四川省泸州市2018届高考数学第一次模拟考试理 精品推荐
- 格式:doc
- 大小:598.51 KB
- 文档页数:4
泸州市2017-2018届高三第一次教学教学质量诊断性考试数学(理工类)一、选择题:本大题共有10个小题,每小题5分,共50分.每小题给出的四个选项中,只有一项是符合要求的. 1.已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则()U M N ð=A .{5,7}B .{2,4}C .{1,3,5,6,7}D .{2,4,8}2. 下列命题中的假命题是A .x ∀∈R ,120x -> B .x *∀∈N ,2(1)0x -> C .x ∃∈R ,lg 1x < D .x ∃∈R ,tan 2x =3. 12lg 2lg25-的值为 A .1 B .2 C .3 D .44.函数()211sin f x x x ⎛⎫=- ⎪⎝⎭的图象大致为A .B .C .D .5.△ABC 中,若 2AD DB = ,13CD CA CB λ=+,则λ=A .13B .23C .23-D .13-6.将函数()()sin 2f x x θ=+(其中22ππθ-<<)的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若函数()(),f x g x 的图象都经过点P ⎛ ⎝⎭,则的值可以是A .53πB .6πC .2πD .56π7.设数列{}n a 是首项大于零的等比数列,则“12a a <”是“数列{}n a 是递增数列”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 8. 若曲线()12f x x =在点()(),a f a 处的切线与两条坐标轴围成的三角形的面积为18,则a =A. 64B. 32C. 16D. 89.一支人数是5的倍数且不少于1000人的游行队伍,若按每横排4人编队,最后差3人;若按每横排3人编队,最后差2人;若按每横排2人编队,最后差1人.则这只游行队伍的最少人数是 A .1025 B .1035 C .1045 D .105510.定义在R 上的函数()f x 满足()221,11(4)(),()log 22,1 3.x x f x f x f x x x ⎧-+-⎪+==⎨--+<⎪⎩≤≤≤,若关于x 的方程()0f x ax -=有5个不同实根,则正实数a 的取值范围是A .11(,)43B .11(,)64C.1(16)6-D.1(,86-二、填空题:本大题共5小题,每小题5分,共25分.11.复数22(56)(215)i m m m m +++--(i 是虚数单位)是纯虚数,则实数m 的值为 .12.等比数列{}n a 中,若公比4q =,且前3项之和等于21,则该数列的通项公式n a = . 13.函数()log a f x x=(其中01a <<),则使314f ⎛⎫< ⎪⎝⎭成立的a 的取值范围是 .14. 设()f x 是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意[],2x a a ∈+,不等式()()31f x a f x +≥+恒成立,则实数a 的取值范围是 . 15.已知集合()()()()(){}22|,A f x fx f y f x y f x y x y R =-=+-∈,有下列命题;①若()1,01x f x x ≥⎧=⎨-<⎩,则()f x A ∈;②若()f x kx =,则()f x A ∈;③若()f x A ∈,则()y f x =可为奇函数;④若()f x A ∈,则对任意不等实数12,x x ,总有()()1212f x f x x x-<-成立。
四川省泸县第五中学2018届高考模拟考试数学(理科)一.选择题:(本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.已知集合⎭⎬⎫⎩⎨⎧≥==0,)31(x y y P x ,{})24ln(2x x y x Q -==,则P ∩Q=( )A .(0,1]B .∅C .(0,2)D .{0}2.已知i m m m z )23(2222+-+-=(m ∈R ,i 为虚数单位),则“m =﹣1”是“z 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.如图,正方形ABCD 内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是( ) A .14 B .12 C .8π D .4π4.已知双曲线C 的中心为原点,点F 是双曲线C 的一个焦点, 点F 到渐近线的距离为1,则C 的方程为( )A .221x y -= B .2212y x -= C. 22123x y -= D .22133x y -= 5. 某几何体的三视图如图(1)所示,则该几何体中最短棱和最长棱所在直线所成角的余弦值为( )A6.6)2)(1(--x x 的展开式中3x 的系数为( )A .400-B .80 C.80- D .4007.为了提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设原信息为123a a a ,传输信息为11232h a a a h ,其中112h a a =⊕,213h h a =⊕,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=.例如:原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息出错的是( ) A .01100 B .11010 C .10110 D .11000 8.设n S 是等差数列{}n a 的前n 项和,且111313a S ==,则9a =( ) A .6 B .7 C .8 D .99.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( )A .7B .6C .5D .410.若3x =是函数()()21xf x x ax e =++的极值点,则()f x 的极大值等于( )A .-1B .3C .32e -D .16e -11.棱长为2的正八面体(八个面是全等的等边三角形),球O 是该正八面体的内切球,球O 的表面积为( )A .83π B .43π D 12.如图,已知梯形ABCD 中2AB CD =,点E 在线段AC 上,且25AE AC =,双曲线过C D E 、、三点,以A B 、为焦点; 则双曲线离心率e 的值为( )A .32 B 2D .2 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知138a =,231()2b =,则2log ()ab = .14.已知焦点在坐标轴上,中心是原点的双曲线的一条渐近线方程为2y x =,且经过点()2,3,则双曲线的焦点到渐近线的距离等于 .15.函数()2sin f x x x π=+,则不等式()212f x -≤-≤的解集为 . 16.设函数()(12)xf x e x ax =-+,其中1a <,若存在唯一负整数0x ,使得0()f x a >,则实数a 的取值范围是三.解答题(共70分.解答应写出文字说明、证明过程或演算步骤)17.已知数列{}n a 满足132n n a a +=+,且12a =. (Ⅰ)求证:数列{}1n a +是等比数列;(Ⅱ)数列{}n b 满足3log (1)n n b a =+,判断数列2211{}n n b b +的前n 项和n T 与12的大小关系,并说明理由.18.第23届冬季奥运会于2018年2月9日至2月25日在韩国平昌举行,期间正值我市学校放寒假,寒假结束后,某校工会对全校教职工在冬季奥运会期间每天收看比赛转播的时间作了一次调查,得到如下频数分布表:(Ⅰ)若将每天收看比赛转播时间不低于3小时的教职工定义为“体育达人”,否则定义为“非体育达人”,请根据频数分布表补全22⨯列联表:并判断能否有90%的把握认为该校教职工是否为“体育达人”与“性别”有关;(II)在全校“体育达人”中按性别分层抽样抽取6名,再从这6名“体育达人”中选取2名作冬奥会知识讲座.记其中女职工的人数为ξ,求的ξ分布列与数学期望. 附表及公式:22()()()()()n ad bc K a b c d a c b d -=++++.19.如图,D 是AC 的中点,四边形BDEF 是菱形,平面BDEF ⊥平面ABC ,60FBD ∠=,AB BC ⊥,AB BC ==(Ⅰ)若点M 是线段BF 的中点,证明:BF ⊥平面AMC ; (II)求平面AEF 与平面BCF 所成的锐二面角的余弦值.20.已知椭圆C :22221(0)x y a b a b +=>>的左右焦点分别为1F ,2F ,左顶点为A ,上顶点为(0,1)B ,1ABF ∆的面积为12. (Ⅰ)求椭圆C 的方程;(II)设直线l :(1)y k x =+与椭圆C 相交于不同的两点M ,N ,P 是线段MN 的中点.若经过点2F 的直线m 与直线l 垂直于点Q ,求1PQ FQ ⋅的取值范围.21.已知函数2()ln f x a x =+且()f x a x ≤. (Ⅰ)求实数a 的值; (II)令()()xf x g x x a=-在(,)a +∞上的最小值为m ,求证:6()7f m <<.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)在直角坐标系xOy 中,圆C 的参数方程(φ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (Ⅰ)求圆C 的极坐标方程; (II)直线l 的极坐标方程是2ρsin (θ+)=3,射线OM :θ=与圆C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.23.选修4-5:不等式选讲 已知函数()23f x x x =--+. (Ⅰ)求不等式()3f x ≤的解集;(II)若不等式2()6f x a a <-解集非空,求实数a 的取值范围.四川省泸县第五中学2018届高考模拟考试数学(理科)答案一.选择题1-12 ACCAD DDBBD AB 二.填空题 13.31 14.24 15.[]2,0 16.253[,)32e e17.(Ⅰ)由题意可得11333(1)n n n a a a ++=+=+,即1(1)3(1)n n a a ++=+,又1130a +=≠,故数列{1}n a +是以3为首项,3为公比的等比数列;(Ⅱ)由(Ⅰ)可知13n n a +=,即33log (1)log 3n n n b a n =+==. 故)121121(21)12()12(1)12(211122+--=+⋅-<+⋅=+n n n n n n b b n n∴21)1211(21)121121(21)5131(21)311(21<+-=+--++-+-<n n n T n ,故12n T < 18.解:(1)由题意得下表:2k 的观测值为2120(1200600)70506060-⨯⨯⨯242.7067=>.所以有90%的把握认为该校教职工是“体育达人”与“性别”有关.(2)由题意知抽取的6名“体育达人”中有4名男职工,2名女职工,所以ξ的可能取值为0,1,2.且2426(0)C P C ξ==62155==,114226(1)C C P C ξ==815=,2226(2)C P C ξ==115=,所以ξ的分布列为()01515E ξ=⨯+⨯215153+⨯==.19.解:( 1)连接MD ,FD .∵四边形BDEF 为菱形,且60FBD ∠=, ∴DBF ∆为等边三角形.∵M 为BF 的中点,∴DM BF ⊥.∵AB BC ⊥,AB BC ==D 是AC 的中点, ∴BD AC ⊥. ∵平面BDEF平面ABC BD =,平面ABC ⊥平面BDEF ,AC ⊂平面ABC ,∴AC ⊥平面BDEF .又BF ⊂平面BDEF ,∴AC BF ⊥. 由DM BF ⊥,AC BF ⊥,DM AC D =,∴BF ⊥平面AMC .(2)设线段EF 的中点为N ,连接DN .易证DN ⊥平面ABC .以D 为坐标原点,DB ,DC ,DN 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.则(0,1,0)A -,1(,0,)22E -,1(,0,22F ,(1,0,0)B ,(0,1,0)C .∴1(2AE =-,(1,0,0)EF =,1(2BF =-,(1,1,0)BC =-. 设平面AEF ,平面BCF 的法向量分别为111(,,)m x y z =,222(,,)n x y z =.由00AE m EF m ⎧⋅=⎪⎨⋅=⎪⎩1111102102x y z x ⎧-++=⎪⎪⇒⎨⎪=⎪⎩.解得112y z =-. 取12z =-,∴2)m =-.又由00BC n BF n ⎧⋅=⎪⎨⋅=⎪⎩222201022x y x z -+=⎧⎪⇒⎨-+=⎪⎩解得22y =. 取21z =,∴(3,3,1)n =. ∵cos ,m n <>m n m n⋅=17==.∴平面AEF与平面BCF 所成的锐二面角的余弦值为17.20.解:(1)由已知,有1b =. 又111()22ABF S a c b ∆=-=,∴1a c -=. ∵222a b c =+, ∴a =∴椭圆C 的方程为2212x y +=.(2)①当0k =时,点P 即为坐标原点O ,点Q 即为点2F ,则1PQ =,12FQ =. ∴12PQ FQ ⋅=. ②当0k ≠时,直线l 的方程为(1)y k x =+. 则直线m 的方程为1(1)y x k=--,即10x ky +-=. 设11(,)M x y ,22(,)N x y .联立方程22(1)12y k x x y =+⎧⎪⎨+=⎪⎩,消去y ,得222(12)4k x k x ++2220k +-=. 此时28(1)0k ∆=+>.∴2122412k x x k -+=+,1212(2)y y k x x +=++2212k k =+. ∴2222(,)1212k kP k k-++. ∵PQ 即点P 到直线m 的距离,∴PQ =2=.又1FQ 即点1F 到直线m的距离,∴1FQ =.∴21222(13)(12)(1)k PQ FQ k k +⋅=++. 令213(1)k t t +=>,则213t k -=. ∴118(12)(2)tPQ FQ t t ⋅=++1812()5t t=++182225<=⨯+. 即0k ≠时,有102PQ FQ <⋅<. 综上,可知1PQ FQ ⋅的取值范围为(0,2].21. 解:(1)法1:由题意知:2ln a x a x +≤恒成立等价于2ln 0a at t -+≤在0t >时恒成立,令()2ln h t a at t =-+,则22'()ath t a t t-=-=, 当0a ≤时,'()0h t >,故()h t 在(0,)+∞上单调递增, 由于(1)0h =,所以当1t >时,()(1)0h t h >=,不合题意.当0a >时,2'()a t a h t t ⎛⎫-- ⎪⎝⎭=,所以当20t a <<时,'()0h t >;当2t a>时,'()0h t <,所以()h t 在20,a ⎛⎫ ⎪⎝⎭上单调递增,()h t 在2,a ⎛⎫+∞ ⎪⎝⎭上单调递减,即max 2()h t h a ⎛⎫= ⎪⎝⎭22ln 22ln a a =-+-.所以要使()0h t ≤在0t >时恒成立,则只需max ()0h t ≤, 亦即22ln 22ln 0a a -+-≤,令()22ln 22ln a a a ϕ=-+-,则22'()1a a a aϕ-=-=, 所以当02a <<时,'()0a ϕ<;当2a >时,'()0a ϕ>,即()a ϕ在(0,2)上单调递减,在(2,)+∞上单调递增.又(2)0ϕ=,所以满足条件的a 只有2, 即2a =.法2:由题意知:2ln a x a x +≤恒成立等价于2ln 0a at t -+≤在0t >时恒成立,令()2ln h t a at t =-+,由于(1)0h =,故2ln 0a at t -+≤()(1)h t h ⇔≤, 所以(1)h 为函数()h t 的最大值,同时也是一个极大值,故'(1)0h =.又22'()at h t a t t -=-=,所以2a =, 此时2(1)'()t h t t-=,当01t <<时,'()0h t >,当1t >时,'()0h t <,即:()h t 在(0,1)上单调递增;在(1,)+∞上单调递减.故2a =合题意.(2)由(1)知()()xf x g x x a =-22ln (2)2x x x x x +=>-, 所以22(2ln 4)'()(2)x x g x x --=-, 令()2ln 4s x x x =--,则22'()1x s x x x -=-=, 由于2x >,所以'()0s x >,即()s x 在(2,)+∞上单调递增;又(8)0s <,(9)0s >, 所以0(8,9)x ∃∈,使得0()0s x =,且当02x x <<时,()0s x <;当0x x >时,()0s x >, 即()g x 在0(2,)x 上单调递减;在0(,)x +∞上单调递增.所以min 0()()g x g x =000022ln 2x x x x +=-2000022x x x x -==-.(∵002ln 4x x =-) 即0m x =,所以0()()f m f x =0022ln 2(6,7)x x =+=-∈,即6()7f m <<.22.解:(I )利用cos 2φ+sin 2φ=1,把圆C 的参数方程为参数)化为(x ﹣1)2+y 2=1,∴ρ2﹣2ρcos θ=0,即ρ=2cos θ. (II )设(ρ1,θ1)为点P 的极坐标,由,解得. 设(ρ2,θ2)为点Q 的极坐标,由,解得. ∵θ1=θ2,∴|PQ |=|ρ1﹣ρ2|=2.∴|PQ |=2.23.解:(Ⅰ)由()233f x x x =--+≤可化为:3233x x x <-⎧⎨-+++≤⎩或32233x x x -≤≤⎧⎨-+--≤⎩或2233x x x >⎧⎨---≤⎩解得:x ∈∅或22x -≤≤或2x >,所以,不等式解集为[)2,-+∞.(Ⅱ)因为()23(2)(3)5f x x x x x =--+≤--+= 所以5()5f x -≤≤,即()f x 的最小值为5-, 要不等式2()6f x a a <-解集非空,需2min ()6f x a a <-, 从而2650a a -+>,解得1a <或5a >,所以a 的取值范围为()(),15,-∞+∞U .。
四川省泸州市泸州高中高2018届高考模拟考试理科数学第Ⅰ卷(共60分)一.选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数的共轭复数为,且(是虚数单位),则在复平面内,复数对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】分析:利用复数的运算法则可得,z,利用几何意义即可得出.详解:由,可得∴=,即复数对应的点位于第一象限.故选:A点睛:本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.2. 设集合,己知,那么的取值范围是()A. B. C. D.【答案】C【解析】分析:根据集合的定义与性质,即可求出的取值范围.详解:∵集合∴集合∵集合,且∴故选C.点睛:本题考查了交集的定义与应用问题,意在考查学生的计算求解能力.3. 阅读如下框图,运行相应的程序,若输入的值为10,则输出的值为()A. 0B. 1C. 3D. 4【答案】C【解析】分析:由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,可得答案详解:当n=10时,不能被3整除,故n=9,不满足退出循环的条件;当n=9时,能被3整除,故n=3,满足退出循环的条件;故输出的n=3,故选:C.点睛:本题的实质是累加满足条件的数据,可利用循环语句来实现数值的累加(乘)常分以下步骤:(1)观察S的表达式分析,确定循环的初值、终值、步长;(2)观察每次累加的值的通项公式;(3)在循环前给累加器和循环变量赋初值,累加器的初值为0,累乘器的初值为1,环变量的初值同累加(乘)第一项的相关初值;(4)在循环体中要先计算累加(乘)值,如果累加(乘)值比较简单可以省略此步,累加(乘),给循环变量加步长;(5)输出累加(乘)值.4. 已知函数是上的奇函数,则()A. 5B. -5C. 7D. -7【答案】A【解析】∵函数是上的偶函数,∴故选:B5. 设,是空间中不同的直线,,是不同的平面,则下列说法正确的是()A. ,,则B. ,,,则C. ,,,,则D. ,,则【答案】D【解析】分析:在A 中,a∥或a⊂;在B中,a与b平行或异面;在C中,与相交或平行;在D中,由面面平行的性质定理得a∥.详解:由a,b是空间中不同的直线,,是不同的平面,知:在A 中,a∥b,b⊂,则a∥或a⊂,故A错误;在B中,a⊂,b⊂,∥,则a与b平行或异面,故B错误;在C中,a⊂,b⊂,∥,b∥β,则与相交或平行,故C错误;在D中,∥,a⊂,则由面面平行的性质定理得a∥,故D正确.故选:D.点睛:本题考查线面位置关系的判断,考查空间想象能力,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.6. 已知函数在处取得最大值,则函数的图像()A. 关于点对称B. 关于点对称C. 关于直线对称D. 关于直线对称【答案】A【解析】∵函数在处取得最大值,∴,解得,∴。
