求轨迹方程的六种方法
- 格式:doc
- 大小:323.00 KB
- 文档页数:7
轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
求点的轨迹方程的六种常见方法点的轨迹方程是描述点在运动过程中所经过的路径的数学方程。
在数学和物理等领域,有许多方法可以推导和描述点的轨迹方程。
下面介绍六种常见的方法。
一、直角坐标系方法直角坐标系方法是最常见的一种方法,通常用于平面分析。
在直角坐标系下,点的位置可以用横坐标x和纵坐标y来表示。
如果已知点的坐标与时间的关系,可以通过方程联立或者曲线拟合的方法得到点的轨迹方程。
二、参数方程方法参数方程方法是一种将点的位置用参数表示的方法。
通过引入参数t,点的坐标可以用关于t的函数表示,如x=f(t)和y=g(t),这样就可以得到点的轨迹方程。
参数方程方法适用于描述直线、圆和其他曲线的方程。
三、极坐标系方法极坐标系方法是一种将点的位置用极径r和极角θ来表示的方法。
通过引入极径和极角的关系表达式,可以得到点的轨迹方程。
例如,对于圆的方程可以表示为r=f(θ),其中f(θ)是关于极角θ的函数。
四、矢量方程方法矢量方程方法是一种用矢量表示点的位置的方法。
通过引入位置矢量r(t),可以得到点的轨迹方程。
位置矢量r(t)通常用分量表示,如r=(x,y,z)。
矢量方程方法适用于描述曲线在三维空间中的轨迹。
五、微分方程方法微分方程方法是一种通过点的运动规律和动力学方程来推导轨迹方程的方法。
通过对点的位置向量或者其分量进行微分,并代入运动规律方程,可以得到点的轨迹方程。
微分方程方法适用于描述受力作用下点的运动。
六、变分原理方法变分原理方法是一种通过极小化或者极大化一些物理量来推导轨迹方程的方法。
通过对点的位置或路径的泛函进行变分,可以得到使泛函取得极值的轨迹方程。
变分原理方法适用于描述光的传播、质点在介质中的传播等问题。
综上所述,点的轨迹方程可以通过直角坐标系方法、参数方程方法、极坐标系方法、矢量方程方法、微分方程方法和变分原理方法等六种常见方法推导和描述。
不同的方法适用于不同的情况和问题,选择合适的方法可以更方便地求解轨迹方程。
求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。
学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程常用技法。
1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。
例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。
解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。
2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。
3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。
例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。
解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。
所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。
例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。
轨 迹 方 程求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。
1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法;例1、某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?【解析】设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5 ∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ◎◎双曲线的两焦点分别是1F 、2F ,其中1F 是抛物线1)1(412++-=x y 的焦点,两点A (-3,2)、B (1,2)都在该双曲线上.(1)求点1F 的坐标; (2)求点2F 的轨迹方程,并指出其轨迹表示的曲线.【解析】(1)由1)1(412++-=x y 得)1(4)1(2--=+y x ,焦点1F (-1,0). (2)因为A 、B 在双曲线上,所以||||||||||||2121BF BF AF AF -=-,|||22||||22|22BF AF -=-.①若||22||2222BF AF -=-,则||||22BF AF =,点2F 的轨迹是线段AB 的垂直平分线,且当y =0时,1F 与2F 重合;当y =4时,A 、B 均在双曲线的虚轴上. 故此时2F 的轨迹方程为x =-1(y ≠0,y ≠4).②若22||||2222-=-BF AF ,则24||||22=+BF AF ,此时,2F 的轨迹是以A 、B 为焦点,22=a ,2=c ,中心为(-1,2)的椭圆,其方程为14)2(8)1(22=-++y x ,(y ≠0,y ≠4) 故2F 的轨迹是直线x =-1或椭圆4)2(8)1(22-++y x 1=,除去两点(-1,0)、(-1,4) 评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。
