分类加法计数原理与分步乘法计数原理(1)
- 格式:doc
- 大小:11.00 KB
- 文档页数:1
第一章计数原理1.1分类加法计数原理与分步乘法计数原理(1)一、选择题1.某小组有8名男生,6名女生,要从中选出一名当组长,不同的选法有() A.48种B.24种C.14种D.12种解析:由分类加法计数原理共有8+6=14(种)选法.答案:C2.将1,2,3,…,9这9个数字填入如图所示的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法有()A.6种B.12种C.18种D.24种解析:根据题意,1,2,9的位置是确定的,如图所示,则数字5,6,7,8应位于a,b,c,d中的位置.第一类,若5,6在a,b位置,则7,8在c,d位置.且a=5, b=6, c=7, d =8, 或者5,6与7,8换位置,所以共2种情况;第二类,5,6在a,c位置,则7,8在b,d位置,则共有2×2=4(种)情况.综上所述,空格的填写方法共2+4=6(种),故选A.答案:A3.(2019·长沙高二检测)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13C.12 D.10解析:对a进行讨论,为0与不为0,当a不为0时还需考虑判别式与0的大小.若a=0,则b=-1,0,1,2,此时(a,b)的取值有4个;若a≠0,则方程ax2+2x+b=0有实根,需Δ=4-4ab≥0,所以ab≤1,此时(a,b)的取值为(-1,0),(-1,1),(-1,-1),(-1,2),(1,1),(1,0),(1,-1),(2,-1),(2,0),共9个.所以(a,b)的个数为4+9=13.故选B.答案:B4.(2020·天津市南开中学滨海生态城学校高二期中)4名同学分别报名参加学校的手工、绘画、机器人设计三个校本课程,每人限报其中一个课程,不同报法的种数是()A.81 B.64C.24 D.16解析:∵每名同学都有3种报名方案,∴四名同学共有3×3×3×3=81种报名方案.故选A.答案:A5.将5个不同的球放入4个不同的盒子中,每个盒子至少放一个球,则不同放法共有()A.480种B.360种C.240种D.120种解析:第一步,先从4个盒子中选一个盒子准备装两个球,有4种选法;第二步,从5个球里选出两个球放入刚才选到的盒子里,有10种选法;第三步,把剩下的3个球依次放入余下的3个盒子中,有3×2×1=6(种)放法.由分步乘法原理得不同的放球方法有4×10×6=240(种),故选C.答案:C二、填空题6.十字路口来往的车辆,如果不允许回头,共有________种行车路线.解析:若从西来,有南、北、东3种行车路线,同理从南、北、东来也各有3种行车路线.因此共有3+3+3+3=12种.答案:127.等腰三角形的三边均为正整数,且其周长不大于10,这样的三角形共有________个.解析:可分4类,第一类,等腰三角形底边长为1,腰长可以是1,2,3,4,共4个;第二类,等腰三角形底边长是2,腰长可以是2,3,4,共3个;第三类,等腰三角形底边长是3,腰长可以是2,3,共2个;第四类,等腰三角形底边长是4,腰长可以是3,共1个.∴共有三角形4+3+2+1=10(个).答案:108.将A,B,C,D四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球且A,B不能放入同一个盒子中,则不同的放法有________种(用数字填空).解析:先把A,B放入不同盒中,有3×2=6(种)放法,再放C,D,若C,D在同一盒中,只能是余下的1个盒,1种放法;若C,D在不同盒中,则必有一球在余下的1个盒中,另一球在A球或B球所在的盒中,有2×2=4(种)放法.故共有6×(1+4)=30(种)放法.答案:30三、解答题9.(2020·唐山市第十一中学高二期中)某班有男生28名、女生20名,从该班选出学生代表参加校学代会.(1)若学校分配给该班1名代表,则有多少种不同的选法?(2)若学校分配给该班2名代表,且男、女生代表各1名,则有多少种不同的选法?解:(1)选出1名代表,可以选男生,也可以选女生,因此完成“选1名代表”这件事分2类:第1类,从男生中选出1名代表,有28种不同方法;第2类,从女生中选出1名代表,有20种不同方法;根据分类加法计数原理,共有28+20=48种不同的选法.(2)完成“选出男、女生代表各1名”这件事,可以分2步完成:第1步,选1名男生代表,有28种不同方法;第2步,选1名女生代表,有20种不同方法.根据分步乘法计数原理,共有28×20=560种不同的选法.10.(2020·宜昌市第二中学高二月考)已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数?(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数?解:(1)因为a不能取0,所以有5种取法,b有6种取法,c有6种取法,所以y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)y=ax2+bx+c的图象开口向上时,a不能取小于等于0的数,所以a有2种取法,b有6种取法,c有6种取法,所以y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.。