四川省泸州市2018-2019学年高三上学期理数第一次教学质量诊断性考试试卷一、单选题 (共12题;共12分)1.(1分)已知集合A={(x,y)|y=−x+2},B={(x,y)|y=2x},则A∩B元素的个数为()A.0B.1C.2D.32.(1分)命题“ ∀x∈R,e x>x+1(e是自然对数的底数)”的否定是()A.不存在,使B.,使C.,使D.,使3.(1分)已知函数f(x)=tanx1−tan2x,则函数f(x)的最小正周期为()A.B.C.D.4.(1分)设a=(12)13,b=(13)12,c=ln(3π),则下列关系正确的是()A.B.C.D.5.(1分)函数f(x)=xcosx−sinx的图象大致为()A.B.C.D.6.(1分)若l,m是两条不同的直线,m垂直于平面α,则“ l⊥m”是“ l//α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.(1分)正数a,b,c满足3a=4b=6c,则下列关系正确的是()A.B.C.D.8.(1分)在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的表面积为()A.B.C.D.9.(1分)已知函数f(x)=Asin(ωx+φ)(A>0,|φ|<π2)的部分图象如图所示,将函数y=f(x)的图象上所有点的横坐标缩短为原来的14,纵坐标不变,再将所得图象上所有点向右平移θ(θ>0)个单位长度,得到的函数图象关于直线x=5π6对称,则θ的最小值为()A.B.C.D.10.(1分)《周髀算经》中给出了弦图,所谓弦图是由四个全等的直角三角形和中间一个小正方形拼成一个大的正方形,若图中直角三角形两锐角分别为α,β,且小正方形与大正方形面积之比为9:25,则cos(α−β)的值为()A.B.C.D.11.(1分)某几何体的三视图如图所示,则该几何体的体积是()A .B .C .D .12.(1分)已知函数 f(x)=e x−1−alnx +(a −1)x +a(a >0) 的值域与函数 f(f(x)) 的值域相同,则 a 的取值范围为( )A .B .C .D .二、填空题 (共4题;共4分)13.(1分)使不等式 log 12(x −2)>0 成立的 x 的取值范围是 .14.(1分)在 ΔABC 中,角 A , B , C 所对的边分别为 a , b , c ,若 asinA =csinC +(a −b)sinB ,则角 C 的大小为 .15.(1分)已知函数 f(x)={2−x +1,x ≤0−√x,x >0,则 f(x +1)−9≤0 的解集为 . 16.(1分)长方体 ABCD −A 1B 1C 1D 1 中, AB =AA 1=2AD , E 是 DD 1 的中点, BF =C 1K =14AB ,设过点 E 、 F 、 K 的平面与平面 AC 的交线为 l ,则直线 l 与直线 A 1D 1 所成角的正切值为 .三、解答题 (共7题;共14分)17.(2分)在 ΔABC 中,角 A , B , C 所对的边分别是 a , b , c ,已知 a =6 , cosA =18 .(1)(1分)若 b =5 ,求 sinC 的值;(2)(1分)ΔABC 的面积为 15√74,求 b +c 的值.18.(2分)已知函数 f(x)=ax −2sinx +xcosx .(1)(1分)求曲线 y =f(x) 在 x =π 处的切线在 y 轴上的截距;(2)(1分)若函数 f(x) 在区间 [0,π2] 上是增函数,求实数 a 的取值范围.19.(2分)如图,在平面直角坐标系 xOy 中,点 A(x 1,y 1) 、 B(x 2,y 2) 都在单位圆 O 上, ∠xOA =α ,且 α∈(π3,π2) .(1)(1分)若 sin(α+π6)=1314,求 x 1 的值;(2)(1分)若 ∠AOB =π3 ,求 y =x 12+y 22 的取值范围. 20.(2分)如图,在四棱锥 P −ABCD 中,平面 PBC ⊥ 平面 ABCD ,底面 ABCD 是平行四边形,且 ∠BCD =π4 , PD ⊥BC .(1)(1分)求证: PC =PD ;(2)(1分)若底面 ABCD 是菱形, PA 与平面 ABCD 所成角为 π6 ,求平面 PAD 与平面PBC 所成锐二面角的余弦值.21.(2分)已知函数 f(x)=(x −a)lnx +12x(a >0) .(1)(1分)若 f′(x) 是 f(x) 的导函数,讨论 g(x)=f′(x)−x −alnx 的单调性;(2)(1分)若 a ∈(12e,2√e) ( e 是自然对数的底数),求证: f(x)>0 .22.(2分)在平面直角坐标系中,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,已知曲线 C 的极坐标方程为 ρsin 2θ=2acosθ(a >0) ,过点 P(−2,−4) 的直线 l 的参数方程为{x=−2+5ty=−4+5t(t为参数),直线l与曲线C相交于A,B两点. (1)(1分)写出曲线C的直角坐标方程和直线l的普通方程;(2)(1分)若|PA||PB|=|AB|2,求a的值.23.(2分)已知定义在R上的函数f(x)=|x−m|+|x|,m∈N∗,若存在实数x使f(x)<2成立.(1)(1分)求实数m的值;(2)(1分)若a>1,b>1,f(a)+f(b)=4,求证:4a+1b>3.答案解析部分1.【答案】B【解析】【解答】∵集合 A ={(x,y)|y =−x +2} , B ={(x,y)|y =2x } ,∴A∩B={(x ,y )| {y =−x +2y =2x }={(1,1)}. ∴集合A∩B 的元素个数是1个. 故答案为:B .【分析】根据集合中元素的特点,求出直线与曲线交点坐标即可.2.【答案】D【解析】【解答】命题““ ∀x ∈R , e x >x +1 ”的否定是 ∃x ∈R ,使 e x ≤x +1 ,故答案为:D .【分析】根据全称命题的否定是特称命题,直接写出其否定即可.3.【答案】C【解析】【解答】 f(x)=tanx 1−tan 2x =sinxcosx 1−sin 2x cos 2x =sinxcosx cos 2x−sin 2x=12sin2x cos2x =12tan2x , ∴f(x) 的最小正周期为 π2 ,故答案为:C.【分析】根据同角三角函数的平方关系与商数关系,化简,结合正切函数的最小正周期,即可求出函数f (x )的最小正周期.4.【答案】A【解析】【解答】利用 y =(12)x 与 y =x 12 的单调性可知:a =(12)13>(12)12>(13)12=b >0 ,又 c =ln(3π)<ln1=0∴a >b >c 故答案为:A【分析】根据指数函数和对数函数的单调性,取中间量进行比较即可.5.【答案】D【解析】【解答】因为 f(−x)=−xcosx +sinx =−xcosx −sinx =−f(x) ,所以函数 f(x)=xcosx −sinx 是奇函数, 函数图象关于原点对称,可排除选项 B,C ,由 f(π2)=−1<0 ,可排除选项 A ,故答案为:D.【分析】根据函数的奇偶性,结合特殊点,逐一排除,即可确定函数的大致图象.6.【答案】B【解析】【解答】若 l ⊥m ,因为 m 垂直于平面 α ,则 l//α 或 l ⊂α ;若 l//α ,又 m 垂直于平面 α ,则 l ⊥m ,所以“ l ⊥m ”是“ l//α 的必要不充分条件, 故答案为:B .【分析】根据空间直线与平面的位置关系,即可确定充分、必要性.7.【答案】B【解析】【解答】因为 a,b,c >0 ,且3a =4b =6c =k ∴a =log 3k,b =log 4k,c =log 6k∴2c =2a +1b故答案为:B【分析】将指数式转化为对数式,结合对数的运算性质,即可确定正确的关系式.8.【答案】A【解析】【解答】∵在梯形ABCD 中,∠ABC= π2 ,AD ∥BC ,BC=2AD=2AB=2,∴将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体是: 一个底面半径为AB=1,高为BC=2的圆柱减去一个底面半径为AB=1, 高为BC ﹣AD=2﹣1=1的圆锥, ∴几何体的表面积为:S=π×12+2π×1×2+ π×1×√12+12 =(5+ √2 )π. 故答案为:A .【分析】根据旋转成的几何体的结构特征,结合圆锥的表面积计算公式,即可求出几何体分表面积.9.【答案】A【解析】【解答】由最大值为 2√3 ,得 A =2√3 , 由 T 2=43π−π3=π ,得 T =2π=2πω,ω=1 ,f(x)=2√3sin(x +φ) ,∵f(π3)=0,∴π3+φ=kπ , ∵|φ|<π2,∴φ=−π3 , f(x)=2√3sin(x −π3) ,将函数 y =f(x) 的图象上所有点的横坐标缩短为原来的 14 ,纵坐标不变,再将所得图象上所有点向右平移 θ(θ>0) 个单位长度,得到 g(x)=2√3sin[4(x −θ)−π3]=2√3sin(4x −4θ−π3) , ∵g(x) 图象关于 x =56 对称, ∴4×56π−4θ−π3=kπ+π2 ,4θ=−kπ+5π2 ,k =2 时, θ 最小为 π8 ,故答案为:A.【分析】根据图象最高点的纵坐标求出A ,结合函数的周期求出ω,结合特殊点求出φ ,通过函数的对称轴,即可求出θ 的最小值.10.【答案】D【解析】【解答】设大的正方形的边长为1,由于小正方形与大正方形面积之比为9:25, 可得:小正方形的边长为 35,可得:cosα﹣sinα= 35 ,①sinβ﹣cosβ= 35,②由图可得:cosα=sinβ,sinα=cosβ,①×②可得: 925 =cosαsinβ+sinαcosβ﹣cosαcosβ﹣sinαsinβ=sin 2β+cos 2β﹣cos (α﹣β)=1﹣cos (α﹣β),解得:cos (α﹣β)= 1625. 故答案为:D .【分析】根据图形关系求出三角函数值,结合两角差的余弦公式,即可求出相应的三角函数值.11.【答案】D【解析】【解答】由三视图可知该几何体为一个四棱锥和一个 14球体的组合体,其中四棱锥的是以侧视图为底面,其体积为 13×4×2×2=163. 而 14 球体的体积为 14×43π×(2)3=83π .故组合体的体积为16+8π3故答案为:D【分析】根据三视图确定几何体的结构特征,根据棱锥的体积公式和球体的体积公式,即可求出组合体分体积.12.【答案】C【解析】【解答】f(x)的定义域为(0,+∞).f′(x)=e x−1−ax+a−1,在(0,+∞)递增.而f′(1)=e0﹣a+a﹣1=0,则f(x)在(0,1)上单减,在(1,+∞)上单增,f(1)=2a.∴f(x)的值域为[2a,+∞).要使y=f[f(x)]与y=f(x)的值域相同,只需2a≤1,又a>0,解得0<a ≤12.故答案为:C.【分析】求出函数的定义域,求导数,利用导数判定函数的单调性,根据单调性表示函数的值域,即可求出实数a的取值范围.13.【答案】【解析】【解答】∵log12(x−2)>0=log121∴0<x−2<1,即2<x<3故答案为:(2,3)【分析】根据对数函数的真数大于0,解对数不等式,即可求出x的取值范围. 14.【答案】【解析】【解答】∵asinA=csinC+(a−b)sinB,∴由正弦定理可得a×a2a =c×c2R+(a−b)×b2R,化为a2+b2−c2=ab,cosC=a2+b2−c22ab=12,C=π3,故答案为π3 .【分析】根据正余弦定理,边角转化,即可求出角C.15.【答案】【解析】【解答】 ∵ f(x)={2−x +1,x ≤0−√x,x >0 , ∴ 当 x +1≤0 时, {x ≤−12−(x+1)−8≤0 ,解得 −4≤x ≤−1 ; 当 x +1>0 时, {x >−1−√x +1−9≤0 ,解得 x >−1 , 综上, x ≥−4 ,即 f(x +1)−9≤0 的解集为 [−4,+∞) , 故答案为 [−4,+∞) .【分析】对x+1的取值分类讨论,分别代入相应的区间,解不等式组,即可求出不等式的解集.16.【答案】4【解析】【解答】延长KE ,CD 交于M 点,又DE CK =23∴MD MC =23同样延长KF ,CB 交于N 点,又 BF CK =13∴NB NC =13MN 即为过点 E 、 F 、 K 的平面与平面 AC 的交线为 l ,又CN 平行于 A 1D 1 即MN 与CN 所成角为所求,记所成角为 θ则 tanθ=MC NC =3CD32BC=4 故答案为:4【分析】根据正方体的结构特征,通过作平行线得到异面直线所成的角,即可求出相应的正切值.17.【答案】(1)解:由 cosA =18 ,则 0<A <π2 ,且 sinA =3√78,由正弦定理 sinB =b a sinA =5√716,因为 b <a ,所以 0<B <A <π2 ,所以 cosB =916,sinC =sin(A +B) =sinAcosB +cosAsinB =√74(2)解: S ΔABC =12bcsinA =12bc ×3√78=15√74,∴bc =20 ,a 2=b 2+c 2−2bccosA =b 2+c 2−2×20×18=36 ,∴b 2+c 2=41 , (b +c)2=b 2+c 2+2bc =41+40=81 , ∴b +c =9【解析】【分析】(1)根据正弦定理,结合两角和的正弦公式,即可求出sinC ;(2)根据三角形的面积公式,结合余弦定理,即可求出b+c.18.【答案】(1)解:因为 f′(x)=a −2cosx +cosx −xsinx =a −cosx −xsinx ,当 x =π 时, f(π)=aπ−π , f′(π)=a +1 , 所以曲线 y =f(x) 在 x =π 处的切线方程为: y −(aπ−π)=(a +1)(x −π) , 令 x =0 得: y =−2π ,所以曲线 y =f(x) 在 x =π 处的切线在 y 轴上的截距为 −2π(2)解:因为 f(x) 在区间 [0,π2] 上是增函数, 所以 f′(x)≥0 在区间 [0,π2] 上恒成立,则 a −cosx −xsinx ≥0 ,即 a ≥cosx +xsinx , 令 g(x)=cosx +xsinx ,则 g′(x)=−sinx +sinx +xcosx =xcosx ≥0 ,所以 g(x) 在区间 [0,π2] 上单调递增, 所以 g(x)max =g(π2)=π2 , 故实数 a 的取值范围是 [π2,+∞) .【解析】【分析】(1)根据导数的几何意义,求出切线的斜率,结合点斜式,求出切线方程,即可得到切线在y 轴的截距;(2)根据增函数,导函数大于等于0,构造函数g (x ),确定函数的单调区间,求出g (x )的最大值,即可求出实数a 的取值范围.19.【答案】(1)解:由三角函数的定义有 x 1=cosα , 因为 sin(α+π6)=1314, α∈(π3,π2) ,所以 π2<α+π6<5π6 , cos(α+π6)=−3√314,所以 x 1=cosα=cos[(α+π6)−π6]=cos(α+π6)cos π6+sin(α+π6)sin π6=−3√314⋅√32+1314⋅12=17(2)解:由题知 x 1=cosα , y 2=sin(α+π3)y =x 12+y 22=cos 2α+sin 2(a +π3) =1+cos2α2+1−cos2(α+π3)2, =1+34cos2α+√34sin2α =√32sin(2α+π3)+1 ,α∈(π3,π2) , 2α+π3∈(π,4π3) ,sin(2α+π3)∈(−√32,0) , √32sin(2α+π3)+1∈(14,1) .所以 y 的取值范围是 (14,1) .【解析】【分析】(1)根据三角函数的定义,结合两角差是余弦公式,即可求出相应的三角函数值;(2)根据余弦的二倍角公式及辅助角公式,结合不等式的性质,即可求出y 的取值范围.20.【答案】(1)证明:过 P 作 PE ⊥BC ,垂足为 E ,连接 DE ,因为平面 PBC ⊥ 平面 ABCD ,所以 PE ⊥ 平面 ABCD , 因为 PD ⊥BC ,所以 BC ⊥ 平面 PDE ,所以 DE ⊥BC ,因为 ∠BCD =π4 ,所以 DE =EC ,因为 ΔPED ≌ΔPEC ,所以 PD =PC .(2)解:解法一:因为 BC ∥AD , BC ⊄ 平面 ADP , AD ⊂ 平面 ADP , 所以 BC ∥ 平面 ADP , 设平面 PBC ∩平面 PAD = 直线 l ,所以 l ∥BC ,因为 BC ⊥ 平面 PDE ,所以 l ⊥PE , l ⊥PD ,所以 ∠DPE 是平面 PAD 与平面 PBC 所成锐二面角的平面角, 因为 PE ⊥ 平面 ABCD ,故∠PAE是直线PA与平面ABCD所成角,即∠PAE=π6,设PE=a,则AE=√3a,PA=2a,设DE=m,则EC=m,DC=√2m,所以(√3a)2=m2+(√2m)2,所以m=a,故∠DPE=π4,所以cos∠DPE=√22,即平面PAD与平面PBC所成锐二面角的余弦值为√22.解法二:因为BC⊥平面PDE,PE⊥平面ABCD,故∠PAE是直线PA与平面ABCD所成角,即∠PAE=π6,且DE⊥BC,DE⊥PE,设PE=a,则AE=√3a,PA=2a,在ΔDEC中,设DE=m,则EC=m,DC=√2m,在ΔEDA中,所以(√3a)2=m2+(√2m)2,所以m=a,以E为坐标原点,分别以ED、DB、EP所在直线为x、y、z轴建立空间直角坐标系,则D(a,0,0),A(a,√2a,0),P(0,0,a),则平面PBC的法向量a⃗=(1,0,0),设平面PAD的法向量b⃗=(x,y,z),因为AP⇀=(−m,−√2m,m),AD⇀=(0,−√2m,0),所以{−√2my=0−mx+√2my+mz=0,故b⃗=(1,0,1),设平面PBD与平面PAC的夹角为θ,则cosθ=b⃗⃗ ⋅a⃗⃗|b⃗⃗ ||a⃗⃗ |=1√2=√22,平面PAD与平面PBC所成锐二面角的余弦值为√22.【解析】【分析】(1)根据面面垂直的性质证明线面垂直,结合三角形全等,即可证明PC=PD ;(2)建立空间直角坐标系,写出点的坐标,表示相应的向量,求出平面的法向量,即可求出二面角的余弦值.21.【答案】(1)解:因为 f′(x)=lnx −a x +32 ,所以 g(x)=(1−a)lnx −a x −x +32, g′(x)=1−a x +ax2−1 =−(x−1)(x+a)x (x >0) ,①当 0<a ≤1 时, g ′(x)>0 , g(x) 在 (0,+∞) 上是增函数;②当 a >1 时,由 g ′(x)>0 得 0<x <aa−1 ,所以 g(x) 在 (0,a a−1) 上是增函数;在 (aa−1,+∞) 上是减函数(2)解:因为 f′(x)=lnx −a x +32 ,令 ℎ(x)=lnx −a x +32 ,则 ℎ′(x)=1x +a x 2 ,因为 a ∈(12e ,2√e) ,所以 ℎ′(x)=1x +a x2>0 ,即 ℎ(x) 在 (0,+∞) 是增函数,下面证明 ℎ(x) 在区间 (a2,2a) 上有唯一零点 x 0 , 因为 ℎ(a 2)=ln a 2−12, ℎ(2a)=ln2a +1 ,又因为 a ∈(12e ,2√e) ,所以 ℎ(a 2)<ln 2√e 2−12=0 , ℎ(2a)>ln(2⋅12e )+1=0 ,由零点存在定理可知, ℎ(x) 在区间 (a2,2a) 上有唯一零点 x 0 ,在区间 (0,x 0) 上, ℎ(x)=f′(x)<0 , f′(x) 是减函数, 在区间 (x 0,+∞) 上, ℎ(x)=f′(x)>0 , f′(x) 是增函数,故当 x =x 0 时, f(x) 取得最小值 f(x 0)=(x 0−a)lnx 0+12x 0 ,因为 ℎ(x 0)=lnx 0−a x 0+32=0 ,所以 lnx 0=a x 0−32 ,所以 f(x 0)=(x 0−a)(a x 0−32)+12x 0 =1x 0(x 0−a2)(2a −x 0) ,因为 x 0∈(a2,2a) ,所以 f(x)>0 , 所以 a ∈(12e,2√e) , f(x)>0 .【解析】【分析】(1)求导数,表示出g (x ),对g (x )求导数,解不等式,即可求出函数的单调区间;(2)求导数,构造函数h (x ),对h (x )求导数,利用导数研究函数的单调性,求出函数的最值,结合零点的存在性定理,即可证明相应的式子成立.22.【答案】(1)解:由ρsin2θ=2acosθ(a>0)得ρ2sin2θ=2aρcosθ(a>0),所以曲线C的直角坐标方程y2=2ax,因为{x=−2+5ty=−4+5t ,所以x+2y+4=1,直线l的普通方程为y=x−2(2)解:直线l的参数方程为{x=−2+√22ty=−4+√22t(t为参数),代入y2=2ax得:t2−2√2(4+a)t+32+8a=0,设A,B对应的参数分别为t1,t2,则t1+t2=2√2(4+a),t1t2=32+8a,t1>0,t2>0由参数t1,t2的几何意义得|t1|=|PA|,|t2|=|PB|,|t1−t2|=|AB|,由|PA||PB|=|AB|2得|t1−t2|2=t1t2,所以|t1+t2|2=5t1t2,所以(2√2(4+a))2=5(32+8a),即a2+3a−4=0,故a=1,或a=−4(舍去),所以a=1.【解析】【分析】(1)两边同时乘以ρ,将极坐标方程转化为直角坐标方程即可;消去参数t,即可得到直线的普通方程;(2)写出直线的参数方程,将直线方程与抛物线方程联立,根据韦达定理,结合直线方程中参数的几何意义,即可求出a的值.23.【答案】(1)解:因为f(x)=|x−m|+|x|≥|x−m−x|=|m|,因存在实数x使f(x)<2成立,所以|m|<2,解之得−2<m<2,因为m∈N∗,所以m=1(2)解:因a>1,b>1,所以f(a)+f(b)=2a−1+2b−1=2a+2b−2,因为f(a)+f(b)=4,所以2a+2b−2=4,所以a+b=3,因为4a+1b=13(4a+1b)(a+b)=13(5+4ba+ab)≥13(5+2√4ba⋅ab)=3,a=2且b=1时等号成立,又a>1,b>1,所以等号不成立,4a+1b>3.【解析】【分析】(1)根据绝对值三角不等式,将存在实数x使f(x)<2成立进行转化,解不等式,即可求出m的值;(2)根据f(a)+f(b)=4,得到a和b的关系,结合基本不等式,即可证明结论成立.。
