高考数学专题复习:空间向量基本定理
- 格式:docx
- 大小:904.83 KB
- 文档页数:16
1.2 空间向量的基本定理1.空间向量基本定理(1)如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,把{a ,b ,c }叫做空间的一个基底,a ,b ,c 叫做基向量,空间中任何三个不共面的向量都可以构成空间的一个基底.(2)基底选定后,空间所有向量均可由基底唯一表示,构成基底的三个向量a ,b ,c 中,没有零向量.(3)单位正交基底:如果{e 1,e 2,e 3}为单位正交基底,则这三个基向量的位置关系是两两垂直,长度为1;且向量e 1,e 2,e 3有公共的起点.【题型精讲】考点一 基底的判断【例1】(2020·全国高二课时练习)在正方体1111ABCD A B C D 中,可以作为空间向量的一组基底的是( )A .AB AC AD ,,B .11AB AA AB ,,C .11111D A DC D D ,,D .111AC AC CC ,,【答案】C【解析】:AB AC AD ,,共面,排除A 11AB AA AB ,,共面,排除B 111AC AC CC ,,共面,排除D 11111 D A DC D D ,,三个向量是不共面的,可以作为一个基底.故选:C【玩转跟踪】1.(2020·全国高二课时练习)下列说法正确的是( )A .任何三个不共线的向量可构成空间向量的一个基底B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .基底{}a b c ,,中基向量与基底{}e f g ,,基向量对应相等【答案】C【解析】A 项中应是不共面的三个向量构成空间向量的基底, 所以A 错.B 项,空间基底有无数个, 所以B 错.D 项中因为基底不唯一,所以D 错.故选C .2.(2018·全国高二课时练习)设向量,,a b c 不共面,则下列可作为空间的一个基底的是( )A .{,,}a b b a a +-B .{,,}a b b a b +-C .{,,}a b b a c +-D .{,,}a b c a b c +++ 【答案】C【解析】选项A,B 中的三个向量都是共面向量,所以不能作为空间的一个基底.选项D 中,()a b c a b c ++=++,根据空间向量共面定理得这三个向量共面,所以不能作为空间的一个基底.选项C 中,,a b b a c +-不共面,故可作为空间的一个基底.故选:C.3.(2018·开平市忠源纪念中学高二期末(理))若{a ⃑,b ⃑⃑,c ⃑}构成空间的一组基底,则( )A .b ⃑⃑+c ⃑,b ⃑⃑−c ⃑,a ⃑不共面B .b ⃑⃑+c ⃑,b ⃑⃑−c ⃑,2b ⃑⃑不共面C .b ⃑⃑+c ⃑,a ⃑,a ⃑+b ⃑⃑+c ⃑不共面D .a ⃑+c ⃑,a ⃑−2c ⃑,c ⃑不共面 【答案】A【解析】∵2b ⃑⃑=(b ⃑⃑+c ⃑)+(b ⃑⃑−c ⃑),∴b ⃑⃑+c ⃑,b ⃑⃑−c ⃑,2b⃑⃑共面 ∵a ⃑+b ⃑⃑+c ⃑=(b ⃑⃑+c ⃑)+a ⃑,∴b ⃑⃑+c ⃑,a ⃑,a ⃑+b ⃑⃑+c ⃑共面∵a ⃑+c ⃑=(a ⃑−2c ⃑)+3c ⃑,∴a ⃑+c ⃑,a ⃑−2c ⃑,c ⃑共面故选A考点二 基底的运用【例2】(2020·佛山市荣山中学高二期中)如图,平行六面体1111ABCD A B C D -中,O 为11A C 的中点,AB a =,AD b =,1AA c =,则AO =( )A .1122-++a b cB .1122a b c ++C .1122a b c --+D .1122a b c -+ 【答案】B【解析】O 为11A C 的中点, ∴()11111111111122AO AC AA AO AA AA A B A D =+=+++=()112AB AD AA =++()12c a b =++ 1122a c b =++. 故选:B .【玩转跟踪】1.(2020·甘肃靖远。
第6讲 空间向量及其运算[学生用书P157]1.空间向量的有关定理(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在唯一的实数λ,使得a =λb .(2)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在唯一的有序实数对(x ,y ),使p =x a +y b .(3)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c .其中{a ,b ,c }叫做空间的一个基底.2.两个向量的数量积(与平面向量基本相同)(1)两向量的夹角:已知两个非零向量a ,b ,在空间中任取一点O ,作OA →=a ,OB →=b ,则∠AOB 叫做向量a 与b 的夹角,记作〈a ,b 〉.通常规定0≤〈a ,b 〉≤π.若〈a ,b 〉=π2,则称向量a ,b 互相垂直,记作a ⊥b .(2)两向量的数量积两个非零向量a ,b 的数量积a ·b =|a ||b |cos 〈a ,b 〉. (3)向量的数量积的性质①a ·e =|a |cos 〈a ,e 〉(其中e 为单位向量); ②a ⊥b ⇔a ·b =0; ③|a |2=a ·a =a 2; ④|a ·b |≤|a ||b |.(4)向量的数量积满足如下运算律 ①(λa )·b =λ(a ·b ); ②a ·b =b ·a (交换律);③a ·(b +c )=a ·b +a ·c (分配律). 3.空间向量的坐标运算(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). a +b =(a 1+b 1,a 2+b 2,a 3+b 3), a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3, a ⊥b ⇔a 1b 1+a 2b 2+a 3b 3=0,a ∥b ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ), cos 〈a ,b 〉=a ·b|a ||b |=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23 . (2)设A (x 1,y 1,z 1),B (x 2,y 2,z 2), 则AB →=OB →-OA →=(x 2-x 1,y 2-y 1,z 2-z 1). 4.直线的方向向量与平面的法向量的确定(1)直线的方向向量:l 是空间一直线,A ,B 是直线l 上任意两点,则称AB →为直线l 的方向向量,与AB →平行的任意非零向量也是直线l 的方向向量,显然一条直线的方向向量可以有无数个.(2)平面的法向量①定义:与平面垂直的向量,称为平面的法向量.一个平面的法向量有无数多个,任意两个都是共线向量.②确定:设a ,b 是平面α内两个不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n·a =0,n·b =0.5.空间位置关系的向量表示直线l 的方向向量为n ,平面α的法向量为ml ∥α n ⊥m ⇔n ·m =0 l ⊥αn ∥m ⇔n =λm 平面α,β的法向量分别为n ,m α∥β n ∥m ⇔n =λm α⊥βn ⊥m ⇔n ·m =0常用结论1.向量三点共线定理在平面中A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.向量四点共面定理在空间中P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间内任意一点.