)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
轨迹(曲线)方程的求法求轨迹方程问题是高中数学的一个难点,求轨迹方程的常用方法有:1)直接法;2)待定系数法;3)定义法;4)代入法;5)参数法;6)交轨法. 下面分别介绍以上六种方法:(1)直接法 —— 直接利用条件通过建立x 、y 之间的关系式f (x ,y )=0,是求轨迹的最基本的方法. 课标教材(人教版)²高中数学 选修2﹣1(以下所称教材都是指该教材)的《§2.1.2 求曲线的方程》中介绍了此法.直接法求轨迹(曲线)方程一般有五个步骤:① 建立适当的坐标系,设曲线上任意一点M 的坐标为(x ,y ); ② 写出点M 运动适合的条件P 的集合:P={M |P(M)}; ③ 用坐标表示条件P(M),列出方程 f (x ,y )=0; ④ 化方程 f (x ,y )=0 为最简形式;⑤ 证明以化简后的方程的解为坐标的点都是曲线上的点. 一般地,步骤(5)可省略,如有特殊情形,可以适当说明.教材推导圆锥曲线(椭圆、双曲线、抛物线)的标准方程,都是使用直接法. 教材中还配有大量练习题(如:教材P.37练习/3,习题2.1/A 组/2、3,B 组/1、2;P.41例3,P.42练习/4,P.47例6,P.49习题2.2 / B 组/3;P.59例5,P.62习题2.3 / B 组/3;P.74习题2.4 / B 组/3;P.80复习参考题/ A 组/10,B 组/5).例1. 如图所示,线段AB 与CD 互相垂直平分于点O ,|AB|=2a (a >0),|CD|=2b (b>0),动点P 满足|PA|²|PB|=|PC|²|PD|. 求动点P 的轨迹方程.解:以O 为坐标原点,直线AB 、CD 分别为x 轴、y 轴建立直角坐标系,则A (-a ,0),B (a ,0),C (0,-b ),D (0,b ), 设P (x ,y ),由题意知 |PA|²|PB|=|PC|²|PD|,∴22)(y a x ++²22)(y a x +-=22)(b y x ++²22)(b y x -+,化简得 x 2-y 2=222b a -.故动点P 的轨迹方程为 x 2-y 2=222b a -.【练习1】 1、已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN |²|MP |+MN ²NP =0,求动点P (x ,y )的轨迹方程.2、如图所示,过点P (2,4)作互相垂直的直线l 1、l 2.若l 1交x 轴于A ,l 2交y 轴于B ,求线段AB 中点M 的轨迹方程.(2)待定系数法 —— 当已知所求曲线的类型(如:直线,圆锥曲线等)求曲线方程,可先根据条件设出所求曲线的方程,再由条件确定方程中的系数(待定系数),代回所设方程即可.要注意设出所求曲线的方程的技巧.(如:教材P.40例1,P.42练习/2,P.46例5,P.48练习/3、4,P.49习题2.2/A 组/2、5、9;P.54例1,P.55练习/1,P.58例4,P.61练习/2、3,P.61习题2.3 / A 组/2、4、6,B 组/1;P.67练习/1,P.68例3,P.72练习/1,P.73习题2.4 / A 组/4、7;P.80复习参考题/ A 组/1).例2 根据下列条件,求双曲线的标准方程.(1)与双曲线41622y x -=1有公共焦点,且过点(32,2). (2)与双曲线16922y x -=1有共同的渐近线,且过点(-3,23); 解: (1)设双曲线方程为2222by a x -=1. 由题意易求c=25.∵双曲线过点(32,2), ∴()2223a -24b=1. 又 ∵a 2+b 2=(25)2, ∴解得 a 2=12,b 2=8.故 所求双曲线的方程为 81222y x -=1. (2)设所求双曲线方程为16922y x -=λ(λ≠0), 将点(-3,23)代入得λ=41,∴ 所求双曲线方程为16922y x -=41, 即49422y x -=1. 【练习2】 已知抛物线C 的顶点在原点,焦点F 在x 轴正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),但|AF|+|BF|=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.