四川省泸县第五中学2018届高考模拟考试数学(理科)一.选择题:(本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的. 1.已知集合⎭⎬⎫⎩⎨⎧≥==0,)31(x y y P x ,{})24ln(2x x y x Q -==,则P ∩Q=( )A .(0,1]B .∅C .(0,2)D .{0}2.已知i m m m z )23(2222+-+-=(m ∈R ,i 为虚数单位),则“m =﹣1”是“z 为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件3.如图,正方形ABCD 内的图形来自宝马汽车车标的里面部分,正方形内切圆中的黑色部分和白色部分关于正方形对边中点连线成轴对称,在正方形内随机取一点,则此点取自黑色部分的概率是( ) A .14 B .12 C .8π D .4π4.已知双曲线C 的中心为原点,点(2,0)F 是双曲线C 的一个焦点, 点F 到渐近线的距离为1,则C 的方程为( )A .221x y -= B .2212y x -= C. 22123x y -= D .22133x y -= 5. 某几何体的三视图如图(1)所示,则该几何体中最短棱和最长棱所在直线所成角的余弦值为( )A .63 B .64 C.22D .336.6)2)(1(--x x 的展开式中3x 的系数为( )A .400-B .80 C.80- D .4007.为了提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设原信息为123a a a ,传输信息为11232h a a a h ,其中112h a a =⊕,213h h a =⊕,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=.例如:原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息出错的是( )A .01100B .11010C .10110D .110008.设n S 是等差数列{}n a 的前n 项和,且111313a S ==,则9a =( ) A .6 B .7 C .8 D .99.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( )A .7B .6C .5D .410.若3x =是函数()()21x f x x ax e =++的极值点,则()f x 的极大值等于( ) A .-1 B .3 C .32e - D .16e -11.棱长为2的正八面体(八个面是全等的等边三角形),球O 是该正八面体的内切球,球O 的表面积为( ) A .83π B .43πC.8627π D .4627π12.如图,已知梯形ABCD 中2AB CD =,点E 在线段AC 上,且25AE AC =,双曲线过C D E 、、三点,以A B 、为焦点; 则双曲线离心率e 的值为( ) A .32B .7 C.52 D .2第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知138a =,231()2b =,则2log ()ab = .14.已知焦点在坐标轴上,中心是原点的双曲线的一条渐近线方程为2y x =,且经过点()2,3,则双曲线的焦点到渐近线的距离等于 .15.函数()2sin f x x x π=+,则不等式()212f x -≤-≤的解集为 .16.设函数()(12)xf x e x ax =-+,其中1a <,若存在唯一负整数0x ,使得0()f x a >,则实数a 的取值范围是三.解答题(共70分.解答应写出文字说明、证明过程或演算步骤)17.已知数列{}n a 满足132n n a a +=+,且12a =. (Ⅰ)求证:数列{}1n a +是等比数列;(Ⅱ)数列{}n b 满足3log (1)n n b a =+,判断数列2211{}n n b b +的前n 项和n T 与12的大小关系,并说明理由.18.第23届冬季奥运会于2018年2月9日至2月25日在韩国平昌举行,期间正值我市学校放寒假,寒假结束后,某校工会对全校教职工在冬季奥运会期间每天收看比赛转播的时间作了一次调查,得到如下频数分布表:收看时间(单位:小时)[0,1)[1,2)[2,3)[3,4)[4,5)[5,6)收看人数143016282012(Ⅰ)若将每天收看比赛转播时间不低于3小时的教职工定义为“体育达人”,否则定义为“非体育达人”,请根据频数分布表补全22⨯列联表:男 女 合计 体育达人 40 非体育达人 30 合计并判断能否有90%的把握认为该校教职工是否为“体育达人”与“性别”有关;(II)在全校“体育达人”中按性别分层抽样抽取6名,再从这6名“体育达人”中选取2名作冬奥会知识讲座.记其中女职工的人数为ξ,求的ξ分布列与数学期望. 附表及公式:20()P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82822()()()()()n ad bc K a b c d a c b d -=++++.19.如图,D 是AC 的中点,四边形BDEF 是菱形,平面BDEF ⊥平面ABC ,60FBD ∠=,AB BC ⊥,2AB BC ==.(Ⅰ)若点M 是线段BF 的中点,证明:BF ⊥平面AMC ; (II)求平面AEF 与平面BCF 所成的锐二面角的余弦值.20.已知椭圆C :22221(0)x y a b a b+=>>的左右焦点分别为1F ,2F ,左顶点为A ,上顶点为(0,1)B ,1ABF ∆的面积为212-. (Ⅰ)求椭圆C 的方程;(II)设直线l :(1)y k x =+与椭圆C 相交于不同的两点M ,N ,P 是线段MN 的中点.若经过点2F 的直线m 与直线l 垂直于点Q ,求1PQ FQ ⋅的取值范围.21.已知函数2()ln f x a x =+且()f x a x ≤. (Ⅰ)求实数a 的值; (II)令()()xf x g x x a=-在(,)a +∞上的最小值为m ,求证:6()7f m <<.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)在直角坐标系xOy 中,圆C 的参数方程(φ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C 的极坐标方程; (II)直线l 的极坐标方程是2ρsin (θ+)=3,射线OM :θ=与圆C 的交点为O 、P ,与直线l 的交点为Q ,求线段PQ 的长.23.选修4-5:不等式选讲 已知函数()23f x x x =--+. (Ⅰ)求不等式()3f x ≤的解集;(II)若不等式2()6f x a a <-解集非空,求实数a 的取值范围.四川省泸县第五中学2018届高考模拟考试数学(理科)答案一.选择题1-12 ACCAD DDBBD AB 二.填空题 13.31 14.24 15.[]2,0 16.253[,)32e e17.(Ⅰ)由题意可得11333(1)n n n a a a ++=+=+,即1(1)3(1)n n a a ++=+,又1130a +=≠,故数列{1}n a +是以3为首项,3为公比的等比数列;(Ⅱ)由(Ⅰ)可知13n n a +=,即33log (1)log 3nn n b a n =+==.故)121121(21)12()12(1)12(211122+--=+⋅-<+⋅=+n n n n n n b b n n∴21)1211(21)121121(21)5131(21)311(21<+-=+--++-+-<n n n T n ,故12n T < 18.解:(1)由题意得下表:男 女 合计 体育达人 40 20 60 非体育达人30 30 60 合计70501202k 的观测值为2120(1200600)70506060-⨯⨯⨯24 2.7067=>.所以有90%的把握认为该校教职工是“体育达人”与“性别”有关. (2)由题意知抽取的6名“体育达人”中有4名男职工,2名女职工,所以ξ的可能取值为0,1,2.且2426(0)C P C ξ==62155==,114226(1)C C P C ξ==815=,2226(2)C P C ξ==115=,所以ξ的分布列为ξ 0 1 2P25815 11528()01515E ξ=⨯+⨯1102215153+⨯==.19.解:(1)连接MD ,FD .∵四边形BDEF 为菱形,且60FBD ∠=, ∴DBF ∆为等边三角形.∵M 为BF 的中点,∴DM BF ⊥. ∵AB BC ⊥,2AB BC ==,又D 是AC 的中点,∴BD AC ⊥. ∵平面BDEF平面ABC BD =,平面ABC ⊥平面BDEF ,AC ⊂平面ABC ,∴AC ⊥平面BDEF .又BF ⊂平面BDEF ,∴AC BF ⊥. 由DM BF ⊥,AC BF ⊥,DM AC D =,∴BF ⊥平面AMC.(2)设线段EF 的中点为N ,连接DN .易证DN ⊥平面ABC .以D 为坐标原点,DB ,DC ,DN 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系.则(0,1,0)A -,13(,0,)22E -,13(,0,)22F ,(1,0,0)B ,(0,1,0)C .∴13(,1,)22AE =-,(1,0,0)EF =,13(,0,)22BF =-,(1,1,0)BC =-. 设平面AEF ,平面BCF 的法向量分别为111(,,)m x y z =,222(,,)n x y z =.由00AE m EF m ⎧⋅=⎪⎨⋅=⎪⎩111113022102x y z x ⎧-++=⎪⎪⇒⎨⎪=⎪⎩. 解得1132y z =-. 取12z =-,∴(0,3,2)m =-.又由00BC n BF n ⎧⋅=⎪⎨⋅=⎪⎩2222013022x y x z -+=⎧⎪⇒⎨-+=⎪⎩解得223y z =. 取21z =,∴(3,3,1)n =. ∵cos ,m n <>m n m n⋅=11777==⋅. ∴平面AEF 与平面BCF所成的锐二面角的余弦值为17.20.解:(1)由已知,有1b =. 又1121()22ABF S a c b ∆-=-=,∴21a c -=-. ∵222a b c =+, ∴2a =.∴椭圆C 的方程为2212x y +=.(2)①当0k =时,点P 即为坐标原点O ,点Q 即为点2F ,则1PQ =,12FQ =. ∴12PQ FQ ⋅=. ②当0k ≠时,直线l 的方程为(1)y k x =+. 则直线m 的方程为1(1)y x k=--,即10x ky +-=. 设11(,)M x y ,22(,)N x y .联立方程22(1)12y k x x y =+⎧⎪⎨+=⎪⎩,消去y ,得222(12)4k x k x ++2220k +-=.此时28(1)0k ∆=+>.∴2122412k x x k -+=+,1212(2)y y k x x +=++2212kk =+. ∴2222(,)1212k k P k k -++. ∵PQ 即点P 到直线m 的距离,∴222222112121k k k kPQ k -+-++=+22231(12)1k k k +=++.又1FQ 即点1F 到直线m 的距离,∴1221F Q k =+.∴21222(13)(12)(1)k PQ F Q k k +⋅=++.令213(1)k t t +=>,则213t k -=. ∴118(12)(2)t PQ FQ t t ⋅=++1812()5t t=++182225<=⨯+. 即0k ≠时,有102PQ FQ <⋅<. 综上,可知1PQ FQ ⋅的取值范围为(0,2].21. 解:(1)法1:由题意知:2ln a x a x +≤恒成立等价于2ln 0a at t -+≤在0t >时恒成立, 令()2ln h t a at t =-+,则22'()ath t a t t-=-=, 当0a ≤时,'()0h t >,故()h t 在(0,)+∞上单调递增, 由于(1)0h =,所以当1t >时,()(1)0h t h >=,不合题意.当0a >时,2'()a t a h t t ⎛⎫-- ⎪⎝⎭=,所以当20t a <<时,'()0h t >;当2t a >时,'()0h t <,所以()h t 在20,a ⎛⎫ ⎪⎝⎭上单调递增,()h t 在2,a ⎛⎫+∞⎪⎝⎭上单调递减,即max 2()h t h a ⎛⎫= ⎪⎝⎭22ln 22ln a a =-+-. 所以要使()0h t ≤在0t >时恒成立,则只需max ()0h t ≤, 亦即22ln 22ln 0a a -+-≤,令()22ln 22ln a a a ϕ=-+-,则22'()1a a a aϕ-=-=, 所以当02a <<时,'()0a ϕ<;当2a >时,'()0a ϕ>,即()a ϕ在(0,2)上单调递减,在(2,)+∞上单调递增. 又(2)0ϕ=,所以满足条件的a 只有2, 即2a =.法2:由题意知:2ln a x a x +≤恒成立等价于2ln 0a at t -+≤在0t >时恒成立, 令()2ln h t a at t =-+,由于(1)0h =,故2ln 0a at t -+≤()(1)h t h ⇔≤, 所以(1)h 为函数()h t 的最大值,同时也是一个极大值,故'(1)0h =.又22'()ath t a t t -=-=,所以2a =, 此时2(1)'()t h t t-=,当01t <<时,'()0h t >,当1t >时,'()0h t <,即:()h t 在(0,1)上单调递增;在(1,)+∞上单调递减. 故2a =合题意. (2)由(1)知()()xf x g x x a =-22ln (2)2x x xx x +=>-, 所以22(2ln 4)'()(2)x x g x x --=-, 令()2ln 4s x x x =--,则22'()1x s x x x-=-=, 由于2x >,所以'()0s x >,即()s x 在(2,)+∞上单调递增;又(8)0s <,(9)0s >, 所以0(8,9)x ∃∈,使得0()0s x =,且当02x x <<时,()0s x <;当0x x >时,()0s x >, 即()g x 在0(2,)x 上单调递减;在0(,)x +∞上单调递增. 所以min0()()g x g x =000022ln 2x x x x +=-2000022x x x x -==-.(∵002ln 4x x =-)即0m x =,所以0()()f m f x =0022ln 2(6,7)x x =+=-∈,即6()7f m <<.22.解:(I )利用cos 2φ+sin 2φ=1,把圆C 的参数方程为参数)化为(x ﹣1)2+y 2=1,∴ρ2﹣2ρcos θ=0,即ρ=2cos θ. (II )设(ρ1,θ1)为点P 的极坐标,由,解得. 设(ρ2,θ2)为点Q 的极坐标,由,解得. ∵θ1=θ2,∴|PQ |=|ρ1﹣ρ2|=2.∴|PQ |=2.23.解:(Ⅰ)由()233f x x x =--+≤可化为:3233x x x <-⎧⎨-+++≤⎩或32233x x x -≤≤⎧⎨-+--≤⎩或2233x x x >⎧⎨---≤⎩ 解得:x ∈∅或22x -≤≤或2x >,所以,不等式解集为[)2,-+∞. (Ⅱ)因为()23(2)(3)5f x x x x x =--+≤--+= 所以5()5f x -≤≤,即()f x 的最小值为5-,要不等式2()6f x a a <-解集非空,需2min ()6f x a a <-, 从而2650a a -+>,解得1a <或5a >,所以a 的取值范围为()(),15,-∞+∞U .。