一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)空间中任意两个非零向量a ,b 共面.( ) (2)在向量的数量积运算中(a ·b )·c =a ·(b ·c ).( ) (3)对于非零向量b ,由a ·b =b ·c ,则a =c .( )(4)若{a ,b ,c }是空间的一个基底,则a ,b ,c 中至多有一个零向量.( ) (5)两向量夹角的范围与两异面直线所成角的范围相同.( )(6)若A ,B ,C ,D 是空间中任意四点,则有AB →+BC →+CD →+DA →=0.( ) 答案:(1)√ (2)× (3)× (4)× (5)× (6)√ 二、易错纠偏常见误区|K混淆向量共线与共面致误.1.在空间直角坐标系中,已知A(1,2,3),B(-2,-1,6),C(3,2,1),D(4,3,0),则直线AB 与CD 的位置关系是( )A .垂直B .平行C .异面D .相交但不垂直解析:选B .由题意得,AB →=(-3,-3,3),CD →=(1,1,-1),所以AB →=-3CD →,所以AB →与CD →共线,又AB 与CD 没有公共点,所以AB ∥CD.2.若a =(2,3,m ),b =(2n ,6,8),且a ,b 为共线向量,则m +n 的值为( )A .7B .52C .6D .8解析:选C.由a ,b 为共线向量,得22n =36=m8,解得m =4,n =2,则m +n =6.故选C.3.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ=( )A.627 B .637 C.647D.657解析:选D.显然a 与b 不共线,如果a ,b ,c 三向量共面,则c =x a +y b ,即x (2,-1,3)+y (-1,4,-2)=(7,5,λ),所以⎩⎪⎨⎪⎧2x -y =7,-x +4y =5,3x -2y =λ,解得⎩⎪⎨⎪⎧x =337,y =177,λ=657.故选D.[学生用书P158]空间向量的线性运算(自主练透)1.在空间四边形ABCD 中,若AB →=(-3,5,2),CD →=(-7,-1,-4),点E ,F 分别为线段BC ,AD 的中点,则EF →的坐标为( )A .(2,3,3)B .(-2,-3,-3)C .(5,-2,1)D .(-5,2,-1)解析:选B.因为点E ,F 分别为线段BC ,AD 的中点,O 为坐标原点,所以EF →=OF →-OE →,OF →=12(OA →+OD →),OE →=12(OB →+OC →).所以EF →=12(OA →+OD →)-12(OB →+OC →)=12(BA →+CD →) =12[(3,-5,-2)+(-7,-1,-4)] =12(-4,-6,-6)=(-2,-3,-3).2.在三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示(1)MG →;(2)OG →.解:(1)MG →=MA →+AG →=12OA →+23AN → =12OA →+23(ON →-OA →) =12OA →+23[12(OB →+OC →)-OA →] =-16OA →+13OB →+13OC →. (2)OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC → =13OA →+13OB →+13OC →.3.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N →;(3)MP →+NC 1→. 解:(1)因为P 是C 1D 1的中点,所以AP →=AA 1→+A 1D 1→+D 1P →=a +AD →+12D 1C 1→ =a +c +12AB →=a +c +12b . (2)因为N 是BC 的中点,所以A 1N →=A 1A →+AB →+BN →=-a +b +12BC → =-a +b +12AD →=-a +b +12c . (3)因为M 是AA 1的中点, 所以MP →=MA →+AP →=12A 1A →+AP → =-12a +⎝ ⎛⎭⎪⎫a +c +12b =12a +12b +c ,又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a ,所以MP →+NC 1→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫a +12c=32a +12b +32c .用已知向量表示未知向量的解题策略(1)用已知向量来表示未知向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量的加法、减法和数乘运算的几何意义.首尾相接的若干个向量之和,等于由起始向量的始点指向末尾向量的终点的向量,我们可把这个法则称为向量加法的多边形法则.(3)在立体几何中要灵活应用三角形法则,向量加法的平行四边形法则在空间中仍然成立.共线、共面向量定理的应用(师生共研)如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=kAC 1→,BN →=kBC →(0≤k ≤1).(1)向量MN →是否与向量AB →,AA 1→共面? (2)直线MN 是否与平面ABB 1A 1平行?【解】 (1)因为AM →=kAC 1→,BN →=kBC →, 所以MN →=MA →+AB →+BN → =kC 1A →+AB →+kBC → =k (C 1A →+BC →)+AB →=k (C 1A →+B 1C 1→)+AB → =kB 1A →+AB →=AB →-kAB 1→=AB →-k (AA 1→+AB →) =(1-k )AB →-kAA 1→,所以由共面向量定理知向量MN →与向量AB →,AA 1→共面. (2)当k =0时,点M ,A 重合,点N ,B 重合, MN 在平面ABB 1A 1内,当0<k ≤1时, MN 不在平面ABB 1A 1内, 又由(1)知MN →与AB →,AA 1→共面, 所以MN ∥平面ABB 1A 1.三点P ,A ,B 共线空间四点M ,P ,A ,B 共面P A →=λPB →MP →=xMA →+yMB →对空间任一点O ,OP →=OA →+tAB →对空间任一点O ,OP →=OM →+xMA →+yMB →对空间任一点O ,OP →=xOA →+(1-x )OB →对空间任一点O ,OP →=xOM →+yOA →+(1-x -y )OB →1.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是( )A .2,12 B .-13,12 C .-3,2D .2,2解析:选A.因为a ∥b ,所以b =k a ,即(6,2μ-1,2λ)=k (λ+1,0,2),所以⎩⎪⎨⎪⎧6=k (λ+1),2μ-1=0,2λ=2k ,解得⎩⎨⎧λ=2,μ=12或⎩⎨⎧λ=-3,μ=12. 2.若A (-1,2,3),B (2,1,4),C (m ,n ,1)三点共线,则m +n =________. 解析:AB →=(3,-1,1),AC →=(m +1,n -2,-2). 因为A ,B ,C 三点共线,所以存在实数λ,使得AC →=λAB →. 即(m +1,n -2,-2)=λ(3,-1,1)=(3λ,-λ,λ),所以⎩⎪⎨⎪⎧m +1=3λ,n -2=-λ,-2=λ,解得λ=-2,m =-7,n =4.所以m +n =-3.答案:-33.如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是平行四边形,E ,F ,G 分别是A 1D 1,D 1D ,D 1C 1的中点.