(3)定义法 —— 如果根据已知能够确定动点运动的条件符合某已知曲线的定义,则可由该曲线的定义直接写出动点轨迹方程.(如:教材P.49习题2.2/A 组/1、7,B 组/2;P.54例2,P.62习题2.3/A 组/5,B 组/2)例3. 已知动圆过()1,0,且与直线1x =-相切. (1) 求动圆圆心的轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设动圆圆心为M ,定点()1,0为F ,过点M 作直线1x =-的垂线,垂足为N ,由题意知: MF MN =即动点M 到定点F 与到定直线1x =-的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线, 其中()1,0F 为焦点,1x =-为准线,∴动圆圆心的轨迹方程为 x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+= △216160k k =->,01k k ∴<>或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=, 即()()21212110ky y y y --+=,整理得 2221212(1)()0k y y k y y k +-++=,∴ 2224(1)40k k k k k +-⋅+=, 解得4k =-或0k =(舍去), 又 40k =-<,∴ 直线l 存在,其方程为440x y +-=【练习3】 1、已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程.2、在△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0)且满足条件x =sinC -sinB=21sinA ,则动点A 的轨迹方程是 ( ) A. 2216a x -221516a y =1(y ≠0)B. 2216a y -22316a x =1(x ≠0)C. 2216a x -221516a y =1(y ≠0)的左支 D. 2216a x -22316ay =1(y ≠0)的右支(4)代入法(也叫相关点法或转移法) ——若动点P(x ,y )随另一动点Q(x 1,y 1)的运动而运动,并且Q(x 1,y 1)又在某已知曲线上运动,则求点P 的轨迹方程问题常用此法.代入法求轨迹(曲线)方程一般有以下几个步骤:① 设所求点P 的坐标为 (x ,y ) (称之为从动点),动点Q 的坐标为(x 1,y 1) (称之为主动点) ② 找出点P 与点Q 的坐标关系;③ 用从动点的坐标x 、y 的代数式表示主动点的坐标x 1、y 1; ④ 再将x 1、y 1代入已知曲线方程,即得要求的动点轨迹方程.(如:教材P.41例2,P.50习题2.2 / B 组/1;P.74习题2.4 / B 组/1)例4. 设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN =2MP ,PM ⊥PF ,当点P 在y 轴上运动时,求点N 的轨迹方程. 解设N (x ,y ),M (x 1,0),P (0,y 0),由MN =2MP 得(x -x 1,y )=2(-x 1,y 0),∴11022x x x y y -=-⎧⎨=⎩,即1012x x y y =-⎧⎪⎨=⎪⎩.∵PM ⊥PF ,PM =(x 1,-y 0),PF =(1,-y 0), ∴(x 1,-y 0)·(1,-y 0)=0,∴x 1+y 2=0. ∴-x +42y =0,即y 2 = 4x .故所求的点N 的轨迹方程是 y 2 = 4x .【练习4】 如图所示,已知P (4,0)是圆 x 2+y 2=36 内的一点,A 、B 是圆上两动点,且满足∠APB=90°,求矩形APBQ 的顶点Q 的轨迹方程.(5)参数法 ——当动点P (x ,y )的横坐标x 、纵坐标y 之间的关系不易直接找到时,可以考虑将x 、y 都用一个中间变量(参数)来表示,即得参数方程,再消去参数就可得到普通方程.例5. 如图所示,已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B. 设点M 是线段AB 的中点,求点M 的轨迹方程.解 方法一(参数法):设M 的坐标为(x ,y ).若直线CA 与x 轴垂直,则可得到M 的坐标为(1,1). 若直线CA 不与x 轴垂直,设直线CA 的斜率为k ,则直线CB 的斜率为-k1, 故直线CA 方程为:y =k(x -2)+2,令y =0得x =2-k2,则A 点坐标为(2-k2,0).CB 的方程为:y =-k1(x -2)+2,令x =0,得y =2+k2, 则B 点坐标为(0,2+k 2),由中点坐标公式得M 点的坐标为⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=-=+-=k k k k 112022112022y x ①, 消去参数k 得到x +y -2=0 (x ≠1), 又∵ 点M (1,1)在直线x +y -2=0上, 综上所述,所求轨迹方程为x +y -2=0.