2018年四川省高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.1.已知复数,则的共轭复数是( ) A . B . C . D .2.设是等差数列的前项和,,,则( ) A .-2 B .0 C .3 D .63.已知向量,,,则“”是“”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件4.设函数,在区间上随机取一个数,则的概率为( ) A .B . C. D . 5.一个几何体的三视图如图所示,则它的体积为( )A .B . C.20 D .40 6.已知满足条件,若目标函数的最大值为8,则( )A .-16B .-6 C. D .6 7.定义运算为执行如图所示的程序框图输出的值,则21iz i=+z 1i -1i +i i -n S {}n a n 12a =533a a =3a =(1,2)a =- (3,)b m = m R ∈6m =-//()a a b +2()log f x x =(0,5)x ()2f x <15253545203403,x y 020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩3z x y =+k =83-*a b S的值为( )A .B . C.4 D .6 8.如图,在正四棱锥中,分别是的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面.其中恒成立的为( )A .①③B .③④ C. ①② D .②③④ 9.若曲线与曲线在它们的公共点处具有公共切线,则实数( ) A .-2 B .C. 1 D .2 10.已知是边长为为的外接圆的一条直径,为的边上的动点,则的最大值为( )A .3B .4 C.5 D .611.已知双曲线的左、右焦点分别为,,1(lg9lg2)294100*(log 8log -•131692S ABCD -,,E M N ,,BC CD SC P MN EP AC ⊥//EP BD //EP SBD EP ⊥SAC 212y x e=ln y a x =(,)P s t a =12ABC ∆EF ABC ∆O M ABC ∆ME FM•2222:1(0,0)x y C a b a b-=>>1(,0)F c -2(,0)F c ,A B是圆与位于轴上方的两个交点,且,则双曲线的离心率为( ) AD . 12.若对,有,求的最大值与最小值之和是( )A .4B .6 C.8 D .10二、填空题(本大题共四小题,每小题5分,共20分.将答案填在答题卡上.) 13.若复数z=(x 2﹣2x ﹣3)+(x +1)i 为纯虚数,则实数x 的值为 . 14.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是 .15.在平面直角坐标系xOy 中,已知P 是函数f (x )=e x (x >0)的图象上的动点,该图象在点P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是 .16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a 2﹣a ﹣2b ﹣2c=0且a +2b ﹣2c +3=0.则△ABC 中最大角的度数是 .三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.S n 为数列{a n }的前n 项和,已知S n +1=λS n +1(λ是大于0的常数),且a 1=1,a 3=4.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =na n ,求数列{b n }的前n 项和.18.某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示: 222()4x c y c ++=C x 12//F A F B C ,m n R ∀∈()()()3g m n g m g n +=+-()()f x g x =(1)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;(2)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.19.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(Ⅰ)求证:AM⊥平面EBC;(Ⅱ)求二面角A﹣EB﹣C的大小.20.已知:向量=(,0),O为坐标原点,动点M满足:|+|+|﹣|=4.(1)求动点M的轨迹C的方程;(2)已知直线l1,l2都过点B(0,1),且l1⊥l2,l1,l2与轨迹C分别交于点D,E,试探究是否存在这样的直线使得△BDE是等腰直角三角形.若存在,指出这样的直线共有几组(无需求出直线的方程);若不存在,请说明理由.21.已知函数.(1)当a=1时,∃x0∈[1,e]使不等式f(x0)≤m,求实数m的取值范围;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,做答时请写清题号.22.已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.选做题23.设不等式|x+1|+|x﹣1|≤2的解集为M.(Ⅰ)求集合M;(Ⅱ)若x∈M,|y|≤,|z|≤,求证:|x+2y﹣3z|≤.2017年四川省数学一模试卷(理科)参考答案与试题解析一、选择题1-5:AAADB 6-10:BAACA 11、12:CB二、填空题(本大题共四小题,每小题5分,共20分.将答案填在答题卡上.)13.若复数z=(x2﹣2x﹣3)+(x+1)i为纯虚数,则实数x的值为3.【考点】复数代数形式的乘除运算.【分析】直接由实部为0且虚部不为0列式求得x值.【解答】解:∵z=(x2﹣2x﹣3)+(x+1)i为纯虚数,∴,解得:x=3.故答案为:3.14.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是﹣3.【考点】众数、中位数、平均数.【分析】在输入的过程中错将其中一个数据105输入为15少输入90,在计算过程中共有30个数,所以少输入的90对于每一个数来说少3,求出的平均数与实际平均数的差可以求出.【解答】解:∵在输入的过程中错将其中一个数据105输入为15少输入90,而=3∴平均数少3,∴求出的平均数减去实际的平均数等于﹣3.故答案为:﹣3.15.在平面直角坐标系xOy中,已知P是函数f(x)=e x(x>0)的图象上的动点,该图象在点P处的切线l交y轴于点M,过点P作l的垂线交y轴于点N,设线段MN的中点的纵坐标为t,则t的最大值是.【考点】利用导数研究曲线上某点切线方程.【分析】先设切点坐标为(m,e m),然后根据导数的几何意义求出函数f(x)在x=m处的导数,从而求出切线的斜率,求出切线方程,从而求出点M的纵坐标,同理可求出点N的纵坐标,将t用m表示出来,最后借助导数的方法求出函数的最大值即可.【解答】解:设切点坐标为(m,e m)∴该图象在点P处的切线l的方程为y﹣e m=e m(x﹣m)令x=0,解得y=(1﹣m)e m过点P作l的垂线的切线方程为y﹣e m=﹣e﹣m(x﹣m)令x=0,解得y=e m+me﹣m∴线段MN的中点的纵坐标为t= [(2﹣m)e m+me﹣m]t'= [﹣e m+(2﹣m)e m+e﹣m﹣me﹣m],令t'=0解得:m=1当m∈(0,1)时,t'>0,当m∈(1,+∞)时,t'<0∴当m=1时t取最大值故答案为:16.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a2﹣a﹣2b﹣2c=0且a+2b﹣2c+3=0.则△ABC中最大角的度数是120°.【考点】余弦定理.【分析】根据条件可得b=,c=,显然c>b,假设c=>a,解得a<1或a>3,刚好符合,故最大边为c,由余弦定理求得cosC 的值,即可得到C 的值.【解答】解:把a2﹣a﹣2b﹣2c=0和a+2b﹣2c+3=0联立可得,b=,c=,显然c>b.比较c与a的大小.因为b=>0,解得a>3,(a<﹣1的情况很明显为负数舍弃了)假设c=>a,解得a<1或a>3,刚好符合,所以c>a,所以最大边为c.由余弦定理可得c2=a2+b2﹣2ab•cosC,即()2=a2+[]2﹣2a cosC,解得cosC=﹣,∴C=120°,故答案为:120°.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.S n为数列{a n}的前n项和,已知S n+1=λS n+1(λ是大于0的常数),且a1=1,a3=4.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=na n,求数列{b n}的前n项和.【考点】数列递推式;数列的求和.【分析】(Ⅰ)由已知数列递推式可得当n≥2时,S n=λS n﹣1+1.与原递推式作差可得a n+1=λa n,即n≥2时.验证a2=λa1,可得数列{a n}是等比数列.结合已知求得λ值,则数列{a n}的通项公式可求;(Ⅱ)把(Ⅰ)中求得的通项公式代入b n=na n,整理后利用错位相减法求数列{b n}的前n项和.【解答】解:(Ⅰ)由S n+1=λS n+1可知当n≥2时,S n=λS n﹣1+1.作差可得a n+1=λa n,即n≥2时.又a1=1,故a2=λa1.∴数列{a n}是等比数列.由于a3=a1λ2=4,λ>0,解得λ=2.数{a n}的通项公式为:;(Ⅱ)由,可知.设数列{b n}前n项和为T n,则,①,②①﹣②得:==2n﹣1﹣n•2n.∴.18.某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:(1)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;(2)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.【考点】离散型随机变量的期望与方差;频率分布表.【分析】(1)因为样本容量是100,根据表格可知周销售量为2吨,3吨和4吨的频数,根据所给的频数除以100,得到要求的频率.(2)ξ表示该种商品两周销售利润的和,且各周的销售量相互独立,根据表格得到变量ξ的可能取值,对应变量的事件,根据相互独立事件同时发生的概率做出分布列和期望.【解答】解:(1)根据表格可知周销售量为2吨,3吨和4吨的频率分别为=0.2,=0.5和=0.3.(2)ξ的可能值为8,10,12,14,16,且P(ξ=8)=0.22=0.04,P(ξ=10)=2×0.2×0.5=0.2,P(ξ=12)=0.52+2×0.2×0.3=0.37,P(ξ=14)=2×0.5×0.3=0.3,P(ξ=16)=0.32=0.09.∴ξ的分布列为∴Eξ=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元)19.如图,正方形ACDE所在的平面与平面ABC垂直,M是CE和AD的交点,AC⊥BC,且AC=BC.(Ⅰ)求证:AM⊥平面EBC;(Ⅱ)求二面角A﹣EB﹣C的大小.【考点】用空间向量求平面间的夹角;直线与平面垂直的判定.【分析】几何法:(Ⅰ)由已知得AM⊥EC,AC⊥BC,由此能证明AM⊥平面EBC.(Ⅱ)过A作AH⊥EB于H,连结HM,由已知得∠AHM是二面角A﹣EB﹣C的平面角,由此能求出二面角A﹣EB﹣C的大小.向量法:(Ⅰ)以点A为原点,以过A点平行于BC的直线为x轴,分别以直线AC和AE 为y轴和z轴,建立空间直角坐标系A﹣xyz,利用向量法能证明AM⊥平面EBC.(2)求出平面EAB的法向量和平面EBC的法向量,利用向量法能求出二面角A ﹣EB﹣C的大小.【解答】(本小题满分12分)几何法:(Ⅰ)证明:∵四边形ACDE是正方形,∴AM⊥EC,又∵平面ACDE⊥平面ABC,∴AC⊥BC,∴BC⊥平面EAC,…∵BC⊄平面EAC,∴BC⊥AM,又∵EC∩BC=C,∴AM⊥平面EBC.…(Ⅱ)解:过A作AH⊥EB于H,连结HM,∵AM⊥平面EBC,∴AM⊥EB,∴EB⊥平面AHM,∴∠AHM是二面角A﹣EB﹣C的平面角,…∵平面ACDE⊥平面ABC,∴EA⊥平面ABC,∴EA⊥AB,在Rt△EAB中,AH⊥EB,有AE•AB=EB•AH,设EA=AC=BC=2a,得,AB=2a,EB=2a,∴=,∴sin=,∴∠AHM=60°.∴二面角A﹣EB﹣C等于60°.…向量法:(Ⅰ)证明:∵四边形ACDE是正方形,∴EA⊥AC,∵平面ACDE⊥平面ABC,EA⊥平面ABC,…∴以点A为原点,以过A点平行于BC的直线为x轴,分别以直线AC和AE为y轴和z轴,建立如图所示的空间直角坐标系A﹣xyz,设EA=AC=BC=2,则A(0,0,0),C(0,2,0),E(0,0,2),M是正方形ACDE的对角线的交点,M(0,1,1),…=(0,1,1),=(0,2,﹣2),,∴,∴AM⊥EC,AM⊥BC,又EC∩BC=C,∴AM⊥平面EBC.…(2)设平面EAB的法向量为,则,∴,取y=﹣1,则x=1,则=(1,﹣1,0),…又∵为平面EBC的一个法向量,∴cos<>==﹣,设二面角A﹣EB﹣C的平面角为θ,则cosθ=|cos<>|=,∴θ=60°,∴二面角A﹣EB﹣C等于60°.…20.已知:向量=(,0),O为坐标原点,动点M满足:|+|+|﹣|=4.(1)求动点M的轨迹C的方程;(2)已知直线l1,l2都过点B(0,1),且l1⊥l2,l1,l2与轨迹C分别交于点D,E,试探究是否存在这样的直线使得△BDE是等腰直角三角形.若存在,指出这样的直线共有几组(无需求出直线的方程);若不存在,请说明理由.【考点】轨迹方程;直线与圆锥曲线的关系.【分析】(1)由:|+|+|﹣|=4,=(,0),知动点M的轨迹是以点(,0)为焦点、4为长轴长的椭圆,即可求动点M的轨迹C的方程;(2)设直线方程,求出D,E的坐标,利用△BDE是等腰直角三角形,可得|BD|=|BE|,即=,从而可得结论.【解答】解:(1)由:|+|+|﹣|=4,=(,0),知动点M的轨迹是以点(,0)为焦点、4为长轴长的椭圆,∴c=,a=2,∴b=1,∴所求的方程为=1.(2)设BD:y=kx+1,代入上式得(1+4k2)x2+8kx=0,∴x1=0,x2=﹣=x D,∵l1⊥l2,∴以﹣代k,得x E=∵△BDE是等腰直角三角形,∴|BD|=|BE|,∴=,∴|k|(k2+4)=1+4k2,①k>0时①变为k3﹣4k2+4k﹣1=0,∴k=1或;k<0时①变为k3+4k2+4k﹣1=0,k=﹣1或.∴使得△BDE是等腰直角三角形的直线共有3组.21.已知函数.(1)当a=1时,∃x0∈[1,e]使不等式f(x0)≤m,求实数m的取值范围;(2)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;函数恒成立问题;利用导数研究函数的单调性.【分析】(I)将a的值代入f(x),求出f(x)的导函数;,将∃x0∈[1,e]使不等式f(x0)≤m转化为f(x)的最小值小于等于m,利用[1,e]上的函数递增,求出f(x)的最小值,令最小值小于等于m即可.(II)将图象的位置关系转化为不等式恒成立;通过构造函数,对新函数求导,对导函数的根与区间的关系进行讨论,求出新函数的最值,求出a的范围.【解答】解:(I)当a=1时,,可知当x∈[1,e]时f(x)为增函数,最小值为,要使∃x0∈[1,e]使不等式f(x0)≤m,即f(x)的最小值小于等于m,故实数m的取值范围是(2)已知函数.若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,等价于对任意x∈(1,+∞),f(x)<2ax,即恒成立.设.即g(x)的最大值小于0.(1)当时,,∴为减函数.∴g(1)=﹣a﹣≤0∴a≥﹣∴(2)a≥1时,.为增函数,g(x)无最大值,即最大值可无穷大,故此时不满足条件.(3)当时,g(x)在上为减函数,在上为增函数,同样最大值可无穷大,不满足题意.综上.实数a的取值范围是.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题记分,做答时请写清题号.22.已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.【解答】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x﹣1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5﹣1)2+3﹣1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.选做题23.设不等式|x+1|+|x﹣1|≤2的解集为M.(Ⅰ)求集合M;(Ⅱ)若x∈M,|y|≤,|z|≤,求证:|x+2y﹣3z|≤.【考点】二维形式的柯西不等式;绝对值不等式的解法.【分析】(Ⅰ)由条件利用绝对值的意义求得M.(Ⅱ)由条件利用绝对值不等式的性质可证得不等式.【解答】解:(Ⅰ)根据绝对值的意义,|x+1|+|x﹣1|表示数轴上的x对应点到﹣1、1对应点的距离之和,它的最小值为2,故不等式|x+1|+|x﹣1|≤2的解集为M=[﹣1,1].(Ⅱ)∵x∈M,|y|≤,|z|≤,∴|x+2y﹣3z|≤|x|+2|y|+3|z|≤1+2×+3×=,∴:|x+2y﹣3z|≤成立.。
泸州市高2018级第一次教学质量诊断性考试数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.共150分.考试时间120分钟. 注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题的答案标号涂黑.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,写在试题卷、草稿纸和答题卡上的非答题区域均无效. 4.考试结束后,请将本试题卷和答题卡一并上交. 第Ⅰ卷(选择题共60分)一、选择题:本大题共有12个小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合要求的.1.已知集合{}240A x x x =-≤,{}21,B x x n n ==-∈N ,则A B ⋂=( ) A .{}3B .{}1,3C .{}1,3,4D .{}1,2,3,42.“sin cos αα=”是“cos20α=”的( ) A .充分但不必要条件 B .必要但不充分条件 C .充要条件D .既不充分也不必要条件3.已知3log 5a =,1ln 2b =, 1.11.5c -=,则a ,b ,c 的大小关系正确的是( ) A .b c a <<B .b a c <<C .a c b <<D .a b c <<4.我国的5G 通信技术领先世界,5G 技术的数学原理之一是著名的香农(Shannon )公式,香农提出并严格证明了“在被高斯白噪声干扰的信道中,计算最大信息传送速率C 的公式2log 1S C W N ⎛⎫=⋅+⎪⎝⎭”,其中W 是信道带宽(赫兹),S 是信道内所传信号的平均功率(瓦),N 是信道内部的高斯噪声功率(瓦),其中SN叫做信噪比.根据此公式,在不改变W 的前提下,将信噪比从99提升至λ,使得C 大约增加了60%,则λ的值大约为(参考数据:0.210 1.58≈) A .1559B .3943C .1579D .25125.右图为某旋转体的三视图,则该几何体的侧面积为( )A .10πB .8πC .9πD6.定义在R 上的函数()f x 满足(2)()f x f x +=,(2)()f x f x -=,当[]0,1x ∈时,2()f x x =,则函数()f x 的图象与()g x x =的图象的交点个数为( ) A .3B .4C .5D .67.A ,B 是函数()2sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭的图象与x 轴的两个交点,且A ,B 两点间距离的最小值为3π,则ω的值为( ) A .2B .3C .4D .58.函数3e ex xxy -=+(其中e 是自然对数的底数).的图象大致为( ) A . B .C .D .9.如图,在长方体1111ABCD A B C D -中,E ,F 分别为11C D ,11B C 的中点,O ,M 分别为BD ,EF 的中点,则下列说法错误的是( )A .四点B ,D ,E ,F 在同一平面内 B .三条直线BF ,DE ,1CC 有公共点 C .直线1A C 与直线OF 不是异面直线D .直线1A C 上存在点N 使M ,N ,O 三点共线 10.已知方程22log 0xx --=的两根分别为1x ,2x ,则下列关系正确的是(A .1212x x <<B .122x x >C .1201x x <<D .121x x =11.已知三棱锥A BCD -中,平面ABD ⊥平面BCD ,且ABD △和BCD △都是边长为2的等边三角形,则该三棱锥的外接球表面积为( ) A .4π B .163π C .8π D .203π12.已知函数321()(0)3f x ax x a =+>,若存在实数0(1,0)x ∈-,且012x ≠-,使()012f x f ⎛⎫=- ⎪⎝⎭,则实数a 的取值范围为( ) A .2,53⎛⎫ ⎪⎝⎭B .2,3(3,5)3⎛⎫⋃⎪⎝⎭C .18,67⎛⎫⎪⎝⎭D .18,4(4,6)7⎛⎫⋃⎪⎝⎭第Ⅱ卷(非选择题共90分) 注意事项:(1)非选择题的答案必须用0.5毫米黑色签字笔直接答在答题卡上,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,答在试题卷和草稿纸上无效. (2)本部分共10个小题,共90分.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题纸上)13.已知函数23,0()21,0x x x f x x +≤⎧=⎨+>⎩,则()()1f f -的值为______.14.曲线[]()sin 0,y x x π=∈与x 轴所围成的图形面积为______.15.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1tan 3α=,则tan()αβ-=______.16.如图,棱长为1的正方体1111ABCD A B C D -中,P 为线段1A B 上的动点(不含端点),给出下列结论:①平面11A D P ⊥平面1A AP ; ②多面体1CDPD 的体积为定值; ③直线1D P 与BC 所成的角可能为3π; ④1APD △可能是钝角三角形.其中正确结论的序号是______(填上所有正确结论的序号).三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知函数2()2cos 12xf x x =-+.(Ⅰ)若()6f παα⎛⎫=+⎪⎝⎭,求tan α的值; (Ⅱ)若函数()f x 图象上所有点的纵坐标保持不变,横坐标变为原来的12倍得函数()g x 的图象,且关于x 的方程()0g x m -=在0,2π⎡⎤⎢⎥⎣⎦上有解,求m 的取值范围. 