新一代智能变电站二次系统图模库一体化设计技术
- 格式:pdf
- 大小:1.70 MB
- 文档页数:4
浅谈新一代智能变电站的二次系统配置摘要:智能变电站二次设备是变电站正常运行的重要环节,对保证运行稳定性有重要意义。
文章主要分析了新一代智能变电站的二次系统配置措施,以供参考。
关键词:智能变电站;二次系统;配置引言智能变电站是智能电网的重要组成部分,是多种科学技术的融合,包括自动化技术、一体化技术、传感器技术等,通过与网络和虚拟电厂进行兼容,可以进行快速高效的通信,进行智能化的控制和管理。
智能变电站的显著标志是使用智能一次设备,但是现在没有真正的智能一次设备,要完成一次设备的智能化需要二次设备运用智能终端的方式进行转化完成。
此外,在智能变电站电气设备中,二次设备起到的作用就是保护一次设备的安全,使其可以实现稳定、可靠、长久的运行。
1 新一代智能变电站概述在讲述智能变电站的涵义之前,先讲一下数字化变电站。
数字化变电站包括智能化设备和网络化设备两个层次,智能化设备属于一次性设备,主要包括互感器、智能化开关等,网络化设备包括过程层、间隔层等,通过通信设备,智能变电站内的电气设备可以进行信息的传输。
数字化变电站运用IEC61850通信规范进行建模和通信,数字化变电站主要具有数字化、网络化和智能化的特点,进行设备检修时以前是进行定期的检修,采用数字化变电站以后主要是对设备的状态进行检修,属于一种管理模式。
智能变电站采用的智能设备具有运行可靠、集成化程度高、环保的特点,可以实现信息的数字化交互,数据可以进行网络化通信,信息之间的共享也更加规范化,可以自动完成信息传输的各项基本功能,同时也可以完成其他一些高级功能,如实时自动化控制、在线分析、协同等,可以与相邻的变电站进行交互传输。
我们可以看到,数字化变电站的明显特征为技术性,智能变电站以数字化变电站为基础,同时具有技术性和功能性的特点,自动化程度更高,可以实现信息化、自动化、预警等多种功能,并可与相邻变电站和调度中心进行信息交流。
2 智能变电站二次系统的特点智能变电站中的二次设备主要包括继电保护装置、故障录波装置、网络监测装置以及在线检测装置等,这些二次设备在设计制造时都是通过微处理机技术进行的,微处理机技术具有标准化和模块化的先进特点。
新一代智能变电站二次设备模块化设计新一代智能变电站以系统高度集成、设计集成优化为目标,推动智能变电站创新发展。
本文详细介绍新一代智能变电站对二次设备的技术要求,通过从发展需求和设备整合两个角度分析了二次设备集成化思路及关键技术,论述了智能变电站新设备集成优化方案,提出了几种模块化设计方案,体现了二次设备高度集成模块化的设计原则。
标签:新一代智能变电站;二次设备;集成方案;模块化0 引言随着经济和电力技术的发展,各种新技术、新设备在变电站的建设过程中得到了广泛的应用。
我国变电站的发展经历了传统变电站、综合自动化变电站、数字化变电站、智能变电站和目前的新一代智能变电站。
新一代智能变电站智能化特征鲜明,按照新技术要求,制定了新一代信息流方案,研制了通用一体化业务平台,提高了系统可扩展性,研制站域保护、集成式就地化二次设备等。
采用预制舱式二次组合设备,实现最大化工厂加工,最小化现场施工。
还采用预制电缆、预制光缆,实现设备之间标准化连接和一、二次设备连接的“即插即用”。
1 二次设备的发展历程在中国50年代之前,早期的变电站,二次设备采用模拟仪器仪表,就地监控和人工操作,不具备自动化能力;20世纪80年代以前,传统变电站采用机械电磁式、晶体管式、集成电路式二次设备应用,二次设备均按照传统方式布置,各部分独立运行。
20世纪90年代,综合自动化变电站,通过对变电站二次设备的功能进行重新组合和优化设计,建成了变电站综合自动化系统,RTU、微机自动装置、计算机监控系统等二次设备和系统获得大面积推广应用,满足站内现场总线及以太网应用;2013年,在总结智能变电站建设经验的基础上,新一代智能变电站应运而生,提出了集成化二次设备和一体化业务平台应用,实现分散独立系统向一体化系统转变,强化了高级功能应用,全面提升了运行可靠性[1]。
2 二次设备集成化思路及关键技术2.1 需求分析二次设备整合和集成是实现新一代智能变电站最终目标的首要任务及重要途径。
关于变电站一二次联合仿真系统的设计分析发布时间:2021-08-20T15:45:34.147Z 来源:《当代电力文化》2021年4月10期作者:甘先锐[导读] 电网规模不断扩大的同时,变电站一二次回路系统也越来越复杂甘先锐深圳供电局有限公司培训与评价中心深圳市南山区 518000)摘要:电网规模不断扩大的同时,变电站一二次回路系统也越来越复杂。
本文基于一种新型的变电站一二次联合仿真系统设计介绍了该系统的主要结构与核心功能,分析了创建该系统所需要的几种关键技术。
