胸部X线影像增强研究多尺度Retinex技术
- 格式:pdf
- 大小:304.33 KB
- 文档页数:3
浅析单尺度Retinex 的LDCT 影像增强新算法浅析单尺度Retinex 的LDCT 影像增强新算法引言胸 CT 被公认为是显示肺部病变最敏感的影像学检查方法。
CT 具有很高的密度分辨率且具备无组织重叠显像等优点。
但由于对大剂量X 线的要求,致使消耗性(X 线管)成本较高,同时也给受检者带来了大剂量X 线照射的危害,因而不适用于健康人群查体及对射线敏感人群的检查。
由于低剂量CT 扫描(Low-dose CT, LDCT)可有效减少放射剂量,近年来,应用LDCT 筛查肺结节以提高肺癌的早期检出是一个研究热点。
但是LDCT 会增加图像噪声,使图像质量下降,从而影响诊断结果的准确性,而且增加了对图像进行进一步分析处理的难度。
同时,CT 影像本身具有动态灰度范围宽、细节丰富、对比度差等不同于一般灰度图像的特点。
而感兴趣区域与周围组织结构的低对比度现象,会严重影响计算机对CT 影像内容的理解与分析结果,从而造成在使用计算机辅助技术进行临床疾病辅助诊断时,计算机辅助诊断系统诊断效果不理想。
因此,在医学临床上通常都需要对LDCT 影像进行增强处理, 以改善图像的视觉质量,提高图像细节的可识别性,便于医生对病灶或感兴趣区进行正确的诊断,同时也为后续的图像配准、融合,三维重建等可视化处理奠定了基础。
近年来,医学影像对比度增强技术发展得较为成熟,许多经典方法已经得到广泛应用[1, 2],如灰度变换、直方图均衡、同态滤波等。
但传统的图像增强技术大都存在一些基本问题:对比度增强后灰度级取值范围超出了显示器所能够达到的动态范围,进行尺度改变又常会引起信息丢失;另一方面,在进行边缘增强和感兴趣的某些特征的保护时,与滤除噪声之间常会存在冲突。
由于这些问题的存在,图像增强效果常常不很理想。
新的增强技术在不断地发展,其中基于Retinex 理论的图像增强算法以其锐化、颜色恒常性、动态范围压缩大、色彩保真度高等特点,对于图像增强方法的改进起到了积极的作用,人们对它的研究也逐渐深入。
多尺度Retinex算法与其它图像增强方法比较黄允浒;吐尔洪江·阿布都克力木;刘芳园;王鑫;张鹏杰【摘要】图像获取过程中往往由于光照不足导致图像出现暗影和低对比度,这严重影响了后期图像各种形式的处理,如人脸检测、边缘提取、图像融合等.文章提出利用MSRCR算法与其它常用动态范围调整的图像增强算法相比,如SSR,MSR,MSRCR和直方图均衡化增强;进一步利用MSRCR增益/偏移校正、基于双边滤波器的单尺度Retinex图像增强和同态滤波器对两组图像对比实验,结果显示这些方法在图像增强中都表现出良好的性能,且MSRCR算法可以弥补传统小波变换在图像增强中的对比度不高和丢失部分信息的不足,提高了图像的亮度,对比度和清晰度;且其峰值信噪比和信息熵普遍高于其它增强方法,并对其运行的时效性进行对比.【期刊名称】《新疆师范大学学报(自然科学版)》【年(卷),期】2017(036)002【总页数】9页(P69-77)【关键词】MSRCR;动态范围调整;双边滤波器;同态滤波器;增益/偏移校正;对比度和清晰度【作者】黄允浒;吐尔洪江·阿布都克力木;刘芳园;王鑫;张鹏杰【作者单位】新疆师范大学数学科学学院,新疆乌鲁木齐 830017;新疆师范大学数学科学学院,新疆乌鲁木齐 830017;新疆师范大学数学科学学院,新疆乌鲁木齐830017;新疆师范大学数学科学学院,新疆乌鲁木齐 830017;新疆巴音郭楞蒙古自治州和硕县高级中学,新疆和硕 841200【正文语种】中文【中图分类】TN713.1图像增强领域中出现了许多实用的算法,诸如直方图均衡化算法、频域平滑滤波法等[1],而Retinex算法是其中非常重要的一类。
该算法通过分析图像经过视网膜在大脑皮层中形成主观视觉的过程,对其包含的背景光源信号进行估计,并通过数学方法来处理消除背景光源信号,从而获得更为清晰纯正的图像,能够有效去除源图像之中的光照信息,增强后的结果更接近物体真实的颜色,更有利于其中关键信息的提取与分析。
医学影像处理中的图像增强算法使用技巧分享图像增强是医学影像处理中的重要任务之一,它旨在改善图像的质量,使医生能够更准确地诊断和治疗疾病。
在医学影像处理领域,图像增强算法扮演着关键角色,它们能够增强图像的对比度、清晰度和边缘特征,从而提供更有用的信息。
在本文中,我们将分享一些医学影像处理中的图像增强算法使用技巧,帮助读者在实践中获得更好的结果。
1. 直方图均衡化(Histogram Equalization)直方图均衡化是一种简单却有效的图像增强方法,它通过重新分布图像像素的灰度级来增强图像的对比度。
在医学影像处理中,直方图均衡化可以帮助凸显影像中的重要结构和特征。
使用该算法时,需要考虑到不同图像具有不同的亮度分布特点,因此可能需要自适应的直方图均衡化算法来应对不同场景下的图像增强需求。
2. 噪声去除滤波器(Noise Removal Filters)噪声是医学影像处理中常见的问题之一,它会影响图像的质量和对比度。
为了去除噪声并增强图像,可以使用各种滤波器,如中值滤波器、高斯滤波器和均值滤波器。
中值滤波器可以有效地去除脉冲噪声,而高斯滤波器和均值滤波器则可以平滑图像并减少高频噪声。
根据图像的性质和需求,选择适当的滤波器非常关键。
3. 边缘增强(Edge Enhancement)边缘增强是一种用于增强图像边缘特征的方法,它可以使医生更容易地检测和分析图像中的病灶和结构。
在医学影像处理中,常用的边缘增强算法包括Laplacian增强、Sobel增强和Canny边缘检测。
这些算法能够突出显示图像中的边缘信息,并减少噪声的干扰。
然而,在使用边缘增强算法时,需要注意避免过度增强图像,以免造成误诊。
4. 对比度增强(Contrast Enhancement)对比度增强是一种改善图像对比度的方法,它可以使图像中的细节更加清晰可见。
在医学影像处理中,常见的对比度增强算法包括直方图拉伸、伽马校正和局部对比度增强。
直方图拉伸可以通过拉伸图像的灰度级范围来改善图像的对比度。
多尺度Retinex彩色图像增强算法研究作者:李君丽来源:《软件导刊》2014年第09期摘要摘要:多尺度Retinex彩色图像增强算法(MSRCR)使用多个不同高斯函数分别与原图像进行卷积,仅使用一个参数来控制图像动态变化,对彩色图像各通道的最大值和最小值进行映射,以实现对图像的无色差调节,还原出更多图像细节。
实验结果表明,该算法能明显提高图像对比度,在扩大图像动态范围的同时保留了图像原始色彩。
关键词关键词:多尺度Retinex;图像增强;高斯函数DOIDOI:10.11907/rjdk.14318016中图分类号:TP317.4文献标识码:A 文章编号文章编号:16727800(2014)0090158020 引言目前,常见的彩色图像增强方法分为3种:真彩色增强、假彩色增强和伪彩色增强技术[1]。
真彩色和假彩色增强是合成多幅灰度图像的过程,而伪彩色图像增强是对单幅灰度图像的处理,最终将其转换为彩色图像。
除此之外,还有一种从生理学角度考虑的图像增强算法,它是基于人类的视觉系统对色彩感知的特性而产生的,被称为色彩恒常性理论。
