1§2.2.1条件概率导学案
- 格式:doc
- 大小:87.50 KB
- 文档页数:2
SCH 南极数学同步教学设计 人教A 版选修2-3 第二章《随机变量及其分布》 班级 姓名 座号2.2.1条件概率(学生学案)例1(课本P53例1).在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求: (l )第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.变式训练1:甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天所占的比例分别为20%和18%,两地同时下雨的比例为12%,问: (1)乙地为雨天时甲地也为雨天的概率是多少? (2)甲地为雨天时乙地也为雨天的概率是多少? (3)甲乙两市至少一市下雨的概率是多少?例2(课本P53例2).一张储蓄卡的密码共位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过 2 次就按对的概率; (2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.变式训练2:一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球”为A ;事件“第二次抽到黑球”为B .(1)分别求事件A ,B ,AB 发生的概率; (2)求P (B |A ). 【课时作业】1.设A ,B 为两个事件,且P (A )>0,若P (AB )=13,P (A )=23,则P (B |A )=( ) A.12 B.29 C.19 D.492.把一枚硬币投掷两次,事件A ={第一次出现正面},B ={第二次出现正面},则P (B |A )等于( ) A.14 B.12 C.16 D.183.已知P (B |A )=12,P (AB )=38,则P (A )=( )A.316B.1316C.34D.144.某地一农业科技实验站对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子成长为幼苗的概率为( ) A.0.02 B.0.08 C.0.18 D.0.725.7名同学站成一排,已知甲站在中间,则乙站在末尾的概率是( ) A.14 B.15 C.16 D.176.一盒中装有5个产品,其中有3个一等品,2个二等品,从中不放回地取出产品,每次1个,取两次,已知第1次取得一等品的条件下,第2次取得的是二等品的概率是( ) A.12 B.13 C.14 D.237.某人一周晚上值2次班,在已知他周日一定值班的条件下,他在周六晚上值班的概率为________.8.假定生男、生女是等可能的,一个家庭中有两个小孩,已知有一个是女孩,则另一个小孩是男孩的概率是________.9.某校高二(1)班有学生56人,其中篮球爱好者25人.全班分成4个小组,第一组有学生16人,其中篮球爱好者7人.从该班任选一人作学生代表.①选到的是第一组的学生的概率是________;②已知选到的是篮球爱好者,他是第一组学生的概率是________. 10.一个袋子里装有大小、形状相同的3个红球和2个白球,如果不放回地依次抽取2个球,求 (1)第1次抽到红球的概率;(2)第1次和第2次都抽到红球的概率; (3)在第1次抽到红球的条件下,第2次抽到红球的概率; (4)抽到颜色相同的球的概率. 11、(课本P59习题2.2 A 组 NO :2)。
2016-2017学年高中数学2.2.1 条件概率学案新人教A版选修2-3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年高中数学2.2.1 条件概率学案新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年高中数学2.2.1 条件概率学案新人教A版选修2-3的全部内容。
2.2。
1 条件概率1.了解条件概率的概念.2.掌握求条件概率的两种方法.(难点)3.能利用条件概率公式解一些简单的实际问题.(重点)[基础·初探]教材整理条件概率阅读教材P51~P53,完成下列问题.1.条件概率的概念一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=错误!为在事件A发生的条件下,事件B发生的条件概率.P(B|A)读作A发生的条件下B发生的概率.2.条件概率的性质(1)P(B|A)∈[0,1].(2)如果B与C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).1.设A,B为两个事件,且P(A)>0,若P(AB)=错误!,P(A)=错误!,则P(B|A)=________.【解析】由P(B|A)=P ABP A=错误!=错误!.【答案】错误!2.设某动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它活到25岁的概率是________.【解析】根据条件概率公式知P=错误!=0。
5.【答案】0.5[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:[小组合作型]利用定义求条件概率一个袋中有2个黑球和3个白球,如果不放回地抽取两个球,记事件“第一次抽到黑球"为A;事件“第二次抽到黑球"为B。