(1)试用向量AB →,AD →,AA 1→表示AG →; (2)用向量方法证明平面EFG ∥平面AB 1C . 解:(1)设AB →=a ,AD →=b ,AA 1→=c . 由题图得AG →=AA 1→+A 1D 1→+D 1G →=c +b +12AB →=12a +b +c=12AB →+AD →+AA 1→.(2)证明:由题图,得AC →=AB →+BC →=a +b , EG →=ED 1→+D 1G →=12b +12a =12AC →, 因为EG 与AC 无公共点,所以EG ∥AC ,因为EG ⊄平面AB 1C ,AC ⊂平面AB 1C , 所以EG ∥平面AB 1C . 又因为AB 1→=AB →+BB 1→=a +c , FG →=FD 1→+D 1G →=12c +12a =12AB 1→,因为FG 与AB 1无公共点,所以FG ∥AB 1, 因为FG ⊄平面AB 1C ,AB 1⊂平面AB 1C , 所以FG ∥平面AB 1C ,又因为FG ∩EG =G ,FG ,EG ⊂平面EFG , 所以平面EFG ∥平面AB 1C .空间向量数量积的应用(典例迁移)如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →;(2)EG →·BD →.【解】 设AB →=a ,AC →=b ,AD →=c .则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°. (1)EF →=12BD →=12c -12a ,BA →=-a , EF →·BA →=⎝ ⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a ·c =14.(2)EG →·BD →=(EA →+AD →+DG →)·(AD →-AB →) =⎝ ⎛⎭⎪⎫-12AB →+AD →+AG →-AD →·(AD →-AB →) =⎝ ⎛⎭⎪⎫-12AB →+12AC →+12AD →·(AD →-AB →)=⎝ ⎛⎭⎪⎫-12a +12b +12c ·(c -a ) =12(-1×1×12+1×1×12+1+1-1×1×12-1×1×12) =12.【迁移探究1】 (变问法)在本例条件下,求证EG ⊥AB . 证明:由例题知EG →=12(AC →+AD →-AB →)=12(b +c -a ), 所以EG →·AB →=12(a ·b +a ·c -a 2) =12⎝ ⎛⎭⎪⎫1×1×12+1×1×12-1=0.故EG →⊥AB →,即EG ⊥AB .【迁移探究2】 (变问法)在本例条件下,求EG 的长. 解:由例题知EG →=-12a +12b +12c ,|EG →|2=14a 2+14b 2+14c 2-12a ·b +12b ·c -12c ·a =12,则|EG →|=22,即EG 的长为22. 【迁移探究3】 (变问法)在本例条件下,求异面直线AG 与CE 所成角的余弦值.解:由例题知AG →=12b +12c ,CE →=CA →+AE →=-b +12a , cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=-23,由于异面直线所成角的取值范围是⎝ ⎛⎦⎥⎤0,π2.所以异面直线AG 与CE 所成角的余弦值为23.空间向量数量积的三个应用求夹角设向量a ,b 所成的角为θ,则cos θ=a ·b|a ||b |,进而可求两异面直线所成的角求长度(距离)运用公式|a |2=a ·a ,可使线段长度的计算问题转化为向量数量积的计算问题解决垂直问题利用a ⊥b ⇔a ·b =0(a ≠0,b ≠0),可将垂直问题转化为向量数量积的计算问题在三棱柱ABC A 1B 1C 1中,M ,N 分别是A 1B ,B 1C 1上的点,且BM =2A 1M ,C 1N =2B 1N.设AB →=a ,AC →=b ,AA 1→=c .(1)试用a ,b ,c 表示向量MN →;(2)若∠BAC =90°,∠BAA 1=∠CAA 1=60°,AB =AC =AA 1=1,求MN 的长.解:(1)由题图知MN →=MA 1→+A 1B 1→+B 1N →=13BA 1→+AB →+13B 1C 1→ =13(c -a )+a +13(b -a )=13a +13b +13c . (2)由题设条件知,因为(a +b +c )2=a 2+b 2+c 2+2a ·b +2b ·c +2a ·c =1+1+1+0+2×1×1×12+2×1×1×12=5,所以|a +b +c |=5,|MN →|=13|a +b +c |=53.利用向量证明平行与垂直问题(多维探究) 角度一 证明平行问题(一题多解)如图所示,平面P AD ⊥平面ABCD ,且四边形ABCD 为正方形,△P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB ∥平面EFG ; (2)平面EFG ∥平面PBC .【证明】 (1)因为平面P AD ⊥平面ABCD ,且四边形ABCD 为正方形,所以AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).方法一:EF →=(0,1,0),EG →=(1,2,-1), 设平面EFG 的法向量为n =(x ,y ,z ), 则⎩⎨⎧n ·EF →=0,n ·EG →=0,即⎩⎪⎨⎪⎧y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量, 因为PB →=(2,0,-2),所以PB →·n =0,所以n ⊥PB →, 因为PB ⊄平面EFG ,所以PB ∥平面EFG .方法二:PB →=(2,0,-2),FE →=(0,-1,0),FG →=(1,1,-1). 设PB →=sFE →+tFG →,即(2,0,-2)=s (0,-1,0)+t (1,1,-1), 所以⎩⎪⎨⎪⎧t =2,t -s =0,-t =-2,解得s =t =2.所以PB →=2FE →+2FG →,又因为FE →与FG →不共线,所以PB →,FE →与FG →共面. 因为PB ⊄平面EFG ,所以PB ∥平面EFG .(2)因为EF →=(0,1,0),BC →=(0,2,0),所以BC →=2EF →, 因为BC 与EF 无公共点,所以BC ∥EF . 又因为EF ⊄平面PBC ,BC ⊂平面PBC , 所以EF ∥平面PBC ,同理可证GF ∥PC ,从而得出GF ∥平面PBC .又EF∩GF=F,EF⊂平面EFG,GF⊂平面EFG,所以平面EFG∥平面PBC.角度二证明垂直问题如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O 落在线段AD上.已知BC=8,PO=4,AO=3,OD=2.(1)证明:AP⊥BC;(2)若点M是线段AP上一点,且AM=3.试证明平面AMC⊥平面BMC.【证明】(1)如图所示,以O为坐标原点,以射线DB方向为x轴正方向,射线OD为y 轴正半轴,射线OP为z轴正半轴建立空间直角坐标系Oxyz.则O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0),P(0,0,4).于是AP→=(0,3,4),BC→=(-8,0,0),所以AP→·BC→=(0,3,4)·(-8,0,0)=0,所以AP→⊥BC→,即AP⊥BC.(2)由(1)知AP=5,又AM=3,且点M在线段AP上,所以AM →=35AP →=⎝ ⎛⎭⎪⎫0,95,125,又BA →=(-4,-5,0),所以BM →=BA →+AM →=⎝ ⎛⎭⎪⎫-4,-165,125,则AP →·BM →=(0,3,4)·⎝ ⎛⎭⎪⎫-4,-165,125=0, 所以AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,BM ∩BC =B ,BM ,BC ⊂平面BMC , 所以AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BMC .