该联合仿真培训系统可以为变电站运维管理人员从现象观察、参数测量以及运维操作等变电站一二次系统运维管理工作提供帮助。
关键词:变电站;一二次系统;联合仿真;仿真培训引言近年来,我国保持着较快的经济发展速度,城市化进程稳步推进,社会用电需求连年上升,同时社会各界对变电站与电网运行稳定性要求也越来越高。
变电站、电网结构的日趋复杂与电网规模的不断扩大,增大了变电站与电网的运维管理与异常排查的难度,为了提升变电站运管理人员的技能水平,丰富其在变电站运维管理中的实践经验,人们开发了多种变电站仿真培训系统。
但是,以往的变电站仿真培训系统在设计上通常是将一二次系统隔离开来进行单独的仿真运行,无法仿照实际情况进行一二次系统的联合仿真,因此其实践价值受到较大的限制。
本文基于一种变电站一二次系统联合仿真培训系统进行了分析,通过联合数字电网与变电站一二次设备进行三维仿真,可以结合电网二次回路原理图对电网运行管理中存在的各种异常问题进行仿真模拟,从而帮助电网运维管理人员定位电网异常位置,深入了解电网异常原因,进而及时排除故障,恢复电网正常运行。
通过对多种电网运行异常问题的三维仿真实训,还可以有效提高电网运维管理人员的理论知识水平与实际操作能力。
1变电站一二次系统联合仿真系统结构与功能分析变电站一二次系统联合仿真系统组成示意图如下图1所示,其主要包括数字电网、分布式仿真平台、一次设备仿真、自动化系统以及二次设备仿真与二次动态原理图等几个组成部分。
智能变电站设计配置一体化技术及方案智能变电站设计配置的一体化技术是目前的一个难题,需要进行二次设计的项目较多,包括屏柜布置图、光缆清册、变电站描述配置、通信配置图、设备配置表等设计,需要由设计院给出图表,集成商就根据图表来配置SCD虚回路部分,这一过程中就会出现几个问题,本文主要分析智能变电站设计配置一体化的原理以及一体化技术与方案。
标签:智能变电站;设计配置一体化技术;方案【Abstract】integration of technology design configuration of intelligent substation is a difficult problem at present,the need for more two design projects,including screen cabinet layout,cable,transformer substation configuration description list,communication configuration,equipment configuration table design,required by the design institute to a chart,integrators is according to the chart to configure SCD virtual circuit part,some problems will arise in this process,this paper mainly analyzes the design configuration of integrated intelligent substation and the principle of integration technologies and solutions.【Key Words】intelligent substation; design configuration scheme of integrated technology1、引言在智能变电站设计工作中,需要进行二次设计的项目较多,包括屏柜布置图、光缆清册、变电站描述配置、通信配置图、设备配置表等设计,由于各种主观与客观因素的影响,以上的设计工作难度较高。
智能变电站二次系统优化设计及研究1. 引言1.1 研究背景智能变电站是指应用先进的信息技术、通信技术和自动化技术,实现对电力系统的监测、控制、保护和管理的高级电力系统设施。
随着智能电网和新能源技术的快速发展,智能变电站在电力系统中的作用日益重要。
在传统电力系统中,二次系统是智能变电站的核心部分,负责电力系统的监测、控制和保护。
对智能变电站二次系统进行优化设计具有重要的意义。
当前,随着电力系统规模的不断扩大和电力负荷的增加,电网安全稳定运行面临着更大的挑战。
而智能变电站二次系统的优化设计可以提高电力系统的安全性、稳定性和经济性,有效解决电网运行中的问题。
在这样的背景下,对智能变电站二次系统的优化设计进行深入研究具有重要的实践意义。
本文将从智能变电站二次系统优化设计方法、流程、关键技术、案例分析和未来发展趋势等方面展开探讨,旨在为智能电力系统的发展提供参考,并对未来的研究和实践提出建议。
【研究背景】部分即在于此。
1.2 研究意义智能变电站是电力系统的重要组成部分,二次系统是智能变电站中的关键部分。