2.2.1条件概率“条件概率”教学设计⼀、⽬标和⽬标解析(1)通过对具体情境“抽奖问题”的分析,初步理解条件概率的含义(让学⽣明⽩,在加强条件下事件的概率发⽣怎样的变化, 通过与概率的对⽐和类⽐达到对新概念的理解)(2)在理解条件概率定义的基础上,将知识技能化,学会⽤两种⽅法求条件概率,并能利⽤条件概率的性质简化条件概率的运算。
(明确求条件概率的两种⽅法,⼀种是利⽤条件概率计算公式,另⼀种是缩减样本空间法。
并能选择恰当的⽅法解决不同概率模型下的条件概率(3)通过实例激发学⽣学习的兴趣,在辨析条件概率时培养学⽣的思辨能⼒,让学⽣亲⾝经历条件概率概念的形成过程,体会由特殊到⼀般再由⼀般到特殊的思维⽅式。
在参与的过程中让他们感受数学带来的⽆穷乐趣。
注重学习过程中师⽣间、学⽣间的情感交流,充分利⽤各种⼿段激发学习的兴趣,共同体验成功的喜悦。
⼆、教学过程设计(⼀)创设情境,引出课题问题1:1.掷⼀均匀硬币2次,(1)第⼆次正⾯向上的概率是多少?(2)当⾄少有⼀次正⾯向上时,第⼆次正⾯向上的概率是多少?2.设在⼀个罐⼦⾥放有⽩球和⿊球,现依次取两球(没有放回),事件A是第⼀次从罐中取出⿊球,事件B是第⼆次从罐中取出⿊球,那么事件A对事件B有没有影响?(1)如果罐⼦⾥有2个不同⽩球和1个⿊球,事件B发⽣的概率是多少?(2)如果罐⼦⾥有2个不同⽩球和1个⿊球,在事件A发⽣的条件下,事件B发⽣的概率⼜是多少?若在事件A没有发⽣的情况下,事件B发⽣的概率⼜是多少?3.三张奖券中只有⼀张能中奖,现分别由三名同学⽆放回地抽取,问:(1)最后⼀名同学抽到中奖奖券的概率是否⽐前两名同学⼩.(2)如果已经知道第⼀名同学抽到了中奖奖券,那么最后⼀名同学抽到奖券的概率是多少?根据上⾯三个例⼦,你能得出这些概率与我们所学过的概率⼀样吗?什么地⽅不⼀样?请⼤家以⼩组的⽅式讨论⼀下。
预设答案:他们与我们所学的概率不⼀样,都在原有的基础上⼜附加了条件,使得概率发⽣变化。
2.2 二项分布及其应用2.2.1 条件概率导学案一、学习目标:1.在具体情境中,了解条件概率的概念. 2.掌握求条件概率的两种方法.3.利用条件概率公式解一些简单的实际问题. 教学重点难点(教学重点)掌握求条件概率的两种方法.(教学难点)利用条件概率公式解一些简单的实际问题.二、学习过程 导入新课问题1:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取一张,那么最后一名同学中奖的概率是否比前两位小?问题2:如果已经知道第一名同学没有中奖,那么最后一名同学中奖的概率是多少?问题1中我们不难用古典概型概率公式计算出先抽与后抽的概率同为1/3 ;而问题2就是我们今天要研 究的条件概率问题.探究点1 条件概率的概念及性质我们来解决引入时提出的问题2,设三张奖券分别为X ,X ,Y 12 ,其中Y 表示中奖奖券,且Ω 为所有结果组成的全体,“最后一名同学中奖”为事件B ,则所研究的样本空间211.423=> 可设“第一名同学没有中奖”为事件A {}12211221.,,,=X YX X YX X X Y X X Y由古典概型概率公式,所求概率为211.423=> 因为已知A 发生导致可能出现的基本事件必然在事件A 中,所以B ⊆ A; 而在事件A 发生的情况下,事件B 发生 ----事件A 和B 同时发生,即事件AB 发生.而此时A ∩B=B. ()()()n AB P B A n A =记和 为事件AB,事件B 和事件A 包含的基本事件个数. 提问:既然前面计算 ()()()=n AB P B A n A ,涉及事件A 和AB ,那么用事件A 和AB 的概率 P(A) 和P(AB)可以表示P (B |A )吗?条件概率一般地,设A ,B 为两条件概率个事件 ,且 ,称为事件A 发生的条件下,事件B 发生的条件概率.事件B 发生的条件概率.P(B |A )读作A 发生的条件下B 发生的概率, P(B|A )相当于把A 当作新的样本空间来计算AB 发生的概率.{}122112211221Ω=X YX ,X YX ,X X Y,X X Y,YX X ,YX X ,{}1221,.B X X Y X X Y =(),()n AB n B ()n A ()()()/()()()()/()()Ω===Ωn AB n AB n P AB P B A n A n A n P A ()0>P A ()()()=P AB P B A P A ()()()()()==n AB P AB P B A n A P A条件概率的性质:(1)有界性:()0 1.≤≤P B A(2) 可加性:如果B 和C 是两个互斥事件,则探究点2 条件概率的简单应用例1 在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.【变式练习】掷两颗均匀骰子,问:⑴ “ 第一颗掷出6点”的概率是多少? ⑵ “掷出点数之和不小于10”的概率又是多少?⑶ “已知第一颗掷出6点,则掷出点数之和不小于10”的概率呢?解题总结你能归纳出求解条件概率的一般步骤吗?求解条件概率的一般步骤:1)用字母表示有关事件 (2)求P(AB ),P(A)或n(AB),n(A)(3)利用条件概率公式求例2 一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字.求:(1)任意按最后一位数字,不超过2次就按对的概率.(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率. ()()().