(1)利用空间向量解决平行、垂直问题的一般步骤①建立空间直角坐标系,建系时,要尽可能地利用已知图形中的垂直关系; ②建立空间图形与空间向量之间的关系,用空间向量表示出问题中所涉及的点、直线、平面的要素;③通过空间向量的坐标运算研究平行、垂直关系; ④根据运算结果解释相关问题. (2)空间线面位置关系的坐标表示设直线l ,m 的方向向量分别为a =(a 1,b 1,c 1),b =(a 2,b 2,c 2),平面α,β的法向量分别为u =(a 3,b 3,c 3),v =(a 4,b 4,c 4).①线线平行l ∥m ⇔a ∥b ⇔a =k b ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2. ②线线垂直l ⊥m ⇔a ⊥b ⇔a ·b =0⇔a 1a 2+b 1b 2+c 1c 2=0. ③线面平行(l ⊄α)l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0. ④线面垂直l ⊥α⇔a ∥u ⇔a =t u ⇔a 1=ta 3,b 1=tb 3,c 1=tc 3. ⑤面面平行α∥β⇔u ∥v ⇔u =λv ⇔a 3=λa 4,b 3=λb 4,c 3=λc 4. ⑥面面垂直α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证: AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值. 解:(1)记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, 所以a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6,所以|AC 1→|=6,即AC 1的长为 6.(2)证明:因为AC 1→=a +b +c ,BD →=b -a , 所以AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c=b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0. 所以AC 1→⊥BD →,所以AC 1⊥BD . (3)BD 1→=b +c -a ,AC →=a +b , 所以|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1.所以cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.所以AC 与BD 1夹角的余弦值为66.[学生用书P399(单独成册)][A 级 基础练]1.已知三棱锥O -ABC ,点M ,N 分别为AB ,OC 的中点,且OA →=a ,OB →=b ,OC →=c ,用a ,b ,c 表示MN →,则MN →=( )A.12(b +c -a ) B .12(a +b +c ) C.12(a -b +c )D.12(c -a -b )解析:选D.MN →=MA →+AO →+ON →=12(c -a -b ).2.已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a ,b ,c 三向量共面,则λ=( )A .9B .-9C .-3D .3解析:选B.显然a 与b 不共线,若a ,b ,c 三向量共面,则c =x a +y b ,即(7,6,λ)=x (2,1,-3)+y (-1,2,3),所以⎩⎪⎨⎪⎧2x -y =7,x +2y =6,-3x +3y =λ,解得λ=-9.3.在空间四边形ABCD 中,AB →·CD →+AC →·DB →+AD →·BC →=( ) A .-1 B .0 C .1D .不确定解析:选B.如图,令AB →=a ,AC →=b ,AD →=c ,则AB →·CD →+AC →·DB →+AD →·BC →=a ·(c -b )+b·(a -c )+c·(b -a )=a·c -a·b +b·a -b·c +c·b -c·a =0.4.如图,在大小为45°的二面角A EF D 中,四边形ABFE ,四边形CDEF 都是边长为1的正方形,则B ,D 两点间的距离是( )A. 3 B . 2 C .1D.3- 2解析:选D.因为BD →=BF →+FE →+ED →,所以|BD →|2=|BF →|2+|FE →|2+|ED →|2+2BF →·FE →+2FE →·ED →+2BF →·ED →=1+1+1-2=3-2,所以|BD →|=3- 2.5.已知A (1,0,0),B (0,-1,1),O 为坐标原点,OA →+λOB →与OB →的夹角为120°,则λ的值为( )A .±66 B .66 C .-66D .± 6解析:选C.OA →+λOB →=(1,-λ,λ),cos 120°=λ+λ1+2λ2·2=-12,得λ=±66.经检验λ=66不合题意,舍去,所以λ=-66.6.如图所示,在长方体ABCD -A 1B 1C 1D 1中,O 为AC 的中点.用AB →,AD →,AA 1→表示OC 1→,则OC 1→=________.解析:因为OC →=12AC →=12(AB →+AD →),所以OC 1→=OC →+CC 1→=12(AB →+AD →)+AA 1→=12AB →+12AD →+AA 1→. 答案:12AB →+12AD →+AA 1→7.已知P A 垂直于正方形ABCD 所在的平面,M ,N 分别是CD ,PC 的中点,并且P A =AD =1.在如图所示的空间直角坐标系中,MN =________.解析:连接PD (图略),因为M ,N 分别为CD ,PC 的中点,所以MN =12PD ,又P (0,0,1),D (0,1,0),所以PD =02+(-1)2+12=2,所以MN =22.答案:228.如图所示,已知空间四边形OABC ,OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为________.解析:设OA →=a ,OB →=b ,OC →=c ,由已知条件得〈a ,b 〉=〈a ,c 〉=π3,且|b |=|c |, OA →·BC →=a ·(c -b )=a ·c -a ·b=|a ||c |cos 〈a ,c 〉-|a ||b |cos 〈a ,b 〉, 所以OA →⊥BC →,所以cos 〈OA →,BC →〉=0. 答案:09.如图,在多面体ABC -A 1B 1C 1中,四边形A 1ABB 1是正方形,AB =AC ,BC =2AB ,B 1C 1綊12BC ,二面角A 1AB C 是直二面角.求证:(1)A 1B 1⊥平面AA 1C ; (2)AB 1∥平面A 1C 1C .证明:因为二面角A 1AB C 是直二面角,四边形A 1ABB 1为正方形, 所以AA 1⊥平面BAC .又因为AB =AC ,BC =2AB , 所以∠CAB =90°, 即CA ⊥AB ,所以AB ,AC ,AA 1两两互相垂直. 建立如图所示的空间直角坐标系Axyz ,设AB =2,则A (0,0,0),B 1(0,2,2),A 1(0,0,2),C (2,0,0),C 1(1,1,2).(1)A 1B 1→=(0,2,0),A 1A →=(0,0,-2),AC →=(2,0,0), 设平面AA 1C 的一个法向量n =(x ,y ,z ), 则⎩⎨⎧n ·A 1A →=0,n ·AC →=0,即⎩⎪⎨⎪⎧-2z =0,2x =0,即⎩⎪⎨⎪⎧x =0,z =0,取y =1,则n =(0,1,0). 