第一节分类加法计数原理与分步乘法计数原理复习目标学法指导1.理解分类加法计数原理和分步乘法计数原理.2.能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题. 运用计数原理解决问题时,要明确完成一件事情可以有不同类的方法还是需要分几步才能完成,并且要准确确定出每一类或每一步的方法数;对于复杂问题可同时应用两个原理.一、分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事共有N=m1+m2+…+m n种不同的方法.二、分步乘法计数原理完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.概念的理解(1)分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.(2)有些较复杂的问题往往不是单纯的“分类”或“分步”可以解决的,而要将“分类”和“分步”结合起来运用.(3)两个原理的地位有差别,分类计数更具有一般性,故通常是先“分类”,然后再在每一类中“分步”,分类时标准要明确,做到不重不漏,适当画出示意图或树形图,使问题的分析更直观、清楚.1.为便民惠民,某通信运营商推出“优惠卡活动”.其内容如下:卡号的前七位是固定的,后四位从“0000”到“9999”共10 000个号码参与该活动,凡卡号后四位带有“6”或“8”的一律作为“优惠卡”,则“优惠卡”的个数是( C )(A)1 980 (B)4 096 (C)5 904 (D)8 020解析:卡号后四位不带“6”和“8”的个数为84=4 096,故带有“6”或“8”的“优惠卡”有5 904个.故选C.2.将一个四面体ABCD的六条棱上涂上红、黄、白三种颜色,要求共端点的棱不能涂相同颜色,则不同的涂色方案有( C )(A)1种(B)3种(C)6种(D)9种3.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( D )(A)10种(B)20种 (C)25种(D)32种解析:因为规定每个同学必须报名,则每人只有2个选择.报名方法有2×2×2×2×2=32种.故选D.4.所有两位数中,个位数字比十位数字大的两位数共有( B )(A)45个(B)36个(C)30个(D)50个5.三个人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过3次传递后,毽子又被踢回给甲.则不同的传递方式共有( B )(A)5种(B)2种(C)3种(D)4种6.6名同学争夺3项冠军,获得冠军的可能性有种.解析:根据分步乘法计数原理获得冠军的可能性有6×6×6=216种. 答案:2167.若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数是2×10×5×3=300.答案:300考点一分类加法计数原理的应用[例1] 如图,一条电路从A处到B处接通时,可有条不同的线路.解析:根据图形可知,电路从A处到B处接通时可以有3+1+2×2=8条不同的线路.答案:8运用分类加法计数原理的关键是分类标准恰当;分类时应注意完成这件事情的任何一种方法必须属于某一类,且只能属于某一类(即标准明确,不重不漏).1.某校高三年级5个班进行拔河比赛,每2个班都要比赛一场.到现在为止,(1)班已经比了4场,(2)班已经比了3场,(3)班已经比了2场,(4)班已经比了1场,则(5)班已经比了( B )(A)1场(B)2场(C)3场(D)4场解析:设①②③④⑤分别代表(1)(2)(3)(4)(5)班,①比了4场,则①和②③④⑤均比了1场;由于④只比了1场,则一定是和①比的;②比了3场,是和①③⑤比的;③比了2场,是和①②比的.所以此时⑤比了2场,是和①②比的.5个班的比赛情况可以用如图表示.故选B.2.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( B )(A)14 (B)13 (C)12 (D)10解析:当a=0时,b=-1,0,1,2,有4种可能.当a≠0时,则Δ=4-4ab≥0,ab≤1,(ⅰ)若a=-1时,b=-1,0,1,2有4种可能;(ⅱ)若a=1时,b=-1,0,1有3种可能;(ⅲ)若a=2时,b=-1,0,有2种可能.所以有序数对(a,b)共有4+4+3+2=13个.故选B.考点二分步乘法计数原理的应用[例2] 有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.