二次系统的设计优化直接关系到智能变电站的性能、稳定性和可靠性。
对智能变电站二次系统进行优化设计和研究具有重要的意义。
智能变电站二次系统的优化设计可以提高电力系统的运行效率和质量,减少能源浪费,降低系统运行成本。
通过合理设计二次系统,可以更好地监测和控制电网的运行状态,及时发现和解决问题,提高电网的安全稳定性。
智能变电站二次系统的优化设计可以提高电网的响应速度和自适应能力,增强电力系统的抗干扰能力和抗灾能力。
在面对复杂多变的外部环境和电网负荷波动时,优化设计的二次系统可以更快地作出调整和响应,保障电力系统的正常运行。
2. 正文2.1 智能变电站二次系统优化设计方法智能变电站二次系统优化设计是为了提高电力系统的运行效率和可靠性,以满足日益增长的电力需求和提高供电质量的要求。
在设计过程中,需考虑系统的稳定性、安全性、经济性和环保性,通过科学的方法和技术手段实现系统的最佳化配置。
智能变电站二次系统优化设计及研究随着电力系统的发展和智能化技术的不断提升,智能变电站二次系统优化设计及研究成为了电力行业关注的热点问题。
智能变电站作为电力系统中重要的组成部分,其二次系统的优化设计对于保障电网安全稳定运行和提高能源利用效率具有重要意义。
本文将从智能变电站二次系统的现状、优化设计方法及未来发展趋势等方面展开讨论。
一、智能变电站二次系统的现状目前,大多数变电站的二次系统还处于传统的人工控制模式,存在着人工操作复杂、反应速度慢、易受外部干扰等问题。
随着智能化技术的迅猛发展,智能变电站二次系统的现状也在不断发生变化。
智能变电站二次系统通过采用先进的数字化、通信和控制技术,实现了对变电站设备状态的实时监测、智能化控制和远程管理,具有了较强的自愈能力和智能化运行特性。
在智能变电站二次系统的现状中,智能化装备广泛应用的智能化管理系统也逐渐成为了变电站的核心部分。
智能管理系统通过对装备状态和环境条件进行监测、分析和预测,实现了对整个变电站的智能化调度和运行管理,为提高电网的可靠性、经济性和安全性提供了有力的保障。
1. 数据驱动的优化设计数据驱动的优化设计方法是目前智能变电站二次系统优化设计的主要方向之一。
通过采集和分析大量的装备运行数据和环境参数数据,利用先进的数据挖掘、机器学习和人工智能技术,实现了对装备状态和性能的精准预测和评估。
在此基础上,通过智能化调度和控制算法优化,实现了变电站的设备运行、维护和修复的智能化管理,提高了设备的利用率和运行可靠性。
2. 智能控制策略的优化设计智能控制策略的优化设计是智能变电站二次系统优化设计的另一主要方向。
通过引入先进的控制算法和策略,如模糊控制、神经网络控制和模型预测控制等,实现了对变电站设备的精细化控制和优化调度。
智能控制策略能够在实时监测到设备状态变化的情况下,迅速调整设备运行参数,保障变电站设备的安全稳定运行。
未来,智能变电站二次系统将朝着更加智能、便捷和高效的方向发展。
自主可控安全可靠新一代变电站二次系统研究摘要:以“自主可控、安全可靠、先进适用、集约高效”为总体原则,继承和发展现有智能变电站设计、建设及运行等成果经验,全面开展自主可控新一代变电站二次系统建设。
构建二次系统优化四大支撑体系,规划二次系统业务功能定位,优化二次系统整体架构,开展数据采集与传输、模型及业务功能优化、设备可靠性、安全防护、二次系统运行状态评价等方面的核心技术研究。
关键词:自主可控、主辅一体监控、安全防护、二次系统1. 研究背景目前电力二次系统所使用设备的芯片大量依靠进口,国际形势严重影响二次设备核心芯片供应链安全。
存在核心技术“卡脖子”问题。
随着电网发展对二次系统精益化管理要求不断提高,为适应变电站无人值班和设备远方集中监控业务需求,对变电站设备信息采集广度、设备感知能力深度,设备运维管理细度提出了更高要求。
同时电网发展和生产体系变革对变电站二次系统也提出更高要求。
1.变电站二次系统技术现状及存在问题(1)设备监控的广度和深度不足站控层包含多专业独立系统,缺少整体协调,采集信息冗余或不全,监控界面分散杂乱,主辅设备一体化监控能力不足。
(2)对远方监控的支撑能力不足上送的实时数据不能完全满足远方监控需求,上送方式以单向原始数据上传为主,信息含量不高,智能分析和服务化支撑能力不足。
(3)站控系统软件架构封闭站控系统缺乏共享开放的基础平台,服务厂商缺乏充分竞争,不利于智能化水平提升。
(4)辅控系统标准化程度低、设备繁杂、全面感知能力不足辅控系统接入设备众多,运维工作量大;主、辅设备监控未有效整合,不利于运维人员统一监控。
(5)数据采集方式不统一;设备重复配置、共享度低。
(6)合并单元故障影响范围大;过程层网络复杂,运维难度大。
(7)系统防御能力不足,3、自主可控安全可靠新一代变电站二次系统的优势(1)全面自主可控元器件优化筛选。
按照全产业链自主可控的要求,对国产芯片进行全面筛选和论证,确保满足完全自主可控要求。