所以A 1B 1→=2n ,即A 1B 1→∥n ,又A 1B 1⊄平面AA 1C ,所以A 1B 1⊥平面AA 1C .(2)易知AB 1→=(0,2,2),A 1C 1→=(1,1,0),A 1C →=(2,0,-2),设平面A 1C 1C 的一个法向量m =(x 1,y 1,z 1), 则⎩⎨⎧m ·A 1C 1→=0,m ·A 1C →=0,即⎩⎪⎨⎪⎧x 1+y 1=0,2x 1-2z 1=0,令x 1=1,则y 1=-1,z 1=1,即m =(1,-1,1). 所以AB 1→·m =0×1+2×(-1)+2×1=0, 所以AB 1→⊥m , 又AB 1⊄平面A 1C 1C , 所以AB 1∥平面A 1C 1C .10.如图,在底面是矩形的四棱锥P -ABCD 中,P A ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.求证:(1)EF ∥平面P AB ; (2)平面P AD ⊥平面PDC .证明:以A 为原点,AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫12,1,12, F ⎝ ⎛⎭⎪⎫0,1,12,EF →=⎝ ⎛⎭⎪⎫-12,0,0,PB →=(1,0,-1),PD →=(0,2,-1),AP →=(0,0,1),AD →=(0,2,0),DC →=(1,0,0),AB →=(1,0,0).(1)因为EF →=-12AB →, 又EF →与AB →无公共点, 所以EF →∥AB →,即EF ∥AB .又AB ⊂平面P AB ,EF ⊂/ 平面P AB , 所以EF ∥平面P AB .(2)因为AP →·DC →=(0,0,1)·(1,0,0)=0, 所以AP →⊥DC →,AD →⊥DC →, 即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ,AD ⊂平面P AD , 所以DC ⊥平面P AD .又DC ⊂平面PCD , 所以平面P AD ⊥平面PDC .[B 级 综合练]11.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析:选B.当x =2,y =-3,z =2时,即OP →=2OA →-3OB →+2OC →.则AP →-AO →=2OA →-3(AB →-AO →)+2(AC →-AO →),即AP →=-3AB →+2AC →,根据共面向量定理知,P ,A ,B ,C 四点共面;反之,当P ,A ,B ,C 四点共面时,根据共面向量定理,设AP →=mAB →+nAC →(m ,n ∈R ),即OP →-OA →=m (OB →-OA →)+n (OC →-OA →),即OP →=(1-m -n )·OA →+mOB →+nOC →,即x =1-m -n ,y =m ,z =n ,这组数显然不止2,-3,2.故“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的充分不必要条件.12.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1) B.⎝ ⎛⎭⎪⎫23,23,1C.⎝ ⎛⎭⎪⎫22,22,1D.⎝ ⎛⎭⎪⎫24,24,1解析:选C.设M 点的坐标为(x ,y ,1),因为AC ∩BD =O ,所以O ⎝ ⎛⎭⎪⎫22,22,0,又E (0,0,1),A (2,2,0),所以OE →=⎝ ⎛⎭⎪⎫-22,-22,1,AM →=(x -2,y -2,1),因为AM ∥平面BDE ,所以OE →∥AM →,所以⎩⎪⎨⎪⎧x -2=-22,y -2=-22,⇒⎩⎪⎨⎪⎧x =22,y =22,所以M 点的坐标为⎝ ⎛⎭⎪⎫22,22,1.13.在正三棱柱ABC -A 1B 1C 1中,侧棱长为2,底面边长为1,M 为BC 的中点,C 1N →=λNC →,且AB 1⊥MN ,则λ的值为________.解析:如图所示,取B 1C 1的中点P ,连接MP ,以MC →,MA →,MP →的方向为x ,y ,z 轴正方向建立空间直角坐标系,因为底面边长为1,侧棱长为2,则A ⎝ ⎛⎭⎪⎫0,32,0,B 1(-12,0,2),C ⎝ ⎛⎭⎪⎫12,0,0,C 1⎝ ⎛⎭⎪⎫12,0,2,M (0,0,0),设N ⎝ ⎛⎭⎪⎫12,0,t , 因为C 1N →=λNC →,所以N ⎝ ⎛⎭⎪⎫12,0,21+λ, 所以AB 1→=⎝ ⎛⎭⎪⎫-12,-32,2,MN →=⎝ ⎛⎭⎪⎫12,0,21+λ. 又因为AB 1⊥MN ,所以AB 1→·MN →=0. 所以-14+41+λ=0,所以λ=15.答案:1514.在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面P AD 内是否存在一点G ,使GF ⊥平面PCB ?若存在,求出点G 的坐标;若不存在,试说明理由.解:(1)证明:由题意知,DA ,DC ,DP 两两垂直.如图,以DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝ ⎛⎭⎪⎫a ,a 2,0,P (0,0,a ),F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2.EF →=⎝ ⎛⎭⎪⎫-a 2,0,a 2,DC →=(0,a ,0).因为EF →·DC →=0,所以EF →⊥DC →,从而得EF ⊥CD .(2)存在.理由如下:假设存在满足条件的点G , 设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2,若使GF ⊥平面PCB ,则由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(a ,0,0)=a ⎝ ⎛⎭⎪⎫x -a 2=0,得x =a 2;由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a 2·(0,-a ,a )=a 22+a ⎝ ⎛⎭⎪⎫z -a 2=0,得z =0.所以G 点坐标为⎝ ⎛⎭⎪⎫a 2,0,0,故存在满足条件的点G ,且点G 的坐标为⎝ ⎛⎭⎪⎫a 2,0,0,即G 为AD 的中点.[C 级 提升练]15.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =BC =1,动点P ,Q 分别在线段C 1D ,AC 上,则线段PQ 长度的最小值是( )A.23 B .33 C.23D.53解析:选C.以D 点为坐标原点,DA ,DC ,DD 1所在直线为x ,y ,z 轴,建立空间直角坐标系,则D (0,0,0),C (0,1,0),A (1,0,0),C 1(0,1,2),所以DC 1→=(0,1,2),DA →=(1,0,0),DC →=(0,1,0).设DP →=λDC 1→,AQ →=μAC →(λ,μ∈[0,1]). 所以DP →=λ(0,1,2)=(0,λ,2λ),DQ →=DA →+μ(DC →-DA →)=(1,0,0)+μ(-1,1,0)=(1-μ,μ,0). 所以|PQ →|=|DQ →-DP →|=|(1-μ,μ-λ,-2λ)| =(1-μ)2+(μ-λ)2+4λ2 =5⎝ ⎛⎭⎪⎫λ-μ52+95⎝ ⎛⎭⎪⎫μ-592+49≥49=23,当且仅当λ=μ5,μ=59,即λ=19,μ=59时取等号. 所以线段PQ 长度的最小值为23.故选C.16.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.