方法二(直接法)设M (x ,y ),依题意A 点坐标为(2x ,0),B 点坐标为(0,2y ).∵|MA|=|MC|, ∴22)2(y x x +-=22)2()2(-+-y x , 化简得x +y -2=0.方法三(定义法)依题意 |MA|=|MC|=|MO|,即:|MC|=|MO|,所以动点M 是线段OC 的中垂线,故由点斜式方程得到:x +y -2=0.(6)交轨法 —— 当所求轨迹上的动点是两动曲线的交点时,只要把两动曲线(族)的方程分别求出:0),,(=t y x f 与0),,(=t y x g(t 为参数),然后消去参数t ,即得所求轨迹方程.例6. 如图,过圆224x y +=与x 轴的两个交点A 、B 作圆的切线AC 、BD ,再过圆上任意一点H 作圆的切线,交AC 、BD 于C 、D 两点,设AD 、BC 的交点为R ,求动点R 的轨迹E 的方程.解:设点H 的坐标为(0x ,0y ),则20x +20y =4 由题意可知0y ≠0,且以H 为切点的圆的切线的斜率为0x y -, ∴切线CD 方程为 y -0y =0x y -(x -0x ),展开得 0x x +0y y =20x +20y =4, 即 以H 为切点的圆的切线方程为 0x x +0y y =4,∵A (-2,0),B (2,0),将x =±2代人0x x +0y y =4 可得 点C 、D 的坐标分别为C (-2,0042x y +),D (2,042x y -), 则直线AD 、BC 的方程分别为AD l :002424y x x y +=- …… ①, BC l :002424y x x y -=+- …… ②将两式相乘并化简可得动点R 的轨迹E 的方程为 2244x y +=,即2214x y += 解法二:设点R 的坐标为(0x ,0y );直线AR 的方程分别为y =002y x +(x +0x ),与直线BD 的方程x =2联立,解得D (2,0042y x +),同法可得C (-2,0042y x --),则直线CD 斜率为002024x y x -, ∴直线CD 的方程为y -0042y x --=002024x yx -(x +2)∵直线CD 与⊙O 相切, ∴圆心O 到直线CD 的距离等于圆半径2,000244x y y -=2,化简得 (20x -4)2+420x 20y =(420y )2整理得 (20x -4)2+420y (20x -4)=0, ∴20x -4=0 (舍去)或20x -4+420y =0即 动点R 的轨迹E 的方程为2244x y +=,即2214x y +=总结:求轨迹方程的方法:(1)求单个动点的轨迹问题,用直接法 或待定系数法 或定义法; (2)求两个动点的轨迹问题,用代入法;(3)求多个动点的轨迹问题,用参数法 或交轨法。
求轨迹方程问题—6大常用方法知识梳理:(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。
2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。
4. 代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。
5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。
6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。
来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。
3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。
中学数学解题方法讨论-------求轨迹方程的方法道县五中 周昌雪内容提要:求轨迹方程是每年高考的必考内容且分值较高、难度较大,所以能否正确求轨迹方程对高考的成败至关重要。
本篇论文归纳了六种常用的求轨迹方程的方法。
曲线形状明确且便于使用标准形式的圆锥曲线轨迹问题,一般用待定系数法求方程;直接将动点满足的几何等量关系“翻译”成动点x ,y ,得方程,即为所求动点的轨迹方程,用直译法求解;若动点运动的几何条件恰好与圆锥曲线的定义吻合,可直接根据定义建立动点的轨迹方程,用定义法求解可先确定曲线的类型与方程的具体结构式,再用待定系数法求之;当所求轨迹上的动点P 随着曲线f(x,y)=0而变动时,且Q 的坐标可且动点P 的坐标(x 0,y 0)代入动点Q 的曲线方程即得曲线P 的轨迹方程,这就是所谓的轨迹代入法,即相关点法;若动点坐标满足的等量关系不易直接找到,可选取与动点坐标有密切关系的量(如角、斜率k 、比值等)作参数t ,根据已知条件求出动点的参数式方程,然后消去参数t 即得动点的轨迹方程,这种求轨迹的方程的方法叫参数法;如果动点是某两条动曲线的交点,则可联立两动曲线方程,消去方程中的有关参数,即为所求动点的轨迹方程,“交轨法”实际上也属于参数法,但它不拘于求出动点的坐标后再消参。