18.已知曲线()sin f x kx x b =+在点,22f ππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭处的切线方程为230x y --=.(Ⅰ)求k ,b 的值; (Ⅱ)判断函数()f x 在区间0,2π⎛⎫⎪⎝⎭上零点的个数,并证明. 19.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知sin()sin 2B Ca A B c ++=. (Ⅰ)求A ;(Ⅱ)已知1b =,3c =,且边BC 上有一点D 满足3ABD ADC S S =△△,求AD .20.如图,在四棱锥S ABCD -中,底面ABCD 是菱形,G 是线段AB 上一点(不含A ,B ),在平面SGD 内过点G 作//GP 平面SBC 交SD 于点P .(Ⅰ)写出作GP 的步骤(不要求证明); (Ⅱ)若3BAD π∠=,2AB SA SB SD ====,P 是SD 的中点,求平面SBC 与平面SGD 所成锐二面角的余弦值.21.已知函数1()ln f x x m x m x=---,其中[]1,e m ∈,e 是自然对数的底数. (Ⅰ)求函数()f x 的单调递增区间; (Ⅱ)设关于x 的不等式1()ln f x x x kx n x≤--+对[]1,e x ∀∈恒成立时k 的最大值为[](),1,e c k n ∈∈R ,求n c +的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线1C 是圆心在()0,2,半径为2的圆,曲线2C 的参数方程为4x ty t π⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩(t 为参数且02t π≤≤),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线1C 的极坐标方程;(Ⅱ)若曲线2C 与坐标轴交于A ,B 两点,点P 为线段AB 上任意一点,直线OP 与曲线1C 交于点M (异于原点),求OM OP的最大值.23.选修4-5:不等式选讲若0a >,0b >,且223a b ab ++=,已知ab 的最小值为k . (Ⅰ)求k 的值(Ⅱ)若0x ∃∈R 使得关于x 的不等式2x m x k -+-≤成立,求实数m 的取值范围.泸州市高2018级第一次教学质量诊断性考试数学(理科)参考答案及评分意见评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度.可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右侧所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分. 一、选择题二、填空题13.3; 14.2; 15.34; 16.①②④. 三、解答题:17.解:(Ⅰ)因为2()2cos 12x f x x =-+cos x x =-2sin 6x π⎛⎫=- ⎪⎝⎭,因为()6f παα⎛⎫=+⎪⎝⎭,所以sin 6παα⎛⎫-= ⎪⎝⎭,所以1sin cos 22ααα-=,即cos αα-=,所以tan 9α=-; (Ⅱ)把()f x 图象上所有点横坐标变为原来的12倍得到函数()g x 的图象, 所以函数()g x 的解析式为()(2)2sin 26g x f x x π⎛⎫==-⎪⎝⎭, 关于x 的方程()0g x m -=在0,2π⎡⎤⎢⎥⎣⎦上有解求m 范围, 等价于求()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域, 因为02x π≤≤,所以52666x πππ-≤-≤, 所以1()2g x -≤≤,故m 的取值范围为[]1,2-. 18.解:(Ⅰ)因为()sin cos f x k x kx x '=+, 所以sin cos 2222f k k k ππππ⎛⎫'=+⨯=⎪⎝⎭, 又因为sin 2222k f k b b ππππ⎛⎫=⨯+=+⎪⎝⎭, 曲线()f x 在点,22f ππ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭处的切线方程为230x y --=. 所以2k =,3b =-; (Ⅱ)()f x 在0,2π⎛⎫⎪⎝⎭上有且只有一个零点, 因为()2sin 2cos f x x x x '=+,当0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x '>, 所以()f x 在0,2x π⎛⎫∈ ⎪⎝⎭上为单调递增函数且图象连续不断, 因为(0)30f =-<,302f ππ⎛⎫=->⎪⎝⎭,所以()f x 在0,2π⎛⎫⎪⎝⎭上有且只有一个零点. 19.解:(Ⅰ)由A B C x ++=可得:sin()sin()sin A B C C π+=-=,sinsin cos 222B C A Aπ+-==, 又sin()sin 2B C a A B c ++=,得sin cos 2Aa C c =,由正弦定理得sin sin sin cos 2AA C C =,因为sin 0C ≠,所以sin cos 2A A =, 所以2sincos cos 222A A A =,因为022A π<<,所以cos 02A≠, 所以1sin 22A =,即26A π=,所以3A π=.(Ⅱ)解法一:设ABD △的AB 边上的高为1h ,ADC △的AC 边上的高为2h , 因为3ABD ADC S S =△△,3c =,1b =, 所以1211322c h b h ⋅=⨯⋅, 所以12h h =,AD 是ABC △角A 的内角平分线,所以30BAD ∠=︒, 因为3ABD ADC S S =△△,可知34ABD ABC S S =△△, 所以131sin 30sin 60242AB AD AB AC ⨯⨯︒=⨯⨯⨯︒,所以AD =. 解法二:设03BAD παα⎛⎫∠=<<⎪⎝⎭,则3DAC πα∠=-,因为3ABD ADC S S =△△,3c =,1b =, 所以11sin 3sin 223c AD b AD παα⎛⎫⨯⨯=⨯⨯⨯- ⎪⎝⎭, 所以sin sin 3παα⎛⎫=-⎪⎝⎭,所以1sin cos sin 22ααα=-,tan 3α∴=,因为03πα<<,所以30BAD ∠=︒,3ABD ADC S S =△△,可知34ABD ABC S S =△△, 所以131sin 30sin 60242AB AD AB AC ⨯⨯︒=⨯⨯⨯︒,所以AD =.解法三:设AD x =,BDA α∠=,则ADC πα∠=-,在ABC △中,由3c =,1b =及余弦定理可得:2222cos a b c bc A =+-,所以a =因为3ABD ADC S S =△△,可知3BD DC ==在ABD △中2222cos AB BD AD BD AD α=+-⋅⋅,即2639cos 16AD AD α=+⋅在ADC △中,271cos()16AD AD πα=+⋅-,即271cos 162AD AD α=++⋅⋅,所以4AD =. 20.解:(Ⅰ)第一步:在平面ABCD 内过点G 作//GH BC 交CD 于点H ; 第二步:在平面SCD 内过点H 作//HP SC 交SD 于P ; 第三步:连接GP ,GP 即为所求.(Ⅱ)解法一:因为P 是SD 的中点,//HP SC ,所以H 是CD 的中点,而//GH BC ,所以G 是AB 的中点,连接AC ,GD 交于O ,连SO ,设S 在底面ABCD 的射影为M , 因为SA SB SD ==,所以MA MB MD ==,即M 为ABD △的外心, 所以M 与O 重合,因为OD =2SD =,所以SO =,23OC AC ==,过O 作//OE GB 交BC 于E ,分别以OG ,OE ,OS 为x ,y ,z 轴建立空间直角坐标系,则S ⎛ ⎝⎭,B ⎫⎪⎪⎝⎭,2,0C ⎛⎫ ⎪ ⎪⎝⎭,所以3SB ⎛=⎝⎭,()BC =-,设平面SBC 的法向量为(,,)nx y z =, 则303330n SB x y zn BC y ⎧⋅=+-=⎪⎨⎪⋅=-+=⎩,取z =,则1x =,y =所以(1,3,n =因为SO ⊥平面ABD ,所以平面SDG ⊥平面ABD ,又AB DG ⊥, 所以GB ⊥平面SGD ,故()0,1,0GB =为平面SGD 的法向量,设平面SBC 与平面SGD 所成锐二面角的大小为θ, 则3cos 26n GB n GBθ⋅===, 故平面SBC 与平面SGD 所成锐二面角的余弦值为2. 解法二:延长DG ,CB 交于I ,连接SI ,因为//GP 平面SBC ,平面SBC ⋂平面SGD SI =,GP ⊂平面SGD ,所以//GP SI , 又P 是SD 的中点,则G 是DI 的中点,又//GB DC ,所以B 是CI 的中点, 故IB BC SB ==,所以IS SC ⊥,因为SO ⊥平面ABD ,所以平面SDG ⊥平面ABD , 又AB DG ⊥,所以GB ⊥平面SGD ,所以CD ⊥平面SGD ,所以CD SI ⊥,即SI ⊥平面SDC ,所以CSD ∠为二面角C SI D --的平面角,在Rt CSD △中,2SD CD ==,故4CSD π∠=故平面SBC 与平面SGD 所成的锐二面角的余弦值为2.21.解:(Ⅰ)因为[]()1()ln 0,1,e f x x m x m x m x =--->∈, 所以22211()1m x mx f x x x x -+'=+-=,因为0x >,[]1,e m ∈, 所以①当240m ∆=-≤即12m ≤≤时,()f x 的增区间为(0,)+∞,②当240m ∆=->即2m e <≤时,方程210x mx -+=的两根为:1x =,2x =, ()f x 的增区间为()10,x ,()2,x +∞,综上①当12m ≤≤时,()f x 的增区间为(0,)+∞,②当2e m <≤时,()f x 的增区间为⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭; (Ⅱ)原不等式分(1ln )ln m x x x x n k x+-++⇔≤, 因为[]1,e m ∈,[]1,e x ∈,所以(1ln )ln 1ln ln m x x x x n x x x x n x x+-+++-++≥, 令1ln ln ()x x x x n g x x+-++=,即2ln ()x x n g x x -+-'=,令()ln p x x x n =-+-,即1()10p x x'=-+>, 所以()p x 在[]1,e x ∈上递增;①当(1)0p ≥,即1n ≤时,因为[]1,e n ∈,所以1n =,当[]1,e x ∈,()0p x ≥,即()0g x '≥,所以()g x 在[]1,e 上递增, 所以min ()(1)c g x g n ===,故22n c n +==;②当(e)0p ≤即[]e 1,e n ∈-时,因为[]1,e x ∈,()0p x ≤,即()0g x '≤,所以()g x 在[]1,e 上递减,所以min 2()(e)e n c g x g +===, 故212e ,e 1e ee n n c n +⎡⎤+=+∈+++⎢⎥⎣⎦; ③当(1)(e)0p p <,即(1,e 1)n ∈-时,因为()ln p x x x n =-+-在[]1,e 上递增,所以存在唯一实数0(1,e)x ∈,使得()00p x =,即00ln n x x =-, 则当()01,x x ∈时,()0p x <,即()0g x '<;当()0,e x x ∈时,()0p x >,即()0g x '>,故()g x 在()01,x 上单减,()0,e x 上单增,所以()0000min 00001ln ln 1()ln x x x x n c g x g x x x x +-++====+, 所以00000011ln ln n c x x x x x x +=++-=+, 设()0001()(1,e)u x x x x =+∈,则2020011()10x u x x x -'=-=>, 所以()u x 在[]1,e 上递增,所以12,e e n c ⎛⎫+∈+ ⎪⎝⎭.综上所述,22,e 1e n c ⎡⎤+∈++⎢⎥⎣⎦. 22.解:(Ⅰ)解法一:设曲线1C 与过极点且垂直于极轴的直线相交于异于极点的点E ,设曲线1C 上任意点(,)F ρθ,连接OF ,EF ,则OF EF ⊥,在OEF △中,4cos 4sin 2πρθθ⎛⎫=-= ⎪⎝⎭; 解法二:曲线1C 的直角坐标方程为22(2)4x y +-=,即2240x y y +-=,所以曲线1C 的极坐标方程为4sin ρθ=; (Ⅱ)曲线2C的参数方程为4x t y t π⎧=⎪⎨⎛⎫=- ⎪⎪⎝⎭⎩,因为曲线2C 与两坐标轴相交,所以点(2,0)A ,(0,2)B ,所以线段AB 的极坐标方程为cos sin 2002πρθρθθ⎛⎫+-=≤≤ ⎪⎝⎭, 12sin cos OP ρθθ==+,24sin OM ρθ==, sin cos 4sin 2OM OP θθθ+=⨯22sin 2sin cos θθθ=+ 1cos2sin 2θθ=-+214πθ⎛⎫=-+ ⎪⎝⎭, 所以当38πθ=时,OM OP1.23.解:(Ⅰ)由3222ab a b =++≥,2320-≥,≥3≤-(舍去), 当且仅当1a =,2b =时取得“=”,即k 的最小值为2;(Ⅱ)由2k =,2()(2)2x m x x m x m -+-≥---=-, 因为0x ∃∈R 使得关于x 的不等式2x m x k -+-≤成立, 所以22m -≤,解得:222m -≤-≤,即m 的取值范围是[]0,4.。
2018年四川省泸州市高考数学模拟试卷(理科)(5月份)一.选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z的共轭复数为z¯,且z(3+i)=10(i是虚数单位),则在复平面内,复数z¯对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2. 设集合P={(x, y)|y=k},Q={(x, y)|y=2x},己知P∩Q=⌀,那么k的取值范围是()A.(−∞, 0)B.(0, +∞)C.(−∞, 0]D.(1, +∞)3. 阅读如下框图,运行相应的程序,若输入n的值为10,则输出n的值为()A.0B.1C.3D.44. 已知函数f(x)={g(x),x>02x+1,x≤0是R上的奇函数,则g(3)=()A.5B.−5C.7D.−75. 设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是()A.a // b,b⊂α,则a // αB.a⊂α,b⊂β,α // β,则a // bC.a⊂α,b⊂α,b // β,则a // βD.α // β,a⊂α,则a // β6. 已知函数y=sin(2x+φ)在x=π6处取得最大值,则函数y=cos(2x+φ)的图象()A.关于点(π6, 0)对称 B.关于点(π3, 0)对称C.关于直线x=π6对称 D.关于直线x=π3对称7. 若实数a满足log a23>1>log14a,则a的取值范围是()A.(23, 1) B.(23, 34) C.(34, 1) D.(0, 23)8. 在△ABC中,角B为3π4,BC边上的高恰为BC边长的一半,则cos A=()A.2√55B.√55C.23D.√539. 某几何体的三视图如图所示,则该几何体的外接球的表面积为()A.136πB.144πC.36πD.34π10. 若一个四位数的各位数字相加和为10,则称该数为“完美四位数”,如数字“2017”.试问用数字0,1,2,3,4,5,6,7组成的无重复数字且大于2017的“完美四位数”有()个.A.53B.59C.66D.7111. 已知抛物线C:y2=4x的焦点为F,准线为l,点A∈l,线段AF交抛物线C于点B,若FA→=3FB→,则|AF→|=()A.3B.4C.6D.712. 已知偶函数f(x)={|log4x|,0<x≤4f(8−x),4<x<8,且f(x−8)=f(x),则函数F(x)=f(x)−12|x|在区间[−2018, 2018]的零点个数为()A.2020B.2016C.1010D.1008二.填空题(每题5分,满分20分,将答案填在答题纸上)13. (x +1)(x −2)5的展开式中含x 3项的系数为________.14. 若x ,y 满足约束条件{x −y ≤0x +y ≥0y ≤1 ,则z =y+1x+2的最大值为________.15. 已知双曲线C 的中心为坐标原点,点F(2, 0)是双曲线C 的一个焦点,过点F 作渐近线的垂线l ,垂足为M ,直线l 交y 轴于点E ,若|FM|=3|ME|,则双曲线C 的方程为________.16. 已知球O 是棱长为2的正八面体(八个面都是全等的等边三角形)的内切球,MN 为球O 的一条直径,点P 为正八面体表面上的一个动点,则PM →∗PN →的取值范围是________. 三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤)17. 如图,在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,sin A =2sin (A +B),它的面积S =5√716c 2. (1)求sin B 的值;(2)若D 是BC 边上的一点,cos ∠ADB =34,求BDDC 的值.18. 甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下:甲公司规定底薪80元,每销售一件产品提成1元;乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元. (I)请将两家公司各一名推销员的日工资y (单位:元)分别表示为日销售件数n 的函数关系式;(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图.若记甲公司该推销员的日工资为X ,乙公司该推销员的日工资为Y (单位:元),将该频率视为概率,请回答下面问题: 某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.19. 如图,多面体EF −ABCD 中,四边形ABCD 是菱形,AB =4,∠BAD =60∘,AC ,BD 相交于O ,EF // AC ,点E 在平面ABCD 上的射影恰好是线段AO 的中点. (Ⅰ)求证:BD ⊥平面ACF ;(Ⅱ)若直线AE 与平面ABCD 所成的角为45∘,求平面DEF 与平面ABCD 所成角(锐角)的余弦值.20. 已知动点M(x, y)满足:√(x +1)2+y 2+√(x −1)2+y 2=2√2.(1)求动点M 的轨迹E 的方程;(2)设过点N(−1, 0)的直线l 与曲线E 交于A ,B 两点,点A 关于x 轴的对称点为C (点C 与点B 不重合),证明:直线BC 恒过定点,并求该定点的坐标.21. 已知函数f(x)=(x +2)ln (x +1)−ax(a ∈R)(Ⅰ)若a =1,求曲线y =f(x)在点(0, f(0))处的切线方程; (Ⅱ)若f(x)≥0在[0, f(0))上恒成立,求实数a 的取值范围;(Ⅲ)若数列{a n }的前n 项和S n =n 2+3n −1,b n =4a n,求证:数列{b n }的前n 项和T n <ln (n +1)(n +2).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22. 在直角坐标系xOy 中,抛物线C 的方程为y 2=4x .(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是{x =2+t cos αy =t sin α (t 为参数),l 与C 交于A ,B 两点,|AB|=4√6,求l 的倾斜角.[选修4-5:不等式选讲]23. 已知函数f(x)=|a −3x|−|2+x|. (1)若a =2,解不等式f(x)≤3;(2)若存在实数a ,使得不等式f(x)≤1−a −4|2+x|成立,求实数a 的取值范围.参考答案与试题解析2018年四川省泸州市高考数学模拟试卷(理科)(5月份)一.选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】 A【考点】 复数的运算 【解析】把已知等式变形,利用复数代数形式的乘除运算化简,求出z ¯的坐标得答案. 【解答】由z(3+i)=10,得z =103+i=10(3−i)(3+i)(3−i)=3−i ,∴ z ¯=3+i ,则复数z ¯对应的点的坐标为(3, 1),位于第一象限. 