解:(1)证明:设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,所以A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3,所以AO 2+A 1O 2=AA 21, 所以A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,所以A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0, 3),C 1(0,2, 3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, 所以BD →⊥AA 1→,即BD ⊥AA 1. (2)存在.理由如下:假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3). 从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的法向量为n =(x 2,y 2,z 2), 则⎩⎨⎧n ⊥A 1C 1→⇔n ·A 1C 1→=0,n ⊥DA 1→⇔n ·DA 1→=0,又A 1C 1→=(0,2,0),DA 1→=(3,0,3), 则⎩⎪⎨⎪⎧2y 2=0,3x 2+3z 2=0,令x 2=1,得z 2=-1,所以n =(1,0,-1), 因为BP ∥平面DA 1C 1, 令x 2=1,得z 1=-1,所以n ⊥BP →,即n ·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .。
空间向量的基本定理空间向量的基本定理是高中数学中的一个重要内容,它涉及到空间向量的表示、运算和应用。
本文将从以下几个方面介绍空间向量的基本定理:一、空间向量的概念和性质1.1 空间向量的定义空间向量是指空间中具有大小和方向的量,它可以用一个有向线段来表示。
有向线段的起点叫做向量的始点,终点叫做向量的终点,箭头表示向量的方向。
用字母 a, b, c 等表示向量,用 AB 表示以 A 为始点,B 为终点的向量。
1.2 空间向量的相等如果两个向量的长度相等且方向相同,那么这两个向量就是相等的。
相等的向量可以用平行移动的方法来判断,即如果一个向量平行移动后与另一个向量重合,那么这两个向量就是相等的。
例如,AB 和 CD 是相等的,因为 AB 平行移动后与 CD 重合。
1.3 空间向量的线性运算空间向量可以进行加法、减法和数乘三种线性运算,它们遵循以下法则:加法交换律:→a +→b =→b +→a加法结合律:(→a +→b )+→c =→a +(→b +→c )减法定义:→a −→b =→a +(−→b )数乘交换律:k →a =→ak 数乘结合律:(k 1k 2)→a =k 1(k 2→a )数乘分配律:(k 1+k 2)→a =k 1→a +k 2→a 和 k (→a +→b )=k →a +k →b空间向量的加法和减法可以用三角形法则或平行四边形法则来进行几何表示。
空间向量的数乘可以理解为对向量的长度和方向进行缩放,即数乘后的向量与原向量平行,长度为原长度与数乘因子的乘积,方向由数乘因子的正负决定。
例如,2→a 是 →a 的两倍长且同方向的向量,−12→b 是 →b 的一半长且反方向的向量。
二、空间坐标系和空间向量的坐标表示2.1 空间直角坐标系为了在空间中确定任意一点或任意一个向量的位置,我们需要建立一个参照系。
在数学中,我们常用空间直角坐标系来作为参照系。
空间直角坐标系由三条互相垂直且相交于原点 O 的坐标轴组成,分别称为 x 轴、y 轴和 z 轴。
高考数学专题复习:空间向量基本定理一、单选题1.如图,已知空间四边形OABC ,其对角线为,,,OB AC M N 分别是,OA CB 的中点,点G 在线段MN 上,且使2MG GN =,用向量,,OA OB OC 表示向量OG 为( )A .111633OG OA OB OC =++ B .122233OG OA OB OC =++C .2233OG OA OB OC =++D .112233OG OA OB OC =++2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,则AE AF ⋅的值为( )A .2aB .212aC .214aD 2 3.已知空间向量a ,b 满足|a |=|b |=1,且a ,b 的夹角为3π,O 为空间直角坐标系的原点,点A ,B 满足OA =2a +b ,OB =3a -b ,则△OAB 的面积为( )A B C D .1144.如图所示,空间四边形OABC 中,OB OC =,3AOB AOC π∠=∠=,则cos OA <,BC >的值是( )A .0B .12C D 5.设向量{},,a b c 是空间一个基底,则一定可以与向量p a b =+,q a b =-,构成空间的另一个基底的向量是( )A .aB .bC .cD .a 或b6.若,a b 是平面α内的两个向量,则( ) A .α内任一向量p a b λμ=+(λ,μ∈R) B .若存在λ,μ∈R 使a b λμ+=0,则λ=μ=0C .若,a b 不共线,则空间任一向量p a b λμ=+ (λ,μ∈R)D .若,a b 不共线,则α内任一向量p a b λμ=+ (λ,μ∈R)7.已知()cos ,1,sin a αα=,()sin ,1,cos b αα=,则向量a b +与a b -的夹角是( ) A .90° B .60° C .45°D .30°8.若a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则“312123a a ab b b ==”是“a //b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件9.如图,在三棱锥P ABC -中,PA a =,PB b =,PC c =,D 、E 分别为棱PA 、BC 的中点,则DE =( )A .111222a b c --B .111222a b c --+C .111222a b c +-D .111222a b c -++10.已知A ,B ,C ,D ,E 是空间中的五个点,其中点A ,B ,C 不共线,则“存在实数x ,y ,使得DE xAB yAC =+是“//DE 平面ABC ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件11.已知在四棱柱ABCD A B C D ''''-中,四边形ABCD 为平行四边形,若32AC aAB bBC cCC =+'+',则abc =( )A .12B .13C .16D .5612.在三棱锥O ABC -中,,,,2OA a OB b OC c AM MO ====,N 为BC 中点,则MN =( ) A .121232a b c -+ B .111322a b c -++C .111222a b c +- D .121332a b c +-二、填空题13.在四棱锥P ABCD -中,底面ABCD 是矩形,O 为矩形ABCD 外接圆的圆心.若OP xAB yAD zAP =++,则x y z +-=________.14.在长方体1111ABCD A BC D -中,M 为11AC 与11D B 的交点,设AB a =,AD b =,1AA c =,则向量AM =____________(用a ,b ,c 表示).15.已知324(0)a m n p a =--≠,(1)82b x m n y p =+++,且m 、n 、p 不共面,若//a b ,则x y +=________.16.