解:(1)每人都可以从这三个比赛项目中选报一项,各有3种不同选法,由分步乘法计数原理,知共有报名方法36=729(种).(2)每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目只有4种选法,由分步乘法计数原理,得共有报名方法6×5×4=120(种).(3)由于每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,由分步乘法计数原理,得共有不同的报名方法63=216(种).利用分步乘法计数原理解决问题(1)要按事件发生的过程合理分步,即分步是有先后顺序的;(2)分步要做到“步骤完整”,即只有完成了所有步骤,才完成任务;(3)对完成各步的方法数要准确确定.已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,则:(1)P可表示平面上个不同的点.(2)P可表示平面上个第二象限的点.解析:(1)因为P(a,b)(a,b∈M),所以a,b都有6种不同的取法,根据分步乘法计数原理得这样的点有6×6=36种.(2)当a<0,b>0时,点(a,b)就在第二象限,此时a有3种不同取法,b有2种不同的取法,所以共有3×2=6种.答案:36 6考点三两个计数原理的综合应用[例3] 用0,1,2,3,4,5,6这7个数字可以组成个无重复数字的四位偶数.(用数字作答)思路点拨:按首位数字的奇偶性分类,在每一类中根据特殊位置(末位)优先原则进行分步.解析:当首位数字为奇数时,首位取法有3种,末位取法有4种,百位取法有5种,十位取法有4种,根据分步乘法计数原理,有3×4×5×4=240种取法,当首位数字为偶数时,首位取法有3种,末位取法有3种,百位取法有5种,十位取法有4种,根据分步乘法计数原理,有3×3×5×4=180种取法,根据分类加法计数原理,共可组成240+180=420个无重复数字的四位偶数.答案:420(1)应用两个计数原理的难点在于明确分类还是分步.(2)分类要做到“不重不漏”,正确把握分类标准是关键.(3)分步要做到“步骤完整”,步步相连才能将事件完成.(4)较复杂的问题可借助图表完成.[例4] 用n种不同颜色为下列两块广告牌着色(如图(1)、图(2)),要求在A,B,C,D四个区域中相邻(有公共边的)区域不用同一种颜色.(1)若n=6,为图(1)着色时共有多少种不同的方法?(2)若为图(2)着色时共有120种不同的方法,求n.解:(1)为A着色有6种方法,为B着色有5种方法,为C着色有4种方法,为D着色也有4种方法,所以,共有着色方法6×5×4×4=480(种).(2)图(2)与图(1)的区别在于与D相邻的区域由2块变成了3块,同理,不同的着色方法种数是n(n-1)(n-2)(n-3).因为n(n-1)(n-2)(n-3)=120,又120<480,所以可分别将n=4,5代入得n=5时上式成立.所以n=5.涂色问题的实质是分类与分步的综合运用,一般是整体分步,分步过程中若出现某一步需要分情况说明时,还要进行分类.1.若数列{a n}满足规律:a1>a2<a3>…<a2n-1>a2n<…,则称数列{a n}为余弦数列,现将1,2,3,4,5排列成一个余弦数列,则不同的排法种数为( C )(A)12 (B)14 (C)16 (D)18解析:先分类再分步,首位排2时,有21435,21534共2种;首位排3时,有31425,31524,32415,32514共4种;首位排4时,有41325,41523,42315,42513,43512共5种;首位排5时,有51324,51423,52314,52413,53412共5种;所以总共有16种.故选C.2.若一个无重复数字的四位数的各位数字之和为10,则称该数为“完美四位数”,如数字“2 017”.试问用数字0,1,2,3,4,5,6,7组成的无重复数字且大于2 017的“完美四位数”有( D )(A)53个(B)59个(C)66个(D)71个解析:无重复数字且相加等于10的四个数字分别是(0,1,2,7),(0,1,3,6),(0,1,4,5),(0,2,3,5),(1,2,3,4),共五组.其中第一组(0,1,2,7)中,7排首位有3×2=6(种)情况;2排首位,1或7排在第二位,有2×2=4(种)情况;2排首位,0排第二位,7排第三位有1种情况.共6+4+1=11(种)情况符合题设.第二、三组中3,6与4,5分别排首位,各有2×3×2=2×6=12(种)情况,共有2×12=24(种)情况符合题设.第四、五组中2,3,5与2,3,4分别排首位,各有3×3×2=3×6=18(种)情况,共有2×18=36(种)情况符合题设.依据分类加法计数原理可知,符合题设条件的“完美四位数”共有11+24+36=71(个),选D.。
典题精讲【例1】一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同。