2.【答案】 C【考点】 交集及其运算 【解析】根据集合的定义与性质,求出k 的取值范围. 【解答】集合P ={(x, y)|y =k},Q ={(x, y)|y =2x >0}, 且P ∩Q =⌀,∴ k 的取值范围是k ≤0. 3.【答案】 C【考点】 程序框图 【解析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序的运行过程,可得答案. 【解答】模拟程序的运行,可得:当n =10时,不能被3整除,故n =9,不满足退出循环的条件; 当n =9时,能被3整除,故n =3,满足退出循环的条件; 故输出的n =3,4.【答案】 A【考点】分段函数的应用 【解析】根据题意,由函数的解析式可得f(3)=g(3)以及f(−3)=−5,由奇函数的性质分析可得g(3)=−f(−3),即可得答案. 【解答】根据题意,函数f(x)={g(x),x >02x +1,x ≤0 ,则f(3)=g(3),f(−3)=2×(−3)+1=−5, 又由f(x)为奇函数,则g(3)=−f(−3)=5; 5.【答案】 D【考点】空间中直线与直线之间的位置关系 空间中直线与平面之间的位置关系 空间中平面与平面之间的位置关系【解析】在A 中,a // α或a ⊂α;在B 中,a 与b 平行或异面;在C 中,α与β相交或平行;在D 中,由面面平行的性质定理得a // β. 【解答】由a ,b 是空间中不同的直线,α,β是不同的平面,知: 在A 中,a // b ,b ⊂α,则a // α或a ⊂α,故A 错误;在B 中,a ⊂α,b ⊂β,α // β,则a 与b 平行或异面,故B 错误; 在C 中,a ⊂α,b ⊂α,b // β,则α与β相交或平行,故C 错误;在D 中,α // β,a ⊂α,则由面面平行的性质定理得a // β,故D 正确. 6. 【答案】 A【考点】余弦函数的图象 【解析】由题意可得sin (π3+φ)=1,故有cos (π3+φ)=0,由此可得函数y =cos (2x +φ)的图象特征. 【解答】∵ 函数y =sin (2x +φ)在x =π6处取得最大值,∴ sin (π3+φ)=1, ∴ cos (π3+φ)=0,∴ 函数y =cos (2x +φ)的图象关于点(π6, 0)对称, 7.【答案】 A【考点】对数函数的单调性与特殊点 指、对数不等式的解法 【解析】 由已知可得得{log a 23>1lpg 14a <1,利用对数函数的单调性分别求解两不等式,取交集得答案.【解答】由log a 23>1>log 14a ,得{log a 23>1log 14a <1, 由①得,当a >1时,a <23,此时a ∈⌀. 当0<a <1时,a >23,则23<a <1; 由②得,a >14. 取交集得:23<a <1.∴ a 的取值范围是(23, 1).8.【答案】 A【考点】 三角形求面积 【解析】由BC 边上的高AD 恰为BC 边长的一半,即AD =BD =a2,AB =√22a , 在△ABC 中,由余弦定理得AC ,在△ABC 中,由正弦定理得BCsin A=AC sin B⇒sin A =√15,即可求解.【解答】如图,BC 边上的高AD 恰为BC 边长的一半,即AD =BD =a2∴ AB =√22a 在△ABC 中,由余弦定理得AC 2=AB 2+BC 2−2AB ⋅BC cos ∠ABC =52a 2. 在△ABC 中,由正弦定理得BC sin A=AC sin B⇒sin A =√15,∵ A ∈(0, π4),⇒cos A =2√55.9.【答案】 【考点】由三视图求体积 【解析】作出几何体的直观图,建立空间直角坐标系,求出外接球的球心,从而可的外接球的半径,再计算出外接球的面积. 【解答】由三视图可知几何体为四棱锥E −ABCD ,直观图如图所示:其中,BE ⊥平面ABCD ,BE =4,AB ⊥AD ,AB =√2, C 到AB 的距离为2,C 到AD 的距离为2√2,以A 为原点,以AB ,AD ,及平面ABCD 过A 的垂线为坐标轴建立空间直角坐标系A −xyz , 则A(0, 0, 0),B(0, √2, 0),C(2, 2√2, 0),D(4, 0, 0),E(0, √2, 4). 设外接球的球心为M(x, y, z),则MA =MB =MC =MD =ME ,∴ x 2+y 2+z 2=x 2+(y −√2)2+z 2=(x −2)2+(y −2√2)2+z 2=(x −4)2+y 2+z 2=x 2+(y −√2)2+(z −4)2, 解得x =2,y =√22,z =(2) ∴ 外接球的半径r =MA =√4+12+4=√172, ∴ 外接球的表面积S =4πr 2=34π.故选:D . 10. 【答案】 D【考点】排列、组合及简单计数问题 【解析】根据题意,分析可得四位数字相加和为10的情况有①0、1、3、6,②0、1、4、5,③0、1、2、7,④0、2、3、5,⑤1、2、3、4;共5种情况,据此分5种情况讨论,依次求出每种情况下大于2017的“完美四位数”的个数,将其相加即可得答案. 【解答】解:根据题意,四位数字相加和为10的情况有①0、1、3、6,②0、1、4、5,③0、1、2、7,④0、2、3、5,⑤1、2、3、4;共5种情况, 则分5种情况讨论:①、四个数字为0、1、3、6时,千位数字可以为3或6,有2种情况,将其余3个数字全排列,安排在百位、十位、个位,有A 33=6种情况, 此时有2×6=12个“完美四位数”, ②、四个数字为0、1、4、5时,千位数字可以为4或5,有2种情况,将其余3个数字全排列,安排在百位、十位、个位,有A 33=6种情况, 此时有2×6=12个“完美四位数”, ③、四个数字为0、1、2、7时,千位数字为7时,将其余3个数字全排列,安排在百位、十位、个位,有A 33=6种情况, 千位数字为2时,有2071、2107、2170、2701、2710,共5种情况, 此时有6+5=11个“完美四位数”, ④、四个数字为0、2、3、5时,千位数字可以为2或3或5,有3种情况,将其余3个数字全排列,安排在百位、十位、个位,有A 33=6种情况, 此时有3×6=18个“完美四位数”, ⑤、四个数字为1、2、3、4时,千位数字可以为3或4或2,有3种情况,将其余3个数字全排列,安排在百位、十位、个位,有A 33=6种情况, 此时有3×6=18个“完美四位数”,则一共有12+12+11+18+18=71个“完美四位数”, 故选D . 11.【答案】 B【考点】 抛物线的求解 【解析】利用FA →=3FB →,求解A ,B 的坐标,即可求得|AF →|. 【解答】抛物线C:y 2=4x 的焦点为F ,准线为l ,点A ∈l , 设A(−1, a),B(m, n),则 ∵ FA →=3FB →,∴ 1−m 2=13,∴ m =13∴ n =±2√33∵ |n||a|=13,∴ a =±2√3∵ y 2=4x 的焦点为F(1, 0) ∴ |AF →|=√(1+1)2+(2√3)2=4 12.【答案】 A【考点】函数与方程的综合运用函数的零点与方程根的关系【解析】作出f(x)一个周期内的函数图象,根据函数周期性判断交点个数. 【解答】当4<x <8时,f(x)=f(8−x),故而f(x)在(0, 8)上的函数图象关于直线x =4对称, ∵ f(x −8)=f(x),∴ f(x)的周期为T =8, 作出y =f(x)和y =12|x|的图象在(0, 8)上的函数图象如图所示:由图象可知f(x)在一个周期内与y =12|x|有4个交点, ∴ F(x)在[0, 2018]上有252×4+2=1010个交点, 又f(x)与y =12|x|是偶函数,∴ F(x)在[−2018, 2018]的零点个数为1010×2=2020. 故选:A .二.填空题(每题5分,满分20分,将答案填在答题纸上)13.【答案】 −40【考点】二项式定理及相关概念 【解析】利用(x −2)5展开式的二次项与x +1的一次项相乘,展开式的三次项与x +1的常数项相乘,即可得到(x +1)(x −2)5的展开式中含x 3项的系数.【解答】∵ (x −2)5展开式的通项公式为T r+1=C 5r⋅x 5−r ⋅(−2)r , 令5−r =2,解得r =3,∴ 展开式中含x 2项的系数为C 53⋅(−2)3=−80; 令5−r =3,解得r =2,∴ 展开式中含x 3项的系数为C 52⋅(−2)2=40; ∴ (x +1)(x −2)5的展开式中含x 3项的系数为 1×(−80)+1×40=−40. 14.【答案】 2【考点】 简单线性规划 【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,即可求z 的取值范围. 【解答】作出不等式组对应的平面区域,z =y+1x+2的几何意义为区域内的点到B(−2, −1)的斜率,由图象知,AB 的斜率最大, 由A(−1, 1),故AB 的斜率k =1+1−1+2=2. 15. 【答案】 x 2−y 23=1【考点】双曲线的离心率 【解析】由双曲线的标准方程可得渐近线方程,利用|FM|=3|ME|,可得FM →=3ME →,求出M 的坐标,代入渐近线y =ba x ,求得a ,b 的关系式,再由a ,b ,c 的关系,解方程可得a ,b ,即可得出双曲线的方程. 【解答】如图所示.双曲线的方程为x 2a 2−y 2b 2=1(a >0, b >0), 右焦点F(2, 0),即c =2, 渐近线方程设为y =ba x . ∵ FM ⊥OM ,∴ 可得直线FM 的方程为y =−ab (x −2), 令x =0,解得y =2a b,∴ E(0, 2ab).∵ |FM|=3|ME|,可得FM →=3ME →, ∴ M(21+3, 6a b1+3), 又M 在渐近线y =ba x 上, ∴3a 2b=b a⋅12,解得√3a =b , 又a 2+b 2=4, 解得a =1,b =√3, 则双曲线的方程为x 2−y 23=1.16. 【答案】[13,43brack 【考点】空间向量的数量积运算 【解析】设球O 的半径为R ,则12×√2×1=12×√3×R ,解得R =√63.|OP →|∈[1,√2brack .可得PM →∗PN →=(OM →−OP ¯)⋅(ON →−OP →)=OP →2−R →2. 【解答】设球O 的半径为R ,则12×√2×1=12×√3×R ,解得R =√63. |OP →|∈[1,√2brack .PM →∗PN →=(OM →−OP ¯)⋅(ON →−OP →)=OP →2−R →2=OP →2−23∈[13,43brack . 三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤) 17.【答案】∵ sin A =2sin (A +B), ∴ sin A =2sin C ,a =2c , ∴ S =12sin B ⋅c ⋅2c =5√716c 2, 故sin B =5√716; 由(1)sin B =5√716,cos ∠ADB =34,∴ cos B =±916,sin ∠ADB =√74, ∴ sin ∠BAD=sin (B +∠ADB)=sin B cos ∠ADB +cos B sin ∠ADB =5√716×34+916×√74 =3√78, 或sin ∠BAD =3√732, 由BDsin ∠BAD =ABsin ∠ADB , 得:3√78=√74或3√732=√74,解得:BD =32c 或BD =38c ,故BD DC=3或313.【考点】 三角形求面积 【解析】(1)根据正弦定理以及三角形的面积公式求出sin B 即可;(2)求出sin ∠BAD ,再根据正弦定理求出BD ,求出CD ,从而求出BDDC 的值.【解答】∵ sin A =2sin (A +B), ∴ sin A =2sin C ,a =2c , ∴ S =12sin B ⋅c ⋅2c =5√716c 2, 故sin B =5√716; 由(1)sin B =5√716,cos ∠ADB =34,∴ cos B =±916,sin ∠ADB =√74, ∴ sin ∠BAD=sin (B +∠ADB)=sin B cos ∠ADB +cos B sin ∠ADB =5√716×34+916×√74=3√78, 或sin ∠BAD =3√732, 由BDsin ∠BAD =ABsin ∠ADB ,得:3√78=√74或3√732=√74,解得:BD =32c 或BD =38c ,故BD DC =3或313. 18.【答案】(1)由题意得,甲公司一名推销员的日工资y (单位:元)与销售件数n 的关系式为: y =80+n ,n ∈N .乙公司一名推销员的日工资y (单位:元) 与销售件数n 的关系式为: y ={120,(n ≤45,n ∈N)8n −240,(n >45,n ∈N).(2)记甲公司一名推销员的日工资为X (单位:元), 由条形图可得X 的分布列为:记乙公司一名推销员的日工资为Y (单位:元),由条形图可得Y 的分布列为:∵ E(X)=122×0.2+124×0.4+126×0.2+128×0.1+130×0.1=125, E(Y)=120×0.2+128×0.3+144×0.4+160×0.1=136, ∴ 仅从日均收入的角度考虑,我会选择去乙公司.【考点】频率分布直方图 【解析】(I )由题意能求出甲公司一名推销员的日工资y (单位:元)与销售件数n 的关系式和乙公司一名推销员的日工资y (单位:元) 与销售件数n 的关系式. (Ⅱ)记甲公司一名推销员的日工资为X (单位:元),由条形图可得X 的分布列,记乙公司一名推销员的日工资为Y (单位:元),由条形图可得Y 的分布列,从而求出E(X)=125,E(Y)=136,由此得到仅从日均收入的角度考虑,我会选择去乙公司. 【解答】(1)由题意得,甲公司一名推销员的日工资y (单位:元)与销售件数n 的关系式为: y =80+n ,n ∈N .乙公司一名推销员的日工资y (单位:元) 与销售件数n 的关系式为: y={120,(n ≤45,n ∈N)8n −240,(n >45,n ∈N).(2)记甲公司一名推销员的日工资为X (单位:元),由条形图可得X 的分布列为:记乙公司一名推销员的日工资为Y (单位:元),由条形图可得Y 的分布列为:∵ E(X)=122×0.2+124×0.4+126×0.2+128×0.1+130×0.1=125, E(Y)=120×0.2+128×0.3+144×0.4+160×0.1=136, ∴ 仅从日均收入的角度考虑,我会选择去乙公司. 19.【答案】(1)取AO 的中点H ,连结EH ,则EH ⊥平面ABCD ∵ BD 在平面ABCD 内,∴ EH ⊥BD又菱形ABCD 中,AC ⊥BD 且EH ∩AC =H ,EH 、AC 在平面EACF 内 ∴ BD ⊥平面EACF ,即BD ⊥平面ACF(2)由(Ⅰ)知EH ⊥平面ABCD ,以H 为原点,如图所示建立空间直角坐标系H −xyz ∵ EH ⊥平面ABCD ,∴ ∠EAH 为AE 与平面ABCD 所成的角,即∠EAH =45∘,又菱形ABCD 的边长为4,则AO =2√3,AH =√3,EH =√3 各点坐标分别为H(0,0,0),A(√3,0,0),D(−√3,−2,0),O(−√3,0,0),E(0, 0, √3)易知HE →为平面ABCD 的一个法向量,记n →=HE →=(0,0,√3),AO →=(−2√3,0,0),DE →=(√3,2,√3) ∵ EF // AC ,∴ EF →=λAO →=(−2√3λ,0,0)设平面DEF 的一个法向量为m →=(x,y,z),m →⊥DE →,m →⊥EF →(注意:此处EF →可以用AO →替代) 即 m →⋅DE →=√3x +2y +√3z =0,m →⋅EF →=−2√3λx =0 令y =√3,x =0,z =−2,则,∴ m →=(0,√3,−2) ∴ cos ⟨n →,m →>=n →⋅m→|n →|⋅|m →|=√3√3⋅√7=−2√77平面DEF 与平面ABCD 所成角(锐角)的余弦值为2√77.【考点】二面角的平面角及求法 直线与平面垂直【解析】(Ⅰ)取AO 的中点H ,连结EH ,证明EH ⊥BD ,AC ⊥BD ,即BD ⊥平面ACF(Ⅱ)由(Ⅰ)知EH ⊥平面ABCD ,以H 为原点,如图所示建立空间直角坐标系H −xyz ,由EH ⊥平面ABCD ,得∠EAH 为AE 与平面ABCD 所成的角,即∠EAH =45∘则AO =2√3,AH =√3,EH =√3各点坐标分别为H(0,0,0),A(√3,0,0),D(−√3,−2,0),O(−√3,0,0),E(0, 0, √3),求出法向量即可求解. 【解答】(1)取AO 的中点H ,连结EH ,则EH ⊥平面ABCD ∵ BD 在平面ABCD 内,∴ EH ⊥BD又菱形ABCD 中,AC ⊥BD 且EH ∩AC =H ,EH 、AC 在平面EACF 内 ∴ BD ⊥平面EACF ,即BD ⊥平面ACF(2)由(Ⅰ)知EH ⊥平面ABCD ,以H 为原点,如图所示建立空间直角坐标系H −xyz ∵ EH ⊥平面ABCD ,∴ ∠EAH 为AE 与平面ABCD 所成的角,即∠EAH =45∘,又菱形ABCD 的边长为4,则AO =2√3,AH =√3,EH =√3 各点坐标分别为H(0,0,0),A(√3,0,0),D(−√3,−2,0),O(−√3,0,0),E(0, 0, √3)易知HE →为平面ABCD 的一个法向量,记n →=HE →=(0,0,√3),AO →=(−2√3,0,0),DE →=(√3,2,√3) ∵ EF // AC ,∴ EF →=λAO →=(−2√3λ,0,0)设平面DEF 的一个法向量为m →=(x,y,z),m →⊥DE →,m →⊥EF →(注意:此处EF →可以用AO →替代) 即 m →⋅DE →=√3x +2y +√3z =0,m →⋅EF →=−2√3λx =0令y =√3,x =0,z =−2,则,∴ m →=(0,√3,−2) ∴ cos ⟨n →,m →>=n →⋅m→|n →|⋅|m →|=√3√3⋅√7=−2√77平面DEF 与平面ABCD 所成角(锐角)的余弦值为2√77.20.【答案】解:(1)由已知,动点M 到点P(−1,0),Q(1,0)的距离之和为2√2,且|PQ|<2√2,所以动点M 的轨迹为椭圆, 而a =√2,c =1, 所以b =1,所以动点M 的轨迹E 的方程为x 22+y 2=1. (2)设A (x 1,y 1),B (x 2,y 2),则C (x 1,−y 1), 由已知得直线l 的斜率存在,设斜率为k , 则直线l 的方程为:y =k(x +1), 由{y =k(x +1)x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2−2=0, 所以x 1+x 2=−4k 21+2k 2,x 1x 2=2k 2−21+2k 2,直线BC 的方程为y −y 2=y 2+y 1x 2−x 1(x −x 2),所以y =y 2+y 1x 2−x 1x −x 1y 2+x 2y 1x 2−x 1,令y =0, 则x =x 1y 2+x 2y 1y 2+y 1=2kx 1x 2+k (x 1+x 2)k (x 1+x 2)+2k=2x 1x 2+(x 1+x 2)(x 1+x 2)+2=−2,所以直线BC 与x 轴交于定点D(−2,0). 【考点】 轨迹方程 【解析】 此题暂无解析 【解答】 解:(1)由已知,动点M 到点P(−1,0),Q(1,0)的距离之和为2√2, 且|PQ|<2√2,所以动点M 的轨迹为椭圆, 而a =√2,c =1, 所以b =1,所以动点M 的轨迹E 的方程为x 22+y 2=1. (2)设A (x 1,y 1),B (x 2,y 2),则C (x 1,−y 1), 由已知得直线l 的斜率存在,设斜率为k , 则直线l 的方程为:y =k(x +1), 由{y =k(x +1)x 22+y 2=1 得(1+2k 2)x 2+4k 2x +2k 2−2=0, 所以x 1+x 2=−4k 21+2k 2,x 1x 2=2k 2−21+2k 2, 直线BC 的方程为y −y 2=y 2+y 1x 2−x 1(x −x 2),所以y =y 2+y 1x 2−x 1x −x 1y 2+x 2y 1x 2−x 1,令y =0, 则x =x 1y 2+x 2y 1y 2+y 1=2kx 1x 2+k (x 1+x 2)k (x 1+x 2)+2k=2x 1x 2+(x 1+x 2)(x 1+x 2)+2=−2,所以直线BC 与x 轴交于定点D(−2,0). 21.【答案】(1)因为a =1,所以f(x)=(x +2)ln (x +1)−x ,f(0)=(0+2)×ln 1−0=0,切点为(0, 0). 