如图所示,在正方体1111ABCD A BC D -中,点F 是侧面11CDD C 的中心,若1AF xAD yAB zAA =++,求x y z -+=________.三、解答题17.如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点.(1)求EF BA ⋅; (2)求EG 的长.18.在平行六面体ABCD -A 1B 1C 1D 1中,设1,,AB a AD b AA c ===,E ,F 分别是AD 1,BD 的中点.(1)用向量,,a b c 表示1D B ,EF ;(2)若1D F xa yb zc =++,求实数x ,y ,z 的值.19.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足111333OM OA OB OC =++.(1)判断MA ,MB ,MC 三个向量是否共面; (2)判断点M 是否在平面ABC 内.20.如图,在三棱锥A BCD -中,E 是CD 的中点,点F 在AE 上,且2EF FA =.设BC a =,BD b =,BA c =,求直线AE ,BF 的方向向量.21.如图,在空间平移ABC 到A B C ''',连接对应顶点,设AA a '=,AB b =,AC c =,M 是BC '的中点,N 是B C ''的中点,用基底{},,a b c 表示向量AM ,AN .22.在平行六面体1111ABCD A BC D -中,4AB =,4=AD ,15AA =,60DAB ∠=︒,160BAA ∠=︒,160DAA ∠=︒,M ,N 分别为11D C ,11C B 的中点.(1){},,a b c 构成空间的一个基底,用它们表示MN ,1AC ,设AB a =,AD b =,1AA c =. (2)求1AC 与MN 的夹角.参考答案1.A 【分析】结合空间向量的加法、减法和数乘运算,把向量OG 逐步向基底靠拢,再结合点的位置关系可得答案. 【详解】221333OG OM MG OM MN ON OM =+=+=+.因为,M N 分别为,OA CB 的中点, 所以()11,,22OM OA ON OB OC ==+所以()1111136633OG OB OC OA OA OB OC =++=++. 故选:A. 2.C 【分析】由题意可知,空间四边形ABCD 相邻两边的夹角都为60︒,所以把,,AB AC AD 看成空间向量的基底,将,AE AF 用基底表示化简可得答案 【详解】 11()22AB AC AE AF AD ⋅=+⋅ 1()4AB AD AC AD =⋅+⋅ 22211(cos 60cos 60)44a a a ︒︒=+= 故选:C 3.B 【分析】求出||OA 和||OB ,cos ∠AOB 和sin ∠AOB ,根据三角形的面积公式可求出结果. 【详解】|OA 2(2)a b +=224||||4a b a b ++⋅=|OB |222(3)96a b a a b b =-=-⋅+=则cos ∠AOB=·||||OAOB OA OB =226||||7a b a b -+⋅1611127-+⨯⨯==1114, 从而有sin ∠AOB =,∴△OAB 的面积S 1||||sin 2OA OB AOB =∠=12,故选:B . 4. A 【分析】利用OB OC =,以及两个向量的数量积的定义求出cos OA <,BC >的值即可. 【详解】 OB OC =,∴1··()?··cos?cos?()0332OA BC OA OC OB OAOC OAOB OA OC OA OB OA OC OB ππ=-=-=-=-=cos OA ∴<,0BC >=,故选: A 5.C 【分析】判断哪个与,p q 不共面即可得. 【详解】由题意和空间向量的共面定理, 结合()()2p q a b a b a +=++-=, 得a 与,p q 是共面向量, 同理b 与,p q 是共面向量,所以a 与b 不能与,p q 构成空间的一个基底; 又c 与a 和b 不共面,所以c 与,p q 构成空间的一个基底. 故选:C . 6.D 【分析】根据空间向量共面定理判断. 【详解】当a 与b 共线时,A 项不正确;当a 与b 是相反向量,λ=μ≠0时,a b λμ+=0,故B 项不正确;若a 与b 不共线,则与a 、b 共面的任意向量可以用a ,b 表示,对空间向量则不一定, 故C 项不正确,D 项正确. 故选:D . 7.A 【分析】先利用向量坐标计算模长,再化简计算数量积()()0a b a b +⋅-=,即得夹角为90°. 【详解】依题意,()cos ,1,sin a αα=,()sin ,1,cos b αα=,则2222cos 1sin 2a αα=++=,2222sin 1cos 2b αα=++=, 所以()()2222220a b a b a b a b +⋅-=-=-=-=, 所以()()a b a b +⊥-,即向量a b +与a b -的夹角是90°. 故选:A. 8.A 【分析】结合空间向量共线定理,直接利用充分条件和必要条件的定义判断即可. 【详解】 解析:设312123a a a kb b b ===,则a =k b ,即a //b ,即“312123a a ab b b ==”可推出“a //b ”;又若b =0时,b =(0,0,0),虽有a //b 成立,但条件312123a a ab b b ==显然不成立,所以“a //b ”推不出“312123a a a b b b ==”,故“312123a a ab b b ==”是“a //b ”充分不必要条件. 故选:A . 9.D 【分析】连接PE ,利用空间向量的加法和减法法则可将DE 用a 、b 、c 加以表示. 【详解】连接PE ,如下图所示:()11112222PE PB BE PB BC PB PC PB PB PC =+=+=+-=+, 因此,111111222222DE PE PD PB PC PA a b c =-=+-=-++. 故选:D. 10.B 【分析】利用存在实数x ,y ,使得DE xAB yAC =+⇔//DE 平面ABC 或DE ⊂平面ABC ,结合充分必要条件的定义即可求解. 【详解】若//DE 平面ABC ,则,,DE AB AC 共面,故存在实数x ,y ,使得DE xAB yAC =+,所以必要性成立;若存在实数x ,y ,使得DE xAB yAC =+,则,,DE AB AC 共面,则//DE 平面ABC 或DE ⊂平面ABC ,所以充分性不成立;所以 “存在实数x ,y ,使得DE xAB yAC =+是“//DE 平面ABC ”的必要不充分条件, 故选:B【点睛】关键点点睛:本题考查空间向量共面的问题,理清存在实数x ,y ,使得DE xAB yAC =+⇔//DE 平面ABC 或DE ⊂平面ABC 是解题的关键,属于基础题.11.C 【分析】由题意可得32AB BC CC aAB bBC cCC ''++=++,则(31)(21)(1)0a AB b BC c CC '-+-+-=,而,,AB BC CC '为空间不共面的三个向量,所以312110a b c -=-=-=,从而可求得答案 【详解】据题意,得AC AB BC CC ''=++,32AC aAB bBC cCC =+'+', 所以32AB BC CC aAB bBC cCC ''++=++, 即(31)(21)(1)0a AB b BC c CC '-+-+-=. 又因为,,AB BC CC '为空间不共面的三个向量, 所以312110a b c -=-=-=,所以11,,132a b c ===,所以16abc. 故选:C. 12.B 【分析】 连接ON ,得()12ON OB OC =+, 13OM OA =,所以()12MN MO ON OM OB OC =+=-++可得答案. 