目前,最具有代表性的就是Land 的Retinex 理论[2]。
本文利用图像增强空域法,针对由于外界环境所引起的对比度偏低,色彩失常等问题,采用基于带色彩恢复的多尺度视网膜增强算法(Multi-Scale Retinex with Color Restoration,MSRCR)对图像进行处理,最终达到改善图像色彩恒常性、、保留图像原始色彩、改善提高图像对比度以及突显阴影和强光照下的细节等目的。
1 Retinex理论1.1 单尺度Retinex理论Land提出人眼对亮度和色度感知的视觉模型Retinex,其基本理论模型是把图像分为两部分,即亮度图像和反射图像,降低亮度图像对反射图像的影响,从而实现图像的增强[3,4]。
Land的这一理论模型原理如图1所示。
可以看出,一幅图像可看作是由入射光形成的亮度图像和反射光形成的反射图像共同构成入射光照在反射物体上,通过反射物体的反射形成反射光进入人眼,从而形成人眼所看到的图像。
改进的多尺度Retinex医学X射线图像增强算法陈琛;张建州【期刊名称】《计算机工程与应用》【年(卷),期】2015(000)009【摘要】Medical X ray images are usually difficult to identify because ofthe poor brightness and low contrast. In order to enhance these images, this paper discusses the Multi-Scale Retinex(MSR)image enhancement method on the basis of the Single-Scale Retinex put forward by Land. Afact is emphasized that the calculation in image filtering can use a mean template as an alternative to Gaussian convolution template, and an improved method of canonical gain/offset is proposed to map the image gray-level on display devices in this paper. Further experiments compare the new method based on Multi-Scale Retinex with histogram equalization and gamma correction. It can be seen from the experimental results that the proposed method enhances image brightness and contrast ratio compared to the other two mentioned methods, and the entropy of X ray images is improved by the new introduced method; therefore the algorithm can satisfy the demand of medical image diagnosis.%医学X射线图像通常存在亮度低,对比度差,造成难以识别的问题。
Chest Radiographic image Enhancement based on Multi-scale Retinex TechniqueChen Shuyue, Zou LingSchool of Information Science and Engineering,Jiangsu Polytechnic UniversityChangzhou, Chinacsyue2000@Abstrac t-Retinex technique has been widely employed in medical and other fields. Chest radiographic image is often suffered from its poor dynamic rang due to x-ray radiography of different chest tissues densities. To compress the dynamic range and enhance contrast for improving the visibility of the dark regions on chest radiograph, an enhancement method based on multi-scale Retinex was presented. Two-scale Retinex with different weighted factors was utilized and compared its result with several methodologies including three-scale Retinex, contrast-limited adaptive histogram equalization, Frankle-McCann and McCann Retinex. It is shown that the given method is more effective for chest radiographic image enhancement.Keywords-image enhancement; chest radiograph; Retinex; medical image processingI.I NTRODUCTIONThe main goal of Retinex theory is to compensate for local brightness in images. It tries to flatten the gap between the local bright and dark region, and provides with a better perception effect, especially on the fine features of ROI. Retinex model for the computation of illumination was introduced by Land and McCann[1]. Since that time Land and his colleagues have described several variants on the original method[2-5]. The output of multi-scale Retinex(MSR) is the weighted summation of each single-scale Retinex(SSR), which