惯性器件的误差测试方法及测试
- 格式:ppt
- 大小:1.76 MB
- 文档页数:33
导航工程技术专业常见问题解析惯性导航系统误差源分析与校正方法导航工程技术专业常见问题解析——惯性导航系统误差源分析与校正方法导航工程技术专业涉及众多领域,其中惯性导航系统是一项重要的研究方向。
在实际应用中,惯性导航系统常常会面临误差问题,其中误差源的分析与校正方法是解决这一问题的关键。
本文将针对常见问题,对惯性导航系统的误差源进行分析,并介绍一些常用的校正方法。
一、惯性导航系统误差源分析误差源是影响惯性导航系统精度的主要因素,它们包括三个方面:传感器误差、初始对准误差和模型误差。
1. 传感器误差惯性导航系统的传感器包括加速度计和陀螺仪,它们在测量物体加速度和角速度时会引入误差。
加速度计误差主要包括随机误差和系统误差,随机误差受到环境因素和器件制造工艺的影响,而系统误差则与加速度计的设计和校准有关。
陀螺仪误差主要包括漂移误差和尺度因子误差,漂移误差是由于运动过程中陀螺仪会逐渐累积误差,而尺度因子误差则影响陀螺仪的测量精度。
2. 初始对准误差初始对准误差是指惯性导航系统在初始使用时,由于传感器的摆放和安装不准确,导致系统初始姿态估计存在误差。
初始对准误差主要包括零偏误差、尺度因子误差和非正交误差等。
3. 模型误差模型误差是指惯性导航系统在建立数学模型时,对实际物理情况的简化和假设所引入的误差。
模型误差主要包括系统动态误差、参数误差和非线性误差等。
二、惯性导航系统误差校正方法为了提高惯性导航系统的精度,人们提出了多种误差校正方法,下面将介绍其中的几种常用方法。
1. 传感器误差校正方法传感器误差校正方法主要包括校准和滤波两种方式。
校准方法通过对传感器特性和误差进行建模,利用实验数据对模型进行参数估计,从而实现误差校正。
滤波方法利用滤波算法对传感器输出进行优化和平滑处理,以降低误差对导航结果的影响。
2. 初始对准误差校正方法初始对准误差校正方法主要包括传感器标定和初始对准两个步骤。
传感器标定通过实验测量得到传感器的误差参数,然后将其输入到初始对准算法中进行优化,最终实现初始对准误差的校正。
一、实验目的1. 了解惯性测质量的基本原理和方法。
2. 掌握使用惯性秤进行物体质量测量的操作步骤。
3. 通过实验,验证牛顿第二定律在质量测量中的应用。
二、实验原理惯性测质量实验基于牛顿第二定律,即物体的加速度与作用力成正比,与物体的质量成反比。
通过测量物体在惯性秤上的振动周期,可以计算出物体的质量。
三、实验仪器1. 惯性秤2. 标准质量块3. 秒表4. 秒尺5. 计算器四、实验步骤1. 准备工作:将惯性秤放置在水平桌面上,确保其稳定。
将标准质量块放置在秤台上,调节游码,使横梁水平。
2. 测量标准质量块周期:将秒表置于易于观察的位置,使用秒尺测量标准质量块在惯性秤上的振动周期。
重复测量三次,求平均值。
3. 测量待测物体周期:将待测物体放置在秤台上,调节游码,使横梁水平。
使用秒表和秒尺测量待测物体在惯性秤上的振动周期。
重复测量三次,求平均值。
4. 计算质量:根据标准质量块的周期和待测物体的周期,利用公式计算待测物体的质量。
五、实验数据及处理1. 标准质量块周期(s):T1 = 0.5s,T2 = 0.6s,T3 = 0.55s;平均值T = (0.5 + 0.6 + 0.55) / 3 = 0.55s。
2. 待测物体周期(s):T1' = 0.4s,T2' = 0.45s,T3' = 0.43s;平均值T' = (0.4 + 0.45 + 0.43) / 3 = 0.433s。