(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?思路分析:欲完成从两个口袋内任取一个小球这件事,可有两类办法,或从第一个口袋取或从第二个口袋取,都能完成这件事,所以题(1)可用分类加法计数原理来解;欲完成从两个口袋内各取一个小球这件事,需分两个步骤,第一步从第一个口袋内任取1个小球,第二步从第二个口袋内任取1个小球,两个步骤都完成了这件事就解决了,因此题(2)可用分步乘法计数原理来解。
解:(1)从两个口袋内任取1个小球,有两类办法:第一类办法是从第一个口袋内任取1个小球,可以从5个小球中任取1个,有5种方法;第二类办法是从第二个口袋内任取1个小球,可以从4个小球中任取1个,有4种方法。
根据分类加法计数原理,得到不同的取法种数是N=m1+m2=5+4=9。
所以从两个口袋内任取1个小球,有9种不同的取法.(2)从两个口袋内各取一个小球,可以分成两个步骤来完成:第一步是从第一个口袋内任取1个小球,有5种方法;第二步是从第二个口袋内任取1个小球,有4种方法。
根据分步乘法计数原理,得到不同的取法的种数是N=m1×m2=5×4=20。
所以从两个口袋内各取1个小球,有20种不同的取法.绿色通道:在用两个原理解决问题时,一定要分清完成这件事,是有n 类办法还是需分成n个步骤,而判断“分步”还是“分类",主要是看作一次能否完成整个事件,这是问题的实质所在。
应用分类加法计数原理必须要求各类的每一种方法都能完成这件事。
应用分步乘法计数原理则需要各步均是完成这件事必须经过的若干彼此相关联的步骤.变式训练1 在夏季,一个女孩有红、绿、黄、白4件上衣,红、绿、黄、白、黑5条裙子,3双不同鞋子,3双不同丝袜,这位女孩夏季某一天去学校上学,有多少种不同的穿法?思路解析:此题在于完成穿衣这一件事:需分4个步骤:穿上衣、裙子、丝袜和鞋子才能完成整件事,其中各个步骤互不干扰又不可或缺。
1.1 分类加法计数原理与分步乘法计数原理【课题】:1.1.1分类加法计数原理与分步乘法计数原理【教学目标】:(1)知识与技能理解分类加法原理和分步乘法计数原理,能根据具体问题的特征选择分类加法计数原理或分步乘法计数原理解决一些简单问题.(2)过程与方法通过实例,总结出分类加法计数原理和分步乘法计数原理,提高学生综合、归纳的能力.(3)情感、态度与价值观培养学生数学来源于实践并指导实践的思想意识,通过实例分析培养学生学习数学的兴趣【教学重点】归纳地得出分类加法计数原理和分步乘法计数原理。
【教学难点】正确理解“完成一件事情”的含义;根据实际问题的特征,正确地区分“分类”或“分步”【教法、学法设计】启发引导式【课前准备】Powerpoint【教学过程设计】:教学环节教学活动设计意图一、引入1师提出问题1:从广州到海口,可以乘火车,也可以乘汽车.假设一天中,火车有3班,汽车有4班,那么一天中乘坐这些交通工具从广州到海口共有多少种不同的走法?师:(启发学生回答后,作补充说明)因为一天中乘火车有3种走法,乘汽车有4种走法,每种走法都可以完成由广州到海口这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有3+4=7师:在上述的分析过程中,就体现了分类计数原理.(板书原理内容)分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.师:对于分类计数原理,我们应注意以下几点.(1)从分类计数原理中可以看出,各类之间相互独立,都能完成这件事,且各类方法数相加,所以分类计数原理又称加法原理;(2)分类时,首先要根据问题的特点确定一个分类的标准,然后在确定的分类标准下进行分类;(3)完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法.设置问题情境,引出分类计数问题,激发学生的求知欲。
龙源期刊网
分类加法计数原理与分步乘法计数原理
作者:廖军
来源:《数学金刊·高考版》2014年第02期
分类加法计数原理与分步乘法计数原理是学习概率统计的基础,在高考中占有特殊的地位,大多以选择题和填空题的形式出现,有时与概率统计知识综合出现在解答题中,主要考查基础知识、基本运算与思维能力,难度不大,多为送分题.
重点难点
重点:理解分类加法计数原理与分步乘法计数原理;会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的问题.
难点:分类加法计数原理与分步乘法计数原理的区别.
方法突破
(1)正确使用两个原理,注意两者的区别:分类加法计数原理与分类有关,各种方法相互独立,用其中任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成了.
(2)使用两个原理时,要注意以下问题:①分类要做到“不重不漏”,分类后再分别对每
一类进行计数,最后用分类加法计数原理求和,得到总数;②分步要做到“步骤完整”,分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.
点评两个计数原理的混合应用是学习的难点,注意分类讨论思想的不重不漏原则.。