is capable of enhancing some particular characteristic of the input image, such as narrow surrounds highlighting the fine features and wide surrounds holding all the tonal information. The MSR methods are investigated in [6-8]. Recently, Bo Sun et al. chosen an adaptive Gaussian function whose shape follows edges of image to reduce the artifacts along high contrast edges[9]. Jinhua Wang et al. used three Gaussian constants for a single filter instead of a traditional fixed Gaussian constant to get timesaving[10]. Meylan and Susstrunk applied an adaptive filter for reducing halo artifacts[11].Chest radiographic images are often suffered from their poor dynamic rang due to x-ray radiography of different chest tissues densities. The dark zones contain amount of disease information of lungs, but an uneasy set-up condition of machine or films digitizing may cause the image to be difficult to distinguish. Nagesha and Kuma presented a novel (recursive) algorithm that tailors the required amount of contrast enhancement based on a combination of the optimal phase representation and the theory of projection onto a convex set[12]. Jyh-Shyan et al. used wavelet processing technique to segment a chest radiograph into different gray level regions, then applied different degrees of contrast enhancement to process them[13]. We normalized the chest radiographic image with histogram equalization then applied an established piecewise linear transformation model to obtain an automatic procedure in our previous work[14].In the paper, we employed two-scale Retinex method associated with Gaussian surround functions. Two different weighted coefficients were used, where the larger one is engaged in the whole bright framework of chest radiographic image, the other enhances the dark region details. Some methods, including three-scale Retinex, contrast-limited adaptive histogram equalization(CLAHE), Frankle-McCann and McCann Retinex methodologies were compared through experiments.II.R ETINEX THEORYA.Single Scale RetinexLand proposed Retinex theory of the brightness and chromaticness models for human perception, which reveals the principle how to sense a scene with eyes vision system and receive a consistency sensation confirming to distinguish different objects under different illumination. Land introduced an image center/surround space[4] based on human vision. Jobson and his team defined a single scale Retinex algorithm drawing from Land’s research. SSR can be described as)],(),(log[),(log),(yxIyxFyxIyxR∗−= (1) Where R(x,y) is image output function, I(x,y) is input image distribution function. ‘*’ and log imply convolution operator and nature logarithm respectively. Surround function F(x,y) includes some forms. Hulbert et al. provided with a Gaussian function:))(exp(),(222σyxAyxF+−⋅= (2) Where σ is standard deviation in Gaussian function. Choosing A should satisfy with below condition:∫∫=1),(dxdyyxF(3)The image enhancement effect is determined by the standard deviation directly, that controls how many fine details