3. 标准质量块质量(kg):m = 0.5kg。
4. 待测物体质量(kg):根据公式m' = (m T') / T,代入数据计算得待测物体质量m' = (0.5 0.433) / 0.55 ≈ 0.39kg。
六、实验结果分析通过实验,我们得到了待测物体的质量为0.39kg。
与实际质量存在一定的误差,这可能是由于以下原因:1. 惯性秤的精度有限,存在一定的误差。
2. 测量过程中,秒表和秒尺的读数误差。
惯性测量单元安装误差系数标定实验二零一三年六月十日2.1 惯性测量单元安装误差系数标定试验一、实验目的1、掌握惯性测量单元(inertial measurement unit ,IMU )的标度系数、安装误差、零偏的标定方法;2、利用现有实验条件实现实验过程的设计。
二、实验内容利用单轴速率转台,进行IMU 的安装误差系数标定,并通过公式计算该安装误差系数。
三、实验系统组成单轴速率位置转台、MEMS 惯性测量单元、稳压电源、数据采集系统。
四、实验原理IMU 安装误差系数的计算方法通常,惯导系统至少需要三个陀螺和三个加速度计,用以感知载体的三轴角速度和加速度变化。
将这些陀螺和加计按照敏感轴两两正交的方式集成在一起,安装在一个结构框架上,便构成了一个能感知完整惯性测量信息的小型系统,称之为惯性测量单元。
对惯性测量单元进行标定时,除了要对其中的陀螺、加速度计进行常规标定外,还要考虑由于安装时不能严格保证敏感轴两两正交所带来的交叉耦合误差,即,要对IMU 的安装误差进行标定,测量出不正交角。
因此,在考虑IMU 的安装误差、标度因数误差、零偏误差的情况下,建立东北天坐标系下IMU 的角速度通道误差方程。
x x xx xy xz x y y yx yy yz y z z zxzyzz z K E E E K E E E K ωεωωεωωεω⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ (1)式中i ω为惯性系统i 轴向陀螺输出角速度,i ω为i 轴向的输入角速度;i ε为i 轴向陀螺零偏;ii K 为i 轴向陀螺标度因数;ij E 为角速度通道的安装误差系数,i和j为坐标轴X,Y,Z的统称。
设输入矩阵为x1xny1ynIz1zn...11ωωωωωω⎡⎤⎢⎥⎢⎥Ω=⎢⎥⎢⎥⎣⎦,输出矩阵为x1xno y1ynz1zn...ωωωωωω⎡⎤⎢⎥Ω=⎢⎥⎢⎥⎣⎦,则标度因数、安装误差系数与陀螺漂移组成的矩阵可按最小二乘法估计为:类似,可计算加速度计的标度因数、安装误差系数与加计零偏。
导航工程技术专业实操惯性导航系统的误差分析与校正方法探究导航工程技术专业实操:惯性导航系统的误差分析与校正方法探究随着现代导航技术的快速发展和广泛应用,惯性导航系统在航空、航海、地面车辆等领域中扮演着重要的角色。
然而,由于各种原因,惯性导航系统在实际应用中难免会产生一定的误差,因此,学习误差分析与校正方法成为导航工程技术专业的必修内容。
本文将对惯性导航系统的误差来源、误差分析方法以及误差校正方法进行探究和总结。
一、误差来源分析惯性导航系统的误差来源复杂多样,主要包括器件固有误差、测量误差和环境误差等。
器件固有误差主要指惯性测量单元(IMU)中的陀螺仪零偏、比例因素误差以及加速度计安装误差等。
测量误差包括各类传感器的随机误差和系统偏差,例如传感器的量程不确定性和非线性等。
环境误差主要指温度变化、振动和加速度的不均匀性等对导航系统性能产生的影响。
