽样时,样本的选取必须是随机的,即总体中每个个体都有同等机会被选入样本. 因此,抽取样本1ξ,2ξ,…,n ξ,要求满足下列两个特性:1)_________;2)_________. 具备这两个特性的样本称为简单随机样本,简称样本.2、假设1x ,2x ,…,n x 是样本1ξ,2ξ,…,n ξ的一个样本值或观测值,则样本均值x 表示样本值的集中位置或平均水平,样本方差S 2和样本修正方差S *2表示样本值对于均值x 的__________________.3、样本方差S 2和样本修正方差S *2之间的关系为__________________.4、矩估计法由英国统计学家皮尔逊(Pearson )于1894年提出,它简便易行,性质良好,一直沿用至今. 其基本思想是:以样本平均值(一阶原点矩)ξ作为相应总体ξ的____________________;以样本方差(二阶中心矩)2S 或者以样本修正方差2*S 作为相应总体ξ的___________________________.5、θˆ具有无偏性的意义是:θˆ取值因随机性而偏离θ的真值,但_________________即没有系统的偏差.6、设1ˆθ和2ˆθ都是无偏估计量,如果________________,则称1ˆθ比2ˆθ有效.7、在确定的样本点上,置信区间的长度与事先给定的信度α直接有关. 一般来讲,信度α较大,其置信度(1-α)较小,对应置信区间长度也较短,此时这一估计的精确度升高而可信度降低;相反地,信度α较小,其置信度(1-α)较______,对应置信区间长度也较_______,此时这一估计的精确度_________而可信度_____________.8、假设检验中统计推断的唯一依据是样本信息.样本信息的不完备性和随机性,决定了判断结果有错误是不可避免的.这种错误判断有两种可能:第一类错误为__________________,第二类为__________________.9、常用的假设检验方法有四种,分别为1)__________________、2)__________________、3)__________________、3)__________________.10、对于单正态总体,当均值μ已知时,对总体方差 2σ的假设检验用统计量及分布为____________________________________.二、简答题(每小题2分,共2×10=10分).1、若α=0.05,求2αu .答:2、若α=0.01,k =14,求)1401.0(2;χ.答:3、若α=0.05,k =10,求)1005.0(;t . 答:4、若α=0.05<0.5,k 1=10,k 2=15,求)15,1005.0(;F . 答:5、设1ξ,2ξ,…,n ξ是ξ的样本,且ξ~ N(μ,2σ),试求:E ξ、D ξ、E 2*S .答:6、对于总体ξ有E ξ=μ,D ξ=2σ,1ξ,2ξ,3ξ是ξ的样本,下列统计量中哪一个最有效?1ˆμ=1ξ,2ˆμ=134ξ-231ξ,3ˆμ=1(31ξ+2ξ+3ξ) 答:7、设总体ξ服从二项分布b(n ,p ),p 为待估参数,),,,(21n ξξξ 为ξ的一个样本,求p 的矩估计量. 答:8、已知一批元件的长度测量误差ξ服从N (μ,2σ),μ,2σ为未知参数,现从总体ξ中抽出一个容量是6的样本值-1.20,-0.85,-0.30,0.45,0.82,0.12,σ的最大似然估计值.求μ,2答:9、已知洛阳轴承厂生产的滚珠直径ξ~N(μ,2σ),其中2σ为已知,μ为待估参数. 从某天生产的滚珠中随机抽取一个样本1ξ,2ξ,…,nξ,对于事先给定的信度α,试写出总体均值μ的置信区间.答:10、已知洛阳轴承厂生产的滚珠直径ξ~N(μ,2σ),其中2σ为未知知,μ为待估参数. 从某天生产的滚珠中随机抽取一个样本1ξ,2ξ,…,nξ,对于事先给定的信度α,试写出总体均值μ的置信区间.答:三、应用题(每小题10分,共4×12=48分)1、已知某厂生产的电子零件的长度ξ~N(12.5,2σ),从某天生产的零件中随机抽取4个,测得长度为(单位:mm)12.6 13.4 12.8 13.2,σ的置信度为0.95的置信区间.求22、已知某种木材横纹抗压力的实验值ξ~N(μ,2σ),对10个试件作横纹抗压力试验,得数据如下(单位:公斤/平方厘米):578 572 570 568 572 570 570 596 584 572.