【详解】连接ON ,所以()()1122ON OB OC b c =+=+, 因为2AM MO =,所以1133OM OA a ==, 所以()11112322MN MO ON OM OB OC a b c =+=-++=-++. 故选:B.13.2-【分析】 利用空间向量基本定理将OP 用,,AB AD AP 出来,从而可求出,,x y z 的值,进而可得答案【详解】如图,由题意可得111()222OP AP AO AP AB AD AB AD AP xAB y AD z AP =-=-+=--+=++, 则12x =-,12y,1z =,故2x y z ++=-. 故答案为:2- 14.1122a b c ++ 【分析】作出图形,可知点M 为11AC 的中点,利用空间向量的加法法则可得出AM 关于a 、b 、c 的表达式.【详解】如下图所示,由于四边形1111D C B A 为矩形,M 为11AC 与11D B 的交点,则M 为11AC 的中点,由题可得()1111111111111112222AM AA A M AA AC AA A B A D AB AD AA =+=+=++=++1122a b c =++. 故答案为:1122a b c ++. 15.5-【分析】根据//a b ,且m 、n 、p 不共面可得,存在λ使得b a λ=,根据向量相等可列出方程解出,x y .【详解】解://a b 且0a ≠,a b λ∴=,即(1)82324x m n y p m n p λλλ+++=--,又m 、n 、p 不共面,182324x y +∴==--, 则13x =-,8y =,5x y +=-.故答案为:5-【点睛】空间向量中的有关定理(1)共线向量定理:空间两个向量a 与(0)b b ≠共线的充要条件是存在唯一的实数λ,使得λa b ; (2)共面向量定理:共面向量定理的向量表达式:p xa yb =+,其中,,,x y R a b ∈为不共线向量; (3)空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在唯一的有序实数组{},,x y z ,使得{},,,p xa yb zc a b c =++叫做空间的一个基底. 16.1【分析】利用空间向量的加减法运算用1,,AD AB AA 来表示AF ,即得结果.【详解】()()11111112222AF AD DF AD DD DC AD AB AD AB AA AA =+=++=++=++, 故1x =,12y =,12z =,则1x y z -+=. 故答案为:1.17.(1)14;(2 【分析】设AB =a ,AC =b ,AD =c ,(1)将EF 和BA 化为,,a b c 可求出结果;(2)将EG 化为12a -+12b +12c 可求出结果. 【详解】设AB =a ,AC =b ,AD =c ,则||||||1a b c ===,,,,60a b b c c a <>=<>=<>=,a b b c c a ⋅=⋅=⋅=⨯⨯=111122,1111122222EF BD AD AB c a ==-=-,BA AB a =-=- (1)EF BA ⋅=21111111()()2222224c a a a c a -⋅-=-⋅+=-⨯+=, (2)EG =EB +BC +CG=12AB +(AC -AB )+12(AD -AC ) =12AB -+12AC +12AD =12a -+12b +12c , ∴22111||()222EG a b c =-++2221(222)4a b c a b a c b c =++-⋅-⋅+⋅ 11(111111)42=++--+=,所以2||2EG =,即EG 18.(1)1D B a b c =--,1()2EF a c =-;(2)11,,122x y z ==-=-. 【分析】利用向量的加减法的平行四边形和三角形法则,结合平行六面体的性质求解即可【详解】解:(1)111D B D D DB AA AB AD a b c =+=-+-=--,1111111()()()22222EF EA AF D A AC AA AD AB AD a c =+=+=-+++=- (2)1111()2D F D D D B =+ 111()2AA D B =-+ 1()2c a b c =-+-- 1122a b c =-- 所以11,,122x y z ==-=- 19.(1),,MA MB MC 共面;(2)点M 在平面ABC 内.【分析】(1)由向量的线性关系可得()()OA OM OM OB OM OC -=-+-,由向量减法有MA MB MC =--,由空间向量共面定理,知,,MA MB MC 共面. (2)由(1)结论,有四点共面,即可知M 在平面ABC 内.【详解】(1)由题意,知:3OM OA OB OC =++,∴()()OA OM OM OB OM OC -=-+-,即MA BM CM MB MC =+=--, 故,,MA MB MC 共面得证.(2)由(1)知:,,MA MB MC 共面且过同一点M .所以,,,M A B C 四点共面,从而点M 在平面ABC 内.20.直线AE 的方向向量22a b c AE +-=,直线BF 的方向向量46a b c BF ++=. 【分析】由已知线段所表示的空间向量,应用向量加减运算的几何意义求得AD 、AC ,即可求AE ,再由2EF FA =知3AE AF =,即可求BF . 【详解】在△BAD 中,BD b =,BA c =,则AD BD BA b c =-=-, 在△BAC 中,BC a =,BA c =,则AC BC BA a c =-=-, ∵在△DAC 中,E 是CD 的中点,∴222AD AC a b c AE ++-==,而2EF FA =,即236AE a b c AF +-==, ∴在△BAF 中,2466a b c a b c BF BA AF c +-++=+=+=. ∴直线AE ,BF 的方向向量分别为22a b c AE +-=、46a b c BF ++=. 21.()12AM a b c =++,()12A a b c N =++. 【分析】 利用空间向量的加法、剪发和数乘运算法则求解即可.【详解】AM AB BM =+()12AB BB BC '=++ ()12AB AA AC AB ⎡⎤'=++-⎣⎦ 111222AB AA AC '=++ ()12a b c =++. 12AN AB BB B C '''=++ 12AB AA BC '=++ ()12AB AA AC AB '=++- 1122AB AA AC '=++ ()12a b c =++. 22.(1)1122MN a b =-,++AC a b c =;(2)2π 【分析】 (1)运用空间向量的加减法可表示11111111++22MN MC C N D C C B ==,1++AC AB BC CC =,代入可得答案; (2)根据(1)的结论,利用空间向量的数量积运算求得0MN AC ⋅=,由空间向量垂直的条件可得答案.【详解】(1)因为111111111111++222222MN MC C N D C C B AB AD a b ===-=-,1++++AC AB BC CC a b c ==, 所以1122MN a b =-,++AC a b c =; (2)因为()11++22MN AC a b a b c ⎛⎫⋅=-⋅= ⎪⎝⎭ 2211111++2222212a a a b a c c b b b =--⋅⋅⋅-⋅ 22111111114+44+4544222222114422225=⨯⨯⨯⨯⨯⨯⨯--⨯⨯⨯-⨯⨯⨯⨯ 0=,所以MN AC ⊥,所以1AC 与MN 的夹角为2π.。