二、误差分析方法为了准确地分析惯性导航系统的误差,工程技术人员通常采用以下两种方法:定态误差分析和动态误差分析。
1. 定态误差分析定态误差分析方法主要通过在不同工作状态下对系统进行测试,统计并分析其误差特性。
具体步骤如下:首先,对系统进行静态校准,获取系统在各参数状态下的误差特性曲线;其次,根据实测数据,利用统计学方法对误差进行分析,包括误差均值、标准差等参数的计算;最后,通过建立数学模型,对定态误差进行综合分析,找出误差随参数变化的规律。
2. 动态误差分析动态误差分析方法主要通过对系统在不同运动条件下的实测数据进行分析,确定误差的变化规律和影响因素。
具体步骤如下:首先,选择不同运动模型,例如匀速、加速度等,设计实验方案并采集数据;其次,通过数据处理方法,对误差进行分析和提取,包括误差漂移速率、相关性等参数的计算;最后,根据误差分析结果,优化系统设计和算法,减小误差对导航精度的影响。
三、误差校正方法误差校正是提高惯性导航系统精度的关键环节,校正方法的选择和优化对于系统的性能至关重要。
一、惯性测量单元标定技术的重要性惯性测量单元的核心器件是陀螺和加速度计,陀螺敏感载体的角运动,加速度计敏感载体的线运动,惯性导航系统的精度很大程度上取决于陀螺和加速度计的精度。
对陀螺来说,不仅要测出微小的角位移变化,给出满足分辨率要求的响应信号,而且要将陀螺仪的漂移误差限制在尽量小的范围内。
加速度计同样要有很高的分辨率,要能清晰、精确地反映出从非常小到非常大的加速度,并给出与之相应的信号,同时还必须有尽可能小的、稳定的零位偏置。
目前,提高惯性器件和惯导系统的精度主要有两条途径:(1) 改进器件的结构及工艺,探索新型的惯性器件。
(2) 对惯性测量单元进行标定,建立误差模型,通过误差标定补偿来提高器件的实际使用精度和系统的导航精度。
仅靠改进设计来提高惯性器件精度在加工、制造、装配及调试中遇到的困难越来越多,成本也越来越高,因此是一项长周期,高风险的技术,而且只能做到有限的精度提升;而后者则可通过对惯性测量单元进行标定后求得软件补偿的参数,从而对导航测量单元的输出进行补偿以提高系统导航精度。
通过对惯性测量单元标定提高惯性器件的使用精度的技术途径大大降低惯导系统的成本,而且这种方法也使得惯性器件的设计思想由原来片面追求器件的绝对精度转为重点保证其性能稳定并减少随机误差,因此惯性测量单元的标定及补偿技术成为了提高惯导系统精度的关键技术之一。
二、惯性测量单元的元件标定随着惯性技术和光学陀螺的发展,光纤陀螺越来越多的被使用在惯性测量单元中。
相比于其他类型的陀螺,光纤陀螺内部没有运动部件,因此具有寿命长,可靠性好,重量轻等优点。
同时光纤陀螺的启动时间短,对机械环境的适应性好,动态范围宽。
但是光纤陀螺易受环境温度影响,构成光纤陀螺的主要器件如光纤线圈、集成光学器件、光源、耦合器等对温度较为敏感,所以当工作环境温度发生变化时,在陀螺的输出信号中将产生非互易相位误差,由温度变化造成的非互异性误差是导致光纤陀螺零位漂移和刻度系数不稳定的主要原因。
导航工程技术专业实操惯性导航系统的误差分析与校正导航工程技术专业涉及到许多重要的导航系统,其中之一就是惯性导航系统。
惯性导航系统是一种可以独立运行的导航系统,通过测量和计算物体的加速度和角速度来确定位置和方向。
然而,惯性导航系统存在着一定的误差,这些误差需要进行分析和校正,以确保导航的准确性和可靠性。
一、误差来源与分类惯性导航系统的误差主要来自于两个方面:传感器误差和初始值误差。
传感器误差是由于惯性传感器本身的不完美性能引起的,包括随机误差和系统误差。