are left. We should balance the final effects between the dynamic range compression and consistency sensation.This work is sponsored by Qing Lan Project of Jiangsu ProvinceB. Multi-scale RetinexThe basic form of the MSR is given by [6,7]Ni y x I y x F y x I Wy x R i Kk k i k i ,,1)]),(*),(log[),((log ),(1"=−=∑= (4)where the sub-index i represents the i -th spectral band, N isthe number of spectral bands, N = 1 for grayscale images andN = 3 for typical color images. I is the input image, R is the MSR output, F k represents the k -th surround function, W k isthe weight associated with F k , K is the number of surroundfunctions, or scales, and ‘*’ represents the convolution operator. The surround functions F k are given as:)2)22(exp(),(k y x A y x k F σ+−⋅= (5)where σk are the scales that control the extent of thesurround, smaller values of σk lead to narrower surrounds.III. C HEST RADIOGRAPH ENHANCEMENT BY MULTI -SCALER ETINEXWe utilize the following steps to process chest radiographic images based on MSR theory. (1) Determine standard deviations of Gaussian surroundfunction:According to our tests for chest radiographs, we select twostandard deviations: σ1 =10, σ2 =270. (2)Convolution operation under two scales in (4).(3)Calculate image output by means of (4).Two weighted factors are selected : W 1=0.8, W 2=0.2, correspond to two scales under σ1 and σ2 respectively.(4)Stretch gray-level rang bymin max minf offset ffoffset inI outI −+−+= (6) Where I out is the final output of the image, offset is theaverage of input image I in . f max , f min can be obtained bydiv avg f ⋅+=αmax (7)div avg f ⋅−=αmin (8)Where avg is equal to offset , div is the standard deviation of image I in , α is a coefficient ranging from 1.5 to 3.IV. R ESULTS AND DISCUSSIONThe processed results of original image(Fig.1) are shown in Fig.2-3 by use of above MSR algorithm steps with three-scale and two-scale Retinex. To compare with the enhancement effects, we processed the same chest radiographic image with Frankle-McCann and McCann Retinex, contrast-limited adaptive histogram equalization (Matlab Toolbox) as shown in Fig.4-6.All of the processed images contrast and brightness are adjusted depending on the rule of lung’s regions to be clear at post-processing stage. McCann and Frankle-McCann Retinex loose some textures information, especially within the darker areas(Fig.4-5).Figure 1. Original imageFigure 2. Three-scale MSR (σ1 =10, σ2 =150, σ3 =270, w 1=w 2=w 3=1/3)Figure 3. Two-scale MSR (σ1 =10, σ2 =270,w 1=0.8, w 2=0.2)CLAHE can give all tissue features including the spine, but it fades the bright nodule(marked in circle in Fig.6) referring to Fig.1. Two-scale MSR is better than three-scale MSR as shown in Fig.3 and Fig.2 because amount of low frequency components participate in the synthesis in three-scale MSR. The presented technique based on MSR is of a better ability to deal with chest radiograph and less time consuming.V.C ONCLUSIONIn the paper, an image enhancement method for chest radiographs was proposed on the basis