σ进行区间估计(α=0.05).试对23、已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.53,0.1082),某日随机测定了9炉铁水,含碳量如下:4.43 4.50 4.58 4.42 4.47 4.60 4.53 4.46 4.42若已知总体方差无变化,能否认为该日生产的铁水的平均含碳量仍为4.53(α=0.05)?4、已知某涤纶厂生产的维尼纶的纤度(纤维的粗细程度)在正常情况下服从正态分布N(1.405,0.0482),某日随机测定了5根纤维,纤维度如下:1.32 1.55 1.36 1.40 1.44问这天维尼纶纤度总体的均方差是否正常(α=0.05)?四、论述题(每小题10分,共2×6=12分)1、假设检验的基本原理是什么?2、请你谈谈学习数理统计的意义?长沙理工大学模拟试卷第九套一、填空题(每小题2分,共2×10=20分).1、1)独立性等;2)代表性.2、离散程度.3、S 2=2*1S n n -.4、期望;方差.5、E θˆ=θ.6、D 1ˆθ<D 2ˆθ.7、大,长,降低,升高.8、“弃真”,“取伪”.9、1)U 检验法、2)t 检验法、3)2χ检验法、3)F 检验法.10、2χ=∑=-n i i 122)(σμξ~2χ(n).二、简答题(每小题2分,共2×10=10分).1、2αu =025.0u =1.96.2、)1401.0(2;χ=)14(201.0χ=29.141.3、)1005.0(;t =)10(05.0t =1.8125 4、)15,1005.0(;F =)15,10(05.0F =2.54 5、E ξ=μ,D ξ=n2σ,E 2S =21σn n -,E 2*S =2σ.6、3ˆμ最有效.7、因μ=E ξ=np ,所以p =n μ. 又μˆ=ξ,所以 p ˆ=n μˆ=n ξ. 8、μ≈ξ=61[(-1.20)+(-0.85)+(-0.30)+0.45+0.82+0.12]=-0.16.2σ≈2S =61[(-1.20+0.16)2+(-0.85+0.16)2+(-0.30+0.16)2+(0.45+0.16)2+(0.82+0.16)2+(0.12+0.16)2]=0.4980.9、(ξ2ασu n -,ξ+)2ασu n .10、(ξn S t 2*2α-,ξ+)2*2n S t α.三、应用题(每小题10分,共4×12=48分)1、解 因∑=-412)(i i μξ=(12.6-12.5)2+(13.4-12.5)2+(12.8-12.5)2+(13.2-12.5)2=1.4.又 1-α=0.95,α=0.05,查附表3得 22αχ=2025.0χ(4)=11.143,221αχ-=2975.0χ(4)=0.484.故置信度为0.95的置信区间为(143.114.1,484.04.1), 即(0.13,2.89).2、解(35.83,252.43).3、解 设该日生产的铁水含碳量ξ~N (μ,2σ),已知σ= 0.108, n =9,则待检假设为Ho :μ=4.53, H 1:μ≠4.53.当Ho 成立时,有统计量u =9/108.053.4-ξ~N (0,1)对于给定显著水平α=0.05,查标准正态分布函数数值表(附表2)得2αu =1.96,使得P (|u|>1.96)=0.05. 由样本观察值计算得x =4.49,于是有 |u|=|9/108.053.449.4-|=1.11<1.96,因小概率事件没有发生,故接受Ho ,即在显著水平α=0.05下,可认为该日生产的铁水的平均含碳量仍为4.53.4、解 设该日生产的维尼纶的纤度ξ~N (μ,2σ),已知μ=1.405,σ=0.048, n =5,则待检假设为Ho :2σ=0.0482,H 1:2σ≠0.0482. 当Ho 成立时,有统计量2χ=∑=-5122048.0)405.1(i i ξ~2χ(5). 对于给定显著水平α=0.05,查2χ分布临界值表(附表3)得22αχ=12.833和221αχ-=0.83使得P (2χ>12.833)=2α,P (2χ<0.83)=2α. 由样本观察值计算2χ得,2χ=13.683. 于是有2χ=13.683>12.833因小概率事件发生,故拒绝Ho ,即在显著水平α=0.05下,可认为该日生产的维尼纶的纤度的均方差不正常.四、论述题(每小题10分,共2×6=12分)1、略. 2、略。