随机误差是在测量中出现的偶然误差,一般可通过多次测量求平均值来减小;系统误差是固定的、与物理因素相关的常数误差,一般可通过校正来减小。
初始值误差是由于系统初始状态的不准确引起的,包括位置误差和姿态误差。
二、误差分析1.传感器误差分析传感器误差是惯性导航系统中最主要的误差来源之一。
对于加速度计和陀螺仪这两种常用的传感器,需要对其误差进行分析和研究。
加速度计的误差主要包括刻度因子误差、偏置误差和温度误差等。
陀螺仪的误差主要包括零偏误差、刻度因子误差和温度误差等。
通过实验和数据处理,可以确定传感器误差的大小和特征,并为后续的误差校正提供依据。
2.初始值误差分析初始值误差是惯性导航系统中由于初始状态不准确引起的误差。
对于位置误差,可以通过其他导航系统的辅助定位来进行校正。
例如,可以利用全球定位系统(GPS)提供的位置信息来校正初始位置误差。
对于姿态误差,可以利用陀螺仪提供的角速度测量值来进行校正。
通过比较惯性导航系统的测量结果与辅助定位系统的结果,可以计算出初始值误差,并进行修正。
三、误差校正方法误差校正是惯性导航系统中非常重要的一步,它可以通过多种方法来实现。
常用的误差校正方法包括零偏校正、温度校正、刻度因子校正等。
零偏校正是通过对传感器的输出进行标定,确定其零偏值,并在测量中进行相应的修正。
温度校正是通过对传感器输出的温度特性进行建模,校正温度引起的误差。
惯性测量单元安装误差系数标定实验二零一三年六月十日2.1 惯性测量单元安装误差系数标定试验一、实验目的1、掌握惯性测量单元(inertial measurement unit ,IMU )的标度系数、安装误差、零偏的标定方法;2、利用现有实验条件实现实验过程的设计。
二、实验内容利用单轴速率转台,进行IMU 的安装误差系数标定,并通过公式计算该安装误差系数。
三、实验系统组成单轴速率位置转台、MEMS 惯性测量单元、稳压电源、数据采集系统。
四、实验原理IMU 安装误差系数的计算方法通常,惯导系统至少需要三个陀螺和三个加速度计,用以感知载体的三轴角速度和加速度变化。
将这些陀螺和加计按照敏感轴两两正交的方式集成在一起,安装在一个结构框架上,便构成了一个能感知完整惯性测量信息的小型系统,称之为惯性测量单元。
对惯性测量单元进行标定时,除了要对其中的陀螺、加速度计进行常规标定外,还要考虑由于安装时不能严格保证敏感轴两两正交所带来的交叉耦合误差,即,要对IMU 的安装误差进行标定,测量出不正交角。
因此,在考虑IMU 的安装误差、标度因数误差、零偏误差的情况下,建立东北天坐标系下IMU 的角速度通道误差方程。
x x xx xy xz x y y yx yy yz y z z zxzyzz z K E E E K E E E K ωεωωεωωεω⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ (1)式中i ω为惯性系统i 轴向陀螺输出角速度,i ω为i 轴向的输入角速度;i ε为i 轴向陀螺零偏;ii K 为i 轴向陀螺标度因数;ij E 为角速度通道的安装误差系数,i和j为坐标轴X,Y,Z的统称。
设输入矩阵为x1xny1ynIz1zn...11ωωωωωω⎡⎤⎢⎥⎢⎥Ω=⎢⎥⎢⎥⎣⎦,输出矩阵为x1xno y1ynz1zn...ωωωωωω⎡⎤⎢⎥Ω=⎢⎥⎢⎥⎣⎦,则标度因数、安装误差系数与陀螺漂移组成的矩阵可按最小二乘法估计为:类似,可计算加速度计的标度因数、安装误差系数与加计零偏。