曲线与方程包括求曲线的方程和由方程研究曲线的性质两个方面的内容,每年必考。
求曲线方程的一般思路是:在平面直角分会坐标系中找出动点P (x,y )的纵坐标y 和横坐标x 之间的关系式(),0f x y =,即为曲线方程,其核心步骤是建系、设点、列式、代入、化简、检验。
检验即为由曲线上的点所具备的条件确定x,y 的范围。
、交轨法等求之。
求曲线方程有两类基本题型:其一是曲线形状明确且便于使用标准形式,此时用待定系数法求方程;另一类是曲线形状不明确,或不便用标准形式表示,这时常用直译法、定义法、思恋法、参数法由方程研究曲线,特别是圆锥曲线的几何性质问题常化为等式求解,这时要加强等价转化思想的训练。
求轨迹在求出轨迹方程后必须说明轨迹的形状。
一、用待定系数法求轨迹方程曲线形状明确且便于使用标准形式的圆锥曲线轨迹问题,一般用待定系数法求方程。
例1 已知椭圆2251470x y +=和直线:90l x y -+=,在直线l 上任取一点P ,过P 且以已知椭圆的焦点为焦点作椭圆,求作出的所有椭圆中长轴最短的椭圆的方程。
解 已知椭圆的焦点()()123,0F 30F -和,,从而设所求椭圆的方程为222219x y a a +=-。
若过l 上的P 点,且椭圆长轴最短,由平面几何知识与椭圆相切。
把直线方程代入椭圆方程,利用判别式等于0,得245a =,从而椭圆方程为2214536x y +=.例2 已知双曲线C 的两个焦点为12,F F ,直线L 过点2F ,与线段12F F 夹角为,α且 tan α=2,与线段12F F 垂直平分的交点为P ,线段2PF 与双曲线的交点为Q ,且22PQ QF =,求双曲线方程。
解 取12F F 所在直线为x 轴,12F F 的中垂线为Y 轴建立直角坐标系,设双曲线方程为22221x y a b-=,设()()12,0,,0F c F c -,由题意直线L 的方程为)y x c =-,令0x =,得点P 的坐标为0,2⎛⎫- ⎪ ⎪⎝⎭,又22P Q Q F =,由定比分点坐标公式可得点Q 坐标2,36c ⎛⎫-⎪ ⎪⎝⎭. 因为点Q 在双曲线上,所以22224211936c c a b-=, ① 又222c a b =+, ② 由①、②消去c ,化简整理得421641210b b a a ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭解得b a =③又由已知有ab =④由③、④得a=1,b=,则所求双曲线方程为2213y x -=。
又由对称性知,双曲线2213x y -=也适合。
故所求双曲线方程为2213y x -=或2213x y -=二、用直译法求轨迹方程直接将动点满足的几何等量关系“翻译”成动点x ,y ,得方程,即为所求动点的轨迹方程,用直译法求解,列式容易,但在对等式等价变形与化简过程中应特别留心是否需要讨论。
例3 已知直角任何坐标平面上的点Q(2,0)和圆O:x 2+y 2=1,动点M 到圆O 的切线长与MQ 的比等于常数λ(λ>0)。
求动点M 的轨迹方程,并说明它表示什么曲线。
解 设直线MN 切圆于点N ,则动点M 组成的集合是P={M ∣∣MN ∣=λMQ }.设M(x,y)=()()2222214140x y x λλλ-+-++=经检验,坐标适合这个方程的点都属于集合P ,故这个方程为所求,当λ=1时,它表示一条直线,当λ≠1时,它表示一个圆。
例4 求与y 轴相切,并且和圆2240x y x +-=外切的圆的圆心的轨迹方程.解 由2240x y x +-=,有()22222x y -+=.设动圆的圆心P (x,Y ),由题意记A (2,0),则2PA x =+,2x =+,化简得244y x x =+,当0x ≥时,28;y x =当x ﹤0时,y=0.综上,所求圆心的轨迹方程为28y x =(x ≥0)或y=0(x <0)三、用定义法求轨迹方程若动点运动的几何条件恰好与圆锥曲线的定义吻合,可直接根据定义建立动点的轨迹方程,用定义法求解可先确定曲线的类型与方程的具体结构式,再用待定系数法求之。
例5 如图所示,直线1l 和2l 相交于M ,12l l ⊥,点1N l ∈,以A 、B 为端点的曲线C 上的任一点到2l 的距离与到点N 的距离相等,若△AMN 为锐角三角形,AM =3AN =,且6AB =,建立适当的坐标系,求曲线段C 的方程。
M N 1l解 如图所示,建立坐标系,以1l 和2l 为轴,线段MN 的垂直平分线为y 轴,点 O 为坐标原点建立直角坐标系。