由f′(x)=ln (x +1)+x+2x+1−1,所以f ′(0)=ln (0+1)+0+20+1−1=1,所以曲线y =f(x)在(0, 0)处的切线方程为y −0=1×(x −0),即x −y =0. (2)由f ′(x)=ln (x +1)+x+2x+1−a ,令g(x)=f′(x),(x ∈[0, +∞)),则g ′(x)=1x+1−1(x+1)2=x (x+1)2≥0,(当且仅当x =0取等号). 故f′(x)在[0, +∞)上为增函数.①当a ≤2时,f′(x)≥f′(0)≥0,故f(x)在[0, +∞)上为增函数, 所以f(x)≥f(0)=0恒成立,故a ≤2符合题意;②当a >2时,由于f′(0)=2−a <0,f′(e a −1)=1+1e a >0,根据零点存在定理,必存在t ∈(0, e a −1),使得f′(t)=0, 由于f′(x)在[0, +∞)上为增函数,故当x ∈(0, t)时,f′(t)<0,故f(x)在x ∈(0, t)上为减函数,所以当x ∈(0, t)时,f(x)<f(0)=0,故f(x)≥0在[0, +∞)上不恒成立, 所以a >2不符合题意.综上所述,实数a 的取值范围为(−∞, 2]. 证明:(III)由S n =n 2+3n −1, ∴ n =1时,a 1=S 1=1+3−1=3,n ≥2时,a n =S n −S n−1=(n 2+3n −1)−[(n −1)2+3(n −1)−1]=2n +2,n ≥2,∵ b n =4a n,∴ b n ={43,n =12n+1,n ≥2,由(Ⅱ)知当x >0时,(x +2)ln (1+x)>2x ,故当x >0时,ln (1+x)>2xx+2,故ln(1+2n )>2−2n2n+2=21+n,故∑n k=1ln(1+2k )>∑n k=121+k.下面证明:T n<ln(n+1)(n+2),因为∑n k=1ln(1+2k )=ln(1+21)+ln(1+22)+ln(1+23)+...+ln(1+2n−1)+ln(1+2n)=ln(3×42×53×64×⋯×n+1n−1×n+2n)=ln(n+1)(n+2)2=ln(n+1)(n+2)−ln2,T n=43+22+1+23+1+⋯+2n+1,∑n k=121+k=21+1+22+1+23+1+⋯+2n+2=1+22+1+23+1+⋯+2n+2=1+T n−43=T n−13,∴ln(n+1)(n+2)−ln2>T n−13,即数列{b n}的前n项和T n<ln(n+1)(n+2).【考点】数列与函数的综合利用导数研究函数的最值利用导数研究曲线上某点切线方程【解析】(Ⅰ)由a=1,得f(x)=(x+2)ln(x+1)−x,切点为(0, 0).由f′(x)=ln(x+1)+x+2x+1−1,得f′(0)=1,由此能求出曲线y=f(x)在(0, 0)处的切线方程.(Ⅱ)由f′(x)=ln(x+1)+x+2x+1−a,令g(x)=f′(x),则g′(x)=1x+1−1(x+1)2=x(x+1)2≥0,从而f′(x)在[0, +∞)上为增函数.由此利用分类讨论思想结合导数性质能求出实数a的取值范围.(III)由S n=n2+3n−1,推导出b n={43,n=1 2n+1,n≥2,从而∑n k=1ln(1+2k)>∑n k=121+k,再证明T n<ln(n+1)(n+2),由此能证明数列{b n}的前n项和T n<ln(n+1)(n+2).【解答】(1)因为a=1,所以f(x)=(x+2)ln(x+1)−x,f(0)=(0+2)×ln1−0=0,切点为(0, 0).由f′(x)=ln(x+1)+x+2x+1−1,所以f′(0)=ln(0+1)+0+20+1−1=1,所以曲线y=f(x)在(0, 0)处的切线方程为y−0=1×(x−0),即x−y=0.(2)由f′(x)=ln(x+1)+x+2x+1−a,令g(x)=f′(x),(x∈[0, +∞)),则g′(x)=1x+1−1(x+1)2=x(x+1)2≥0,(当且仅当x=0取等号).故f′(x)在[0, +∞)上为增函数.①当a≤2时,f′(x)≥f′(0)≥0,故f(x)在[0, +∞)上为增函数,所以f(x)≥f(0)=0恒成立,故a≤2符合题意;②当a>2时,由于f′(0)=2−a<0,f′(e a−1)=1+1e a>0,根据零点存在定理,必存在t∈(0, e a−1),使得f′(t)=0,由于f′(x)在[0, +∞)上为增函数,故当x∈(0, t)时,f′(t)<0,故f(x)在x∈(0, t)上为减函数,所以当x∈(0, t)时,f(x)<f(0)=0,故f(x)≥0在[0, +∞)上不恒成立,所以a>2不符合题意.综上所述,实数a的取值范围为(−∞, 2].证明:(III)由S n=n2+3n−1,∴n=1时,a1=S1=1+3−1=3,n≥2时,a n=S n−S n−1=(n2+3n−1)−[(n−1)2+3(n−1)−1]=2n+2,n≥2,∵b n=4a n,∴b n={43,n=12n+1,n≥2,由(Ⅱ)知当x>0时,(x+2)ln(1+x)>2x,故当x>0时,ln(1+x)>2xx+2,故ln(1+2n)>2−2n2n+2=21+n,故∑n k=1ln(1+2k)>∑n k=121+k.下面证明:T n<ln(n+1)(n+2),因为∑n k=1ln(1+2k)=ln(1+21)+ln(1+22)+ln(1+23)+...+ln(1+2n−1)+ln(1+2n)=ln(3×42×53×64×⋯×n+1n−1×n+2n)=ln(n+1)(n+2)2=ln(n+1)(n+2)−ln2,T n=43+22+1+23+1+⋯+2n+1,∑nk=121+k=21+1+22+1+23+1+⋯+2n+2=1+22+1+23+1+⋯+2n+2=1+T n−43=T n−13,∴ln(n+1)(n+2)−ln2>T n−13,即数列{b n}的前n项和T n<ln(n+1)(n+2).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程] 22.【答案】解:∵{x=ρcosθy=ρsinθ,代入y2=4x,∴ρsin2θ−4cosθ=0.(2)不妨设点A,B对应的参数分别是t1,t2,把直线l 的参数方程代入抛物线方程得: t 2sin 2α−4cos α⋅t −8=0, ∴ Δ=16cos 2α+32sin 2α>0, ∴ t 1+t 2=4cos αsin 2α,t 1t 2=−8sin 2α, 则|AB|=|t 1−t 2|=√16+16sin 2αsin 2α=4√6,∴ sin α=√22, ∴ α=π4或α=3π4.【考点】利用圆锥曲线的参数方程求最值 抛物线的极坐标方程【解析】(1)由x =ρcos θ,y =ρsin θ可得抛物线C 的极坐标方程;(2)不妨设点A ,B 对应的参数分别是t 1,t 2,根据弦长公式,即可求解. 【解答】解:∵ {x =ρcos θy =ρsin θ,代入y 2=4x ,∴ ρsin 2θ−4cos θ=0.(2)不妨设点A ,B 对应的参数分别是t 1,t 2, 把直线l 的参数方程代入抛物线方程得: t 2sin 2α−4cos α⋅t −8=0, ∴ Δ=16cos 2α+32sin 2α>0, ∴ t 1+t 2=4cos αsin 2α,t 1t 2=−8sin 2α,则|AB|=|t 1−t 2|=√16+16sin 2αsin 2α=4√6,∴ sin α=√22, ∴ α=π4或α=3π4.[选修4-5:不等式选讲] 23.【答案】a =2时:f(x)=|3x −2|−|x +2|≤3,可得{x ≥233x −2−x −2≤3 或{−2<x <232−3x −x −2≤3 或{x ≤−22−3x +x +2≤3 ,解得:−34≤x ≤72; 故不等式的解集是[−34, 72];不等式f(x)≤1−a −4|2+x|成立,即|3x −a|+|3x +6|≤1−a , 由绝对值不等式的性质可得:||3x −a|+|3x +6||≥|(3x −a)−(3x +6)|=|a +6|, 即有f(x)的最小值为|a +6|≤1−a , 解得:a ≤−52.【考点】绝对值不等式的解法与证明 【解析】(1)通过讨论x 的范围,得到关于x 的不等式组,解出取并集即可;(2)由题意知这是一个存在性的问题,须求出不等式左边的最大值,可运用绝对值不等式的性质可得最大值,再令其大于等于a ,即可解出实数a 的取值范围. 【解答】a =2时:f(x)=|3x −2|−|x +2|≤3,可得{x ≥233x −2−x −2≤3 或{−2<x <232−3x −x −2≤3 或{x ≤−22−3x +x +2≤3 ,解得:−34≤x ≤72; 故不等式的解集是[−34, 72];不等式f(x)≤1−a −4|2+x|成立,即|3x −a|+|3x +6|≤1−a , 由绝对值不等式的性质可得:||3x −a|+|3x +6||≥|(3x −a)−(3x +6)|=|a +6|, 即有f(x)的最小值为|a +6|≤1−a , 解得:a ≤−52.。
2018年全国一般高等学校招生高考数学模拟试卷(理科)(一)一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)已知集合A={x|2﹣x>0},B={x|()x<1},那么()A.A∩B={x|0<x≤2} B.A∩B={x|x<0} C.A∪B={x|x<2} D.A∪B=R2.(5分)已知i为虚数单位,a为实数,复数z知足z+3i=a+ai,假设复数z 是纯虚数,那么()A.a=3 B.a=0 C.a≠0 D.a<03.(5分)我国数学家邹元治利用如图证明勾股定理,该图顶用勾(a)和股(b)别离表示直角三角形的两条直角边,用弦(c)表示斜边,现已知该图中勾为3,股为4,假设从图中随机取一点,那么此点不落在中间小正方形中的概率是()A. B.C.D.4.(5分)已知等差数列{a n}的前n项和为S n,且S9=6π,那么tan a5=()A. B.C.﹣D.﹣5.(5分)已知函数f(x)=x+(a∈R),那么以下结论正确的选项是()A.∀a∈R,f(x)在区间(0,+∞)内单调递增B.∃a∈R,f(x)在区间(0,+∞)内单调递减C.∃a∈R,f(x)是偶函数D.∃a∈R,f(x)是奇函数,且f(x)在区间(0,+∞)内单调递增6.(5分)(1+x)(2﹣x)4的展开式中x项的系数为()A.﹣16 B.16 C.48 D.﹣487.(5分)如图是某个几何体的三视图,那么那个几何体的表面积是()A.π+4+4 B.2π+4+4 C.2π+4+2 D.2π+2+4 8.(5分)假设a>1,0<c<b<1,那么以下不等式不正确的选项是()A.log2018a>log2018b B.log b a<log c aC.(a﹣c)a c>(a﹣c)a b D.(c﹣b)a c>(c﹣b)a b9.(5分)执行如下图的程序框图,假设输出的n值为11,那么判定框中的条件能够是()A.S<1022?B.S<2018?C.S<4095?D.S>4095?10.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤)的部份图象如下图,将函数f(x)的图象向左平移个单位长度后,所得图象与函数y=g (x)的图象重合,那么()A.g(x)=2sin(2x+)B.g(x)=2sin(2x+)C.g(x)=2sin2x D.g(x)=2sin(2x﹣)11.(5分)已知抛物线C:y2=4x的核心为F,过点F作斜率为1的直线l交抛物线C与P、Q两点,那么+的值为()A.B.C.1 D.212.(5分)已知数列{an }中,a1=2,n(an+1﹣an)=an+1,n∈N*,假设关于任意的a∈[﹣2,2],n∈N*,不等式<2t2+at﹣1恒成立,那么实数t的取值范围为()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2]∪[1,+∞)C.(﹣∞,﹣1]∪[2,+∞)D.[﹣2,2]二、填空题(每题5分,总分值20分,将答案填在答题纸上)13.(5分)已知向量=(1,λ),=(3,1),假设向量2﹣与=(1,2)共线,那么向量在向量方向上的投影为.14.(5分)假设实数x,y知足,那么z=x﹣3y+1的最大值是.15.(5分)过双曲线﹣=1(a>0,b>0)的下核心F1作y轴的垂线,交双曲线于A,B两点,假设以AB为直径的圆恰好于其上核心F2,那么双曲线的离心率为.16.(5分)一底面为正方形的长方体各棱长之和为24,那么当该长方体体积最大时,其外接球的体积为.三、解答题(本大题共5小题,共70分.解许诺写出文字说明、证明进程或演算步骤.)17.(12分)如图,在△ABC中,角A,B,C所对的边别离为a,b,c,假设2acosA=bcosC+ccosB.(1)求角A的大小;(2)假设点D在边AC上,且BD是∠ABC的平分线,AB=2,BC=4,求AD的长.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱CC1⊥地面ABC,且CC1=2AC=2BC,AC⊥BC,D是AB的中点,点M在侧棱CC1上运动.(1)当M是棱CC1的中点时,求证:CD∥平面MAB1;(2)当直线AM与平面ABC所成的角的正切值为时,求二面角A﹣MB1﹣C1的余弦值.19.(12分)第一届“一带一路”国际合作顶峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地域合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情形,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,取得其测试成绩(百分制),如茎叶图所示.(1)写出该样本的众数、中位数,假设该校共有3000名学生,试估量该校测试成绩在70分以上的人数;(2)从所抽取的70分以上的学生中再随机选取1人.①记X表示选取4人的成绩的平均数,求P(X≥87);②记ξ表示测试成绩在80分以上的人数,求ξ的散布和数学期望.20.(12分)已知椭圆C:+=1(a>b>0)的左、右核心为F1,F2,离心率为,点P在椭圆C上,且△PF1F2的面积的最大值为2.(1)求椭圆C的方程;(2)已知直线l:y=kx+2(k≠0)与椭圆C交于不同的两点M,N,假设在x轴上存在点G,使得|GM|=|GN|,求点G的横坐标的取值范围.21.(12分)设函数f(x)=e x﹣2a﹣ln(x+a),a∈R,e为自然对数的底数.(1)假设a>0,且函数f(x)在区间[0,+∞)内单调递增,求实数a的取值范围;(2)假设0<a<,试判定函数f(x)的零点个数.请考生在2二、23两题中任选一题作答,若是多做,那么按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)已知在平面直角坐标系xOy中,椭圆C的方程为+=1,以O 为极点,x轴的非负半轴为极轴,取相同的长度单位成立极坐标系,直线l的极坐标方程为ρsin(θ+)=3.(1)求直线l的直角坐标方程和椭圆C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|2x+y﹣1|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|.(1)求不等式f(x)+f(2+x)≤4的解集;(2)假设g(x)=f(x)﹣f(2﹣x)的最大值为m,对任意不相等的正实数a,b,证明:af(b)+bf(a)≥m|a﹣b|.2018年全国一般高等学校招生高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)已知集合A={x|2﹣x>0},B={x|()x<1},那么()A.A∩B={x|0<x≤2} B.A∩B={x|x<0} C.A∪B={x|x<2} D.A∪B=R【解答】解:集合A={x|2﹣x>0}={x|x<2},B={x|()x<1}={x|x>0},那么A∩B={x|0<x<2},A∪B=R.应选:D.2.(5分)已知i为虚数单位,a为实数,复数z知足z+3i=a+ai,假设复数z 是纯虚数,那么()A.a=3 B.a=0 C.a≠0 D.a<0【解答】解:由z+3i=a+ai,得z=a+(a﹣3)i,又∵复数z是纯虚数,∴,解得a=0.应选:B.3.(5分)我国数学家邹元治利用如图证明勾股定理,该图顶用勾(a)和股(b)别离表示直角三角形的两条直角边,用弦(c)表示斜边,现已知该图中勾为3,股为4,假设从图中随机取一点,那么此点不落在中间小正方形中的概率是()A. B. C.D.【解答】解:设直角三角形的长直角边为a=4,短直角边为b=3,由题意c=5,∵大方形的边长为a+b=3+4=7,小方形的边长为c=5,那么大正方形的面积为49,小正方形的面积为25,∴知足题意的概率值为:1﹣=.应选:B.4.(5分)已知等差数列{an }的前n项和为Sn,且S9=6π,那么tan a5=()A. B.C.﹣D.﹣【解答】解:由等差数列的性质可得:S9=6π==9a5,∴a=.5=tan=﹣.那么tan a5应选:C.5.(5分)已知函数f(x)=x+(a∈R),那么以下结论正确的选项是()A.∀a∈R,f(x)在区间(0,+∞)内单调递增B.∃a∈R,f(x)在区间(0,+∞)内单调递减C.∃a∈R,f(x)是偶函数D.∃a∈R,f(x)是奇函数,且f(x)在区间(0,+∞)内单调递增【解答】解:当a≤0时,函数f(x)=x+在区间(0,+∞)内单调递增,当a>0时,函数f(x)=x+在区间(0,]上单调递减,在[,+∞)内单调递增,故A,B均错误,∀a∈R,f(﹣x)=﹣f(x)均成立,故f(x)是奇函数,故C错误,应选:D.6.(5分)(1+x)(2﹣x)4的展开式中x项的系数为()A.﹣16 B.16 C.48 D.﹣48【解答】解:∵(2﹣x)4展开式的通项公式为 T=•24﹣r(﹣x)r,r+1∴(1+x)(2﹣x)4的展开式中x项的系数为﹣•23+24=﹣16,应选:A.7.(5分)如图是某个几何体的三视图,那么那个几何体的表面积是()A.π+4+4 B.2π+4+4 C.2π+4+2 D.2π+2+4【解答】解:由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体.其直观图如下所示:其表面积S=2×π•12+2××2×1++﹣2×1=2π+4+4,应选:B8.(5分)假设a>1,0<c<b<1,那么以下不等式不正确的选项是()A.log2018a>log2018b B.logba<logcaC.(a﹣c)a c>(a﹣c)a b D.(c﹣b)a c>(c﹣b)a b【解答】解:依照对数函数的单调性可得log2018a>log2018b正确,logba<logca正确,∵a>1,0<c<b<1,∴a c<a b,a﹣c>0,∴(a﹣c)a c<(a﹣c)a b,故C不正确,∵c﹣b<0,∴(c﹣b)a c>(c﹣b)a b正确,应选:C.9.(5分)执行如下图的程序框图,假设输出的n值为11,那么判定框中的条件能够是()A.S<1022?B.S<2018?C.S<4095?D.S>4095?【解答】解:第1次执行循环体,S=3,应不知足输出的条件,n=2,第2次执行循环体,S=7,应不知足输出的条件,n=3,第3次执行循环体,S=15,应不知足输出的条件,n=4,第4次执行循环体,S=31,应不知足输出的条件,n=5,第5次执行循环体,S=63,应不知足输出的条件,n=6,第6次执行循环体,S=127,应不知足输出的条件,n=7,第7次执行循环体,S=255,应不知足输出的条件,n=8,第8次执行循环体,S=511,应不知足输出的条件,n=9,第9次执行循环体,S=1023,应不知足输出的条件,n=10,第10次执行循环体,S=2047,应不知足输出的条件,n=11第11次执行循环体,S=4095,应知足输出的条件,故判定框中的条件能够是S<4095?,应选:C.10.(5分)已知函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤)的部份图象如下图,将函数f(x)的图象向左平移个单位长度后,所得图象与函数y=g (x)的图象重合,那么()A.g(x)=2sin(2x+)B.g(x)=2sin(2x+)C.g(x)=2sin2x D.g(x)=2sin(2x﹣)【解答】解:依照函数f(x)=2sin(ωx+φ)(ω>0,|φ|≤)的部份图象,可得==+,∴ω=2,依照+φ=2•(﹣)+φ=0,∴φ=,故f(x)=2sin(2x+).将函数f(x)的图象向左平移个单位长度后,所得图象与函数y=g(x)的图象重合,故g(x)=2sin(2x++)=2sin(2x+).应选:A.11.