of MSR. In order to highlight the lung’s features, two-scale Retinex was applied, in which the chosen weighted factors and the standard deviations of Gaussian surround function plays an important role. It is shown that the given method can improve local and whole contrast and be more suitable for physician to diagnose through comparing with some methodologies.R EFERENCES[1] Land, Edwin and McCann, John, “Lightness and Retinex Theory”,Journal of the Optical Society of America, 61(1), January 1971.[2] McCann, John, McKee, Suzanne and Taylor, Thomas, "QuantitativeStudies in Retinex Theory, A Comparison between Theoretical Predictions and Observer Responses to the Color Mondrian Experiments", Vision Research, 16, pp.445-458, 1976.[3] Land, Edwin, "The Retinex Theory of Color Vision", ScientificAmerican, 237, pp.108 - 128, 1977.[4] Land, Edwin, “An alternative technique for the computation of thedesignator in the retinex theory of color vision”, Proc. of the National Academy of Science USA, 83, pp.2078-3080, May 1986.[5] McCann, John, “Lessons Learned from Mondrians Applied to RealImages and Color Gamuts”, Proc. IS&T/SID Seventh Color Imaging Conference, pp. 1-8, 1999.[6] D. J. Jobson, Z. Rahman, and G. A. Woodell, “A multi-scale Retinex forbridging the gap between colorimages and the human observation of scenes,” IEEE Transactions on Image Processing: Special Issue on Color Processing 6, pp. 965–976, July 1997.[7] Z. Rahman, D. J. Jobson, and G. A. Woodell, “Multiscale retinex forcolor rendition and dynamic range compression,” Applications of Digital Image Processing XIX, A. G. Tescher, ed., Proc. SPIE 2847, 1996.[8] Z. Rahman, D. J. Jobson, and G. A. Woodell, “Retinex processing forautomatic image enhancement,” Journal of Electronic Imaging 13(1), pp. 100–110, 2004.[9] Bo Sun, Weifang Chen, Hongyu Li ,Wenjing Tao , Jiang Li, “ModifiedLuminance Based Adaptive MSR”, Proceedings of the Fourth International Conference on Image and Graphics, pp.116-120, 2007. [10] Jinhua Wang, De Xu, Bing Li, “A novel tone mapping method based onRetinex theory”, Proceedings of the 7th WSEAS International Conference on Signal, Speech and Image Processing, Beijing, China, pp.146-149, 2007.[11] L. Meylan and S. Süsstrunk, “High Dynamic Range Image RenderingUsing a Retinex-Based Adaptive Filter”, IEEE Transactions on Image Processing, 15(9), pp. 2820-2830, 2006.[12] Nagesha, G. Hemantha Kuma, “A level crossing enhancement schemefor chest radiograph images”, Computers in Biology and Medicine,37(10), pp.1455-1460, 2007.[13] Jyh-Shyan Lin, Huai Li, M. T. Freedman, “Region-based enhancementof digital chest radiographs”, Proceedings of the Acoustics, Speech, and Signal Processing. on Conference Proceedings, 1996 IEEE International Conference - Volume 04, pp.2211-2214, 1996. [14] Chen Shuyue, Hou Honghua, Zeng Yanjun,et al. “Study of AutomaticEnhancement for Chest Radiograph”, Journal of Digital Imaging, 19(4), pp. 371-375 ,December 2006.Figure 4. McCann Retinex resultFigure 5. Frankle-McCann Retinex resultFigure 6. CLAHE result。