依题意知:曲线段C 是以点 N 为焦点,以2l 为准线的抛物线的一段,其中A 、B 分别为C 的端点,设曲线段C 的方程为y 2=2px(p>0,x A ≤x ≤x B ,y>0)其中P=|MN |,M(-2P ,0),N(2P,0),由AM =,3AN =得22217,2922A A A A p p x px x px ⎛⎫⎛⎫++=-= ⎪ ⎪⎝⎭⎝⎭,联立解得1,4 2.2A A x p x P ====或△AMN 是锐角三角形,2A Px ∴>,舍去2,2A x P == 1,4A x P ∴== 又点B 在双曲线段上C 上,所以42B P x BN =-=,因此所求的曲线段C 的方程为y 2=8x(1≤x ≤4,y>0)例6 已知圆C ()22125x y ++=内一点A (1,0),Q 点为圆C 上任意一点,线段CQ 连线交于点M ,求点M 的轨迹方程。
解 连结AM ,点M 在线段AQ 的垂直平分线上,则AM=MQ,55CM MQ CM MA +=∴+=故点M(x,y)到点C (-1,0)和点A (1,0)的距离之和是常数5,且5>2,所以点P 的轨迹是一个以A 、C 为焦点的椭圆,∵2a=5, 2c=2, ∴222214b ac =-=, ∴点M 的轨迹方程为221252144x y +=. 四、用代入法求轨迹方程当所求轨迹上的动点P 随着曲线f(x,y)=0而变动时,且Q 的坐标可且动点P 的坐标(x 0,y 0)代入动点Q 的曲线方程即得曲线P 的轨迹方程,这就是所谓的轨迹代入法,即相关点法。
例7 抛物线x 2=4x 的焦点为F ,过点M(0,-1)作直线l 交抛物线于不同两点A 、B ,以AF 、BF为邻边作平行四边形FARB ,求顶点R 的轨迹方程。
解 设R(x,y),平行四边形FARB 的对角线的点为P(x 0,y 0),F(0,1)由中点坐标公式得001,22x y x y +==, 设A(x 1,y 1),B(x 2,y 2)则x 1≠x 2, 且x 12=4y 1,x 22=4y 2,,相减得x 12-x 22=4(y 1-y 2), 从而02AB x k =,又A 、P 、B 、M 四点共线,且001PM y k x +=,由K AB =K PM 得x 02=2(y 0+1)把001,22x y x y +==代入并整理得x 2=4y+12 注:动点是直线被方程圆锥曲线截得的弦中点,只要通过代点作差并以弦的斜率作为过渡,即可获得动点的轨迹方程,这事实上就是中点弦问题的处理方法。
五、用参数法求轨迹方程若动点坐标满足的等量关系不易直接找到,可选取与动点坐标有密切关系的量(如角、斜率k 、比值等)作参数t ,根据已知条件求出动点的参数式方程,然后消去参数t 即得动点的轨迹方程,这种求轨迹的方程的方法叫参数法。
例9 给出定点A(a,0)(a >0)和直线l :x=-1,B 是直线l 上的动点,∠BOA 的平分线交AB 于点C ,求点C 的轨迹方程,并讨论方程表示的曲线类型与a 的关系解 设B(-1,t),C(x,y),则OB =C 分BA 所成的比为11BC OBx y CA OA a a x y aλ+-===∴==--消去t 并整理得点C 的轨迹方程为(1-a)x 2-2ax+(1+a)y 2=0(0≤x <a) 当a=1时,轨迹方程为y 2=x(0≤x <a),它表示抛物线段;当a1≠时,轨迹方程可化为 222221111a x y a a a a a ⎛⎫- ⎪-⎝⎭+=⎛⎫⎪--⎝⎭(0≤x <a). 故当a >1时,方程表示双曲线一支上的弧段,当0<a <1时,表示方程椭圆弧段。
例10 已知点P 在直线x=2上移动,直线l 通过原点且和OP 垂直,通过点 A (1,0)及点P 的直线m 和直线l 相交于Q ,求点Q 的轨迹方程。
解 如右图所示,设OP 所在直线的斜率为k ,则点P 的坐标为(2由l OP ⊥,得直线的方程为x+ky=0. ① 易得直线m 的方程为y=2k(x-1). ②因为点Q (x,y )是直线l 和直线m 的交点,X所以由①②联立,消去k ,得点Q 的轨迹方程为2x2+y2-2x=0(x ≠1). Q六、用交轨法求轨迹方程 m如果动点是某两条动曲线的交点,则可联立两动曲线方程,消去方程中的有关参数,即为所求动点的轨迹方程。
“交轨法”实际上也属于参数法,但它不拘于求出动点的坐标后再消参。
例11 设点A 和B 为抛物线24(0)y px p =>上原点以外的两个动点,已知OA ⊥OB 、OM ⊥AB ,求点M 的轨迹,并说明它表示什么曲线。
解 设M(x,y),直线AB 方程为y=kx+b ,把它代入y 2=4px ,消去x 得ky 2-4py+4pb=0,从而124pby y k=,因此2122b x x k =. 由OA ⊥OB 得x 1x 2+y 1y 2=0,即b=-4kp ,所以y=kx+b=k(x-4p), 又OM ⊥AB,故x k y=-. 消去k 得点M 的轨迹方程x 2+y 2-4px=0(x ≠0).例12 已知点O 、点B 为二定点,1OB =,点P 是线段OB 上一点,分别以OP 、OB 为斜边在线段OB 的同一侧作等腰三角形OCP 和ODB 。