(5分)已知抛物线C:y2=4x的核心为F,过点F作斜率为1的直线l交抛物线C与P、Q两点,那么+的值为()A.B.C.1 D.2【解答】解:抛物线C:y2=4x的核心为F(1,0),过点F作斜率为1的直线l:y=x﹣1,可得,消去y可得:x2﹣6x+1=0,可得xP +xQ=6,xPxQ=1,|PF|=xP +1,|QF|=xQ+1,|PF||QF|=xQ +xP+xPxQ+1=6+1+1=8,则+===1.应选:C.12.(5分)已知数列{an }中,a1=2,n(an+1﹣an)=an+1,n∈N*,假设关于任意的a∈[﹣2,2],n∈N*,不等式<2t2+at﹣1恒成立,那么实数t的取值范围为()A.(﹣∞,﹣2]∪[2,+∞)B.(﹣∞,﹣2]∪[1,+∞)C.(﹣∞,﹣1]∪[2,+∞)D.[﹣2,2]【解答】解:依照题意,数列{a n }中,n (a n+1﹣a n )=a n +1, 即na n+1﹣(n+1)a n =1,那么有﹣==﹣,那么有=(﹣)+(﹣)+(﹣)+…+(a 2﹣a 1)+a 1=(﹣)+(﹣)+(﹣)+…+(1﹣)+2=3﹣<3,<2t 2+at ﹣1即3﹣<2t 2+at ﹣1,∵关于任意的a ∈[﹣2,2],n ∈N *,不等式<2t 2+at ﹣1恒成立,∴2t 2+at ﹣1≥3, 化为:2t 2+at ﹣4≥0,设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 可得f (2)≥0且f (﹣2)≥0,即有即,可得t ≥2或t ≤﹣2,那么实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞). 应选:A .二、填空题(每题5分,总分值20分,将答案填在答题纸上)13.(5分)已知向量=(1,λ),=(3,1),假设向量2﹣与=(1,2)共线,那么向量在向量方向上的投影为0 .【解答】解:向量=(1,λ),=(3,1),向量2﹣=(﹣1,2λ﹣1),∵向量2﹣与=(1,2)共线,∴2λ﹣1=﹣2,即λ=.∴向量=(1,﹣),∴向量在向量方向上的投影为||•cos<,>===0.故答案为:0.14.(5分)假设实数x,y知足,那么z=x﹣3y+1的最大值是.【解答】解:实数x,y知足,对应的可行域如图:线段AB,z=x﹣3y+1化为:y=,若是z最大,那么直线y=在y轴上的截距最小,作直线l:y=,平移直线y=至B点时,z=x﹣3y+1取得最大值,联立,解得B(,).因此z=x﹣3y+1的最大值是:.故答案为:﹣.15.(5分)过双曲线﹣=1(a>0,b>0)的下核心F作y轴的垂线,交1,那么双曲线的双曲线于A,B两点,假设以AB为直径的圆恰好于其上核心F2离心率为.作y轴的垂线,【解答】解:过双曲线﹣=1(a>0,b>0)的下核心F1交双曲线于A,B两点,那么|AB|=,,以AB为直径的圆恰好于其上核心F2可得:,∴c2﹣a2﹣2ac=0,可得e2﹣2e﹣1=0,解得e=1+,e=1﹣舍去.故答案为:1+.16.(5分)一底面为正方形的长方体各棱长之和为24,那么当该长方体体积最大时,其外接球的体积为4.【解答】解:设该项长方体底面边长为x米,由题意知其高是:=6﹣2x,(0<x<3)那么长方体的体积V(x)=x2(6﹣2x),(0<x<3),V′(x)=12x﹣6x2=6x(2﹣x),由V′(x)=0,得x=2,且当0<x<2时,V′(x)>0,V(x)单调递增;当2<x<3时,V′(x)<0,V(x)单调递减.∴体积函数V(x)在x=2处取得唯一的极大值,即为最大值,现在长方体的高为6﹣2x=2,∴其外接球的直径2R==2,∴R=,∴其外接球的体积V==4.故答案为:4.三、解答题(本大题共5小题,共70分.解许诺写出文字说明、证明进程或演算步骤.)17.(12分)如图,在△ABC中,角A,B,C所对的边别离为a,b,c,假设2acosA=bcosC+ccosB.(1)求角A的大小;(2)假设点D在边AC上,且BD是∠ABC的平分线,AB=2,BC=4,求AD的长.【解答】解:(1)∵2acosA=bcosC+ccosB,∴2sinAcosA=sinBcosC+sinCcosB=sin(B+C)=sinA,∵sinA≠0,∴cosA=,∴A=.(2)在△ABC中,由余弦定理的cosA==,解得AC=1+或AC=1﹣(舍).∵BD是∠ABC的平分线,∴=,∴AD=AC=.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱CC1⊥地面ABC,且CC1=2AC=2BC,AC⊥BC,D是AB的中点,点M在侧棱CC1上运动.(1)当M是棱CC1的中点时,求证:CD∥平面MAB1;(2)当直线AM与平面ABC所成的角的正切值为时,求二面角A﹣MB1﹣C1的余弦值.【解答】证明:(1)取线段AB的中点E,连接DE,EM.∵AD=DB,AE=EB,∴DE∥BB1,ED=,又M为CC1的中点,∴.∴四边形CDEM是平行四边形.∴CD∥EM,又EM⊂MAB1,CD⊄MAB1∴CD∥平面MAB1;解(2)∵CA,CB,CC1两两垂直,∴以C为原点,CA,CB,CC1所在直线别离为x、y、z轴成立空间直角坐标系.∵在三棱柱ABC﹣A1B1C1中,侧棱CC1⊥地面ABC,可得∠MAC为直线AM与平面ABC所成的角,设AC=1,tan,得CM=∴C(0,0,0),A(1,0,0),B(0,1,0),B1(0,1,2),M(0,0,)设AMB1的法向量为,可取又平面B1C1CB的法向量为.cos==.∵二面角A﹣MB1﹣C1为钝角,∴二面角A﹣MB1﹣C1的余弦值为﹣.19.(12分)第一届“一带一路”国际合作顶峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地域合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情形,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,取得其测试成绩(百分制),如茎叶图所示.(1)写出该样本的众数、中位数,假设该校共有3000名学生,试估量该校测试成绩在70分以上的人数;(2)从所抽取的70分以上的学生中再随机选取1人.①记X表示选取4人的成绩的平均数,求P(X≥87);②记ξ表示测试成绩在80分以上的人数,求ξ的散布和数学期望.【解答】解:(1)众数为76,中位数为76,抽取的12人中,70分以下的有4人,不低于70分的有8人,故从该校学生中任选1人,那个人测试成绩在70分以上的概率为=,∴该校这次测试成绩在70分以上的约有:3000×=2000人.(2)①由题意知70分以上的有72,76,76,76,82,88,93,94,当所选取的四个人的成绩的平均分大于87分时,有两类:一类是:82,88,93,94,共1种;另一类是:76,88,93,94,共3种.∴P(X≥87)==.②由题意得ξ的可能取值为0,1,2,3,4,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,P(ξ=4)==,∴ξ的散布列为:ξ 0 1 2 3 4P∴E(ξ)==2.20.(12分)已知椭圆C:+=1(a>b>0)的左、右核心为F1,F2,离心率为,点P在椭圆C上,且△PF1F2的面积的最大值为2.(1)求椭圆C的方程;(2)已知直线l:y=kx+2(k≠0)与椭圆C交于不同的两点M,N,假设在x轴上存在点G,使得|GM|=|GN|,求点G的横坐标的取值范围.【解答】解:(1)显然当点P位于短轴端点时,△PF1F2的面积取得最大值,∴,解得,∴椭圆的方程为=1.(2)联立方程组,消元得(8+9k2)x2+36kx﹣36=0,∵直线l恒过点(0,2),∴直线l与椭圆始终有两个交点,设M(x1,y1),N(x2,y2),那么x1+x2=,设MN的中点为E(x0,y),那么x=,y=kx+2=.∵|GM|=|GN|,∴GE⊥MN,设G(m,0),那么kGE==﹣,∴m==,当k>0时,9k+≥2=12.当且仅当9k=,即k=时取等号;∴﹣≤m<0,当k<0时,9k+≤﹣2=﹣12,当且仅当9k=,即k=﹣时取等号;∴0<m≤.∴点G的横坐标的取值范围是[﹣,0)∪(0,].21.(12分)设函数f(x)=e x﹣2a﹣ln(x+a),a∈R,e为自然对数的底数.(1)假设a>0,且函数f(x)在区间[0,+∞)内单调递增,求实数a的取值范围;(2)假设0<a<,试判定函数f(x)的零点个数.【解答】解:(1)∵函数f(x)在区间[0,+∞)内单调递增,∴f′(x)=e x﹣≥0在区间[0,+∞)恒成立,即a≥e﹣x﹣x在[0,+∞)恒成立,记g(x)=e﹣x﹣x,那么g′(x)=﹣e﹣x﹣1<0恒成立,故g(x)在[0,+∞)递减,故g(x)≤g(0)=1,a≥1,故实数a的范围是[1,+∞);(2)∵0<a<,f′(x)=e x﹣,记h(x)=f′(x),那么h′(x)=e x+>0,知f′(x)在区间(﹣a,+∞)递增,又∵f′(0)=1﹣<0,f′(1)=e﹣>0,,∴f′(x)在区间(﹣a,+∞)内存在唯一的零点x即f′(x)=﹣=0,于是x0=﹣ln(x+a),当﹣a<x<x时,f′(x)<0,f(x)递减,当x>x时,f′(x)>0,f(x)递增,故f(x)min =f(x)=﹣2a﹣ln(x+a)=x+a+﹣3a≥2﹣3a,当且仅当x+a=1时取“=”,由0<a<得2﹣3a>0,∴f(x)min =f(x)>0,即函数f(x)无零点.请考生在2二、23两题中任选一题作答,若是多做,那么按所做的第一题记分.[选修4-4:坐标系与参数方程]22.(10分)已知在平面直角坐标系xOy中,椭圆C的方程为+=1,以O 为极点,x轴的非负半轴为极轴,取相同的长度单位成立极坐标系,直线l的极坐标方程为ρsin(θ+)=3.(1)求直线l的直角坐标方程和椭圆C的参数方程;(2)设M(x,y)为椭圆C上任意一点,求|2x+y﹣1|的最大值.【解答】解:(1)依照题意,椭圆C的方程为+=1,那么其参数方程为,(α为参数);直线l的极坐标方程为ρsin(θ+)=3,变形可得ρsinθcos+ρcosθsin =3,即ρsinθ+ρcosθ=3,将x=ρcosθ,y=ρsinθ代入可得x+y﹣6=0,即直线l的一般方程为x+y﹣6=0;(2)依照题意,M(x,y)为椭圆一点,那么设M(2cosθ,4sinθ),|2x+y﹣1|=|4cosθ+4sinθ﹣1|=|8sin(θ+)﹣1|,分析可得,当sin(θ+)=﹣1时,|2x+y﹣1|取得最大值9.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|.(1)求不等式f(x)+f(2+x)≤4的解集;(2)假设g(x)=f(x)﹣f(2﹣x)的最大值为m,对任意不相等的正实数a,b,证明:af(b)+bf(a)≥m|a﹣b|.【解答】(1)解:不等式f(x)+f(2+x)≤4,即为|x﹣2|+|x|≤4,当x≥2时,2x﹣2≤4,即x≤3,那么2≤x≤3;当0<x<2时,2﹣x+x≤4,即2≤4,那么0<x<2;当x≤0时,2﹣x﹣x≤4,即x≥﹣1,那么﹣1≤x≤0.综上可得,不等式的解集为{x|﹣1≤x≤3};(2)证明:g(x)=f(x)﹣f(2﹣x)=|x﹣2|﹣|x|,由|x﹣2|﹣|x|≤|x﹣2﹣x|=2,当且仅当x≤0时,取得等号,即g(x)≤2,那么m=2,任意不相等的正实数a,b,可得af(b)+bf(a)=a|b﹣2|+b|a﹣2|=|ab﹣2a|+|ab﹣2b|≥|ab﹣2a﹣ab+2b|=|2a﹣2b|=2|a﹣b|=m|a﹣b|,当且仅当(a﹣2)(b﹣2)≤0时,取得等号,即af(b)+bf(a)≥m|a﹣b|.。
泸州市高2018级第一次高考模拟考试数 学(理工类)本试卷分第一部分(选择题)和第二部分(非选择题)。
第一部分1至2页,第二部分3至4页。
共180分,考试时间180分钟。
参考公式:如果事件互斥,那么()()()P A B P A P B +=+ 如果事件相互独立,那么()()()P A B P A P B ? 如果事件A 在一次试验中发生的概率是p ,那么在n 次独立重复试验中事件A 恰好发生k次的概率()(1)(0,1,2,,)k kn k n n P k C p p k n -=-=…。
球的表面积公式24S R p =,其中R 表示球的半径。
球的体积公式343V R p =,其中R 表示球的半径。
第一部分 (选择题 共60分)注意事项:1、每小题选出答案后,用2B 铅笔把答题卡上对应题的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在草稿纸、试题卷上。
2、本部分共18小题,每小题5分,共60分。
一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。
1、某校高三680名学生(其中男生360名、女生320名)在学术报告厅听了应考心理讲座,为了解有关情况,学校用分层抽样的方法抽取了一个样本,已知该样本中的女生人数为18名,那么该样本中的男生人数为( )A 、18B 、18C 、18D 、182、设1z i =+(i 是虚数单位),则22i z+的值为( ) A 、1i + B 、1i -+ C 、1i - D 、1i --3、已知函数2(1)()1(1)x f x x a x ≠⎪=⎨-⎪=⎩在1x =处连续,则a 的值为( )A 、12 B 、2 C 、4 D 、144、如图,在正方形ABCD 中,点E 是CD 的中点,点F 满足3BC BF =,那么EF =( )A 、1123AB AD - B 、1142AB AD + C 、1223AB AD - D 、1132AB DA +5、为了得到c o s 2(y x x R =∈的图象,只需将函数sin 2()y x x R =∈的图象上所有点( )A 、向左平行移动4π个单位长度 B 、向右平行移动2π个单位长度 C 、向右平行移动4π个单位长度 D 、向左平行移动2π个单位长度6、设公差不为零的等差数列{}n a 的前n 项和为n S ,若4a 是3a 与7a 的等比中项,832S =,则10a 等于( )A 、18B 、60C 、18D 、187、已知函数22(1)()(1)x x x f x x cx ⎧+-≥=⎨+<⎩,则“1c =-”是“函数()f x 在R 上单调递增”的( )条件A 、充要B 、充分而不必要C 、必要而不充分D 、既不充分也不必要 8、某物流公司有6辆甲型卡车和4辆乙型卡车,此公司承接了每天至少运送280吨货物的业务,已知每辆甲型卡车每天的运输量为30吨,运输成本为0.9千元;每辆乙型卡车每天的运输量为40吨,运输成本为1千元,则当每天运输成本最低时,所需甲型卡车的数量是( ) A 、6 B 、5 C 、4 D 、39、设A B 、为双曲线2222(0)x y a b λλ-=≠同一条渐近线上的两个不同的点,已知向量(1,0)m =,||6AB =,3||AB mm ⋅=,则该双曲线的离心率等于( )A 、2BC 、2、218个小三角形,做成一个蛋巢。
现将半径为1的球体放置于蛋巢上,则球体球心与蛋巢底面的距离为( )A 、12 B 、12C 、12D 、1218、设()f x 是定义在R 上的偶函数,对x R ∈都有(2)(2)f x f x -=+,且当[2,0]x ∈-时,1()()12x f x =-,若在(2,6]-内关于x 的方程()log (2)0(1)a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是( )A 、(1,2)B 、C 、D 、(2,)+∞18、已知圆222:(0)C x y r r +=>与抛物线240y x =的准线相切,若直线:1x y l a b+=与圆C有公共点,且公共点都为整点(整点是指横坐标、纵坐标都是整数的点),那么直线l 共有( )A 、60条B 、66条C 、72条D 、78条第二部分 (非选择题 共90分)注意事项:(1)必须使用0.5毫米黑色签字笔在答题卡上题目所指示的答题区域内作答,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚。
答在试题卷上无效。
(2)本部分共18个小题,共90分。
二、填空题(本大题共4个小题,每小题4分,共18分。
把答案填在答题纸的相应位置上。
)18、在二项式251()x x-的展开式中含4x 项的系数是____________(用数字作答)。
18、经过两点(,2)(,21)A m B m m --、的直线与直线210x y ++=平行,则m 的值为_____。
18、如图,在直三棱柱'''ABC A B C -中,AB BC CA a ===,'AA =,则'AB 与侧面'AC 所成角的大小为____________。
18、设函数()f x 的定义域为D ,若存在非零实数l 使得对于任意()x M M D ∈⊆,有x l M +∈,且()()f x l f x +≥,则称()f x 为M 上的l 高调函数。
现给出下列命题:①函数1()()2xf x =为R 上的1高调函数;②函数()lg f x x =为(0,)+∞上的(0)m m >高调函数;③函数()sin 2f x x =为R 上的π高调函数;④若函数2()f x x =为[1,)-+∞上的m 高调函数,那么实数m 的取值范围是[2,)+∞。
其中正确命题的序号是____________(写出所有正确命题的序号)。
三、解答题(本大题共6个小题,共74分。
解答应写出必要的文字说明,证明过程或演算步骤。
)18、(本小题满分18分)已知函数()2sin sin )(0,)f x x x x x R ωωωω=->∈的最小正周期为π。
(Ⅰ)求ω的值;(Ⅱ)在ABC ∆中,角A B C 、、所对的边分别为a b c 、、,若ABC ∆,b =()1f B =,求a c 、的值。
18、(本小题满分18分)甲、乙、丙三个同学同时报名参加某重点高校2018年自主招生,高考前自主招生的程序为面试和文化测试,只有面试通过后才能参加文化测试,文化测试合格者即获得自主招生入选资格。
因为甲、乙、丙三人各有优势,甲、乙、丙三人面试通过的概率分别为0.5,0.6,0.4;面试通过后,甲、乙、丙三人文化测试合格的概率分别为0.6,0.5,0.75。
(Ⅰ)求甲、乙、丙三人中只有一人通过面试的概率; (Ⅱ)求甲、乙、丙三人各自获得自主招生入选资格的概率。
(Ⅲ)求甲、乙、丙三人中获得自主招生入选资格的人数为ξ,求随机变量ξ的分布列及期望。
19、(本小题满分18分)如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=,平面PAD ⊥底面ABCD ,Q 为AD 的中点,M 是棱PC 上的点,2P A P D==,112BC AD ==,CD ,二面角CM BQ C --的大小为30。
(Ⅰ)求证:平面PQB ⊥平面PAD ; (Ⅱ)求直线BM 与CD 所成角的余弦值。
(Ⅲ)求三棱锥D PMQ -的体积。
20、(本小题满分18分)已知椭圆2222:1(0)x y C a b a b+=>>的长轴长是焦距的2倍,右准线方程为4x =。
(Ⅰ)求椭圆C 的方程; (Ⅱ)已知点D 坐标为(4,0),椭圆C 上动点Q 关于x 轴的对称点为点P ,直线PD 交椭圆C于点R (异于点P ),求证:直线QR 过定点。
21、(本小题满分18分)数列{}n a ,{}(1,2,3)n b n =⋅⋅⋅由下列条件确定:①110,0a b <>;②当2k ≥时,k a 与kb 满足:当110k k a b --+≥时,1k k a a -=,112k k k a b b --+=;当110k k a b --+<时,112k k k a ba --+=,1k kb b -=。
(Ⅰ)若11a =-,11b =,求2a ,3a ,4a ;(Ⅱ)在数列{}n b 中,若12(3,)s b b b s s N *>>⋅⋅⋅>≥∈且,用1a ,1b 表示([1,2,,])k b k s ∈⋅⋅⋅并求1si i b =∑。
22、(本小题满分18分)已知函数21()ln 2f x x ax =-。
(Ⅰ)若函数()f x 在1x =处有极值,求a 的值;(Ⅱ)记函数()y F x =的图象为曲线C 。
设点11(,)A x y ,22(,)B x y 是曲线C 上的不同两点。
如果在曲线C 上存在点00(,)M x y ,使得:①1202x x x +=;②曲线C 在点M 处的切线平行于直线AB ,则称函数()F x 存在“中值相依切线”。
问函数()f x 是否存在“中值相依切线”,请说明理由;(Ⅲ)求证:22(2)[(1)!](1)()n n n e n N -+>+∈*。