=+P B C A P B A P C A ()()()()()==P AB n AB P B A P A n A三、总结反思(a )求条件概率的常见方法有哪些?计算事件A 发生的条件下事件B 发生的条件概率,有两种方法: (1)利用定义计算:分别计算概率P (AB )和P (A ),然后将它们相除得到,即条件概率P (B |A )=P (AB )P (A ).(2)利用缩小样本空间的观点计算:在这种观点下,原来的样本空间Ω缩小为已知的事件A ,原来的事件B 缩小为事件AB ,从而可以在缩小的样本空间上利用古典概型计算概率的公式计算条件概率,即P (B |A )=n (AB )n (A )(b )知识体系小结: 1. 条件概率的定义:2. 条件概率的性质:(1)有界性.(2)可加性.3. 条件概率的计算方法:(古典概型);4. . 求解条件概率的一般步骤用字母表示有关事件---------求相关量---------代入公式求四、随堂检测1.已知P(B|A)=13,P(A)=25,则P(AB)等于( )A. 56B. 910C. 215D. 1152.抛掷红、黄两枚骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ) A.14 B.13 C.12 D.353.某学校一年级共有学生100名,其中男生60人,女生40人.来自北京的有20人,其中男生12人,若任选一人是女生,则该女生来自北京的概率是_________.()()()n AB P B A n A =()().()=P A B P B A P A。
2.2.1 条件概率预习导引1.条件概率的概念一般地,设A ,B 为两个事件,且P (A )>0,称P (B |A )=______为在事件____发生的条件下,事件____发生的条件概率.P (B |A )读作____发生的条件下____发生的概率. 2.条件概率的性质 (1)P (B |A )∈______.(2)如果B 和C 是两个互斥事件,则P (B ∪C |A )=____________. 预习交流(1)事件A 发生的条件下,事件B 发生等价于事件AB 同时发生吗?P (B |A )=P (AB )吗? (2)把一枚硬币投掷两次,事件A ={第一次出现正面},B ={第二次出现正面},则P (B |A )等于( ).A.14B.12C.16D.18 课堂探究 问题导学一、条件概率的概念与计算 活动与探究11.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ). A.18 B.14C.25D.122.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则P (B |A )=__________,P (A |B )=__________. 迁移与应用1.掷一颗骰子,在出现点数不超过3的条件下,出现点数为奇数的概率为__________.2.5个乒乓球,其中3个新的,2个旧的,每次取一个,不放回地取两次,求第一次取到新球的情况下,第二次取到新球的概率.名师点津计算条件概率的两种方法:(1)在缩小后的样本空间ΩA中计算事件B发生的概率,即P(B|A);(2)在原样本空间Ω中,先计算P(AB),P(A),再按公式P(B|A)=P(AB)P(A)计算求得P(B|A).二、条件概率的应用活动与探究2盒内装有16个球,其中6个是玻璃球,10个是木质球.玻璃球中有2个是红色的,4个是蓝色的;木质球中有3个是红色的,7个是蓝色的.现从中任取1个,已知取到的是蓝球,问该球是玻璃球的概率是多少?迁移与应用某个兴趣小组有学生10人,其中有4人是三好学生.现已把这10人分成两小组进行竞赛辅导,第一小组5人,其中三好学生2人.(1)如果要从这10人中选一名同学作为该兴趣小组组长,那么这个同学恰好在第一小组内的概率是多少?(2)现在要在这10人中任选一名三好学生当组长,问这名同学在第一小组内的概率是多少?名师点津在解决条件概率问题时,要灵活掌握P(A),P(B),P(AB),P(B|A),P(A|B)之间的关系.即在应用公式求概率时,要明确题中的两个已知事件,搞清已知什么,求什么,再运用公式求概率. 当堂检测1.已知P (A )=35,P (B )=45,P (AB )=310,则P (B |A )=( ).A.950B.12C.38D.342.一个盒子中有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( ). A.56 B.34 C.23 D.133.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( ). A.14 B.13 C.12 D.354.设某动物由出生算起活到20岁的概率为0.8,活到25岁的概率为0.4,现有一个20岁的这种动物,则它活到25岁的概率是__________.5.如图,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)P (A )=__________; (2)P (B |A )=__________.参考答案预习导引1.P (AB )P (A )A B A B 2.(1)[0,1] (2)P (B |A )+P (C |A )预习交流:(1)提示:事件A 发生的条件下,事件B 发生等价于事件A 与事件B 同时发生,即AB 发生,但P (B |A )≠P (AB ).这是因为事件(B |A )中的基本事件空间为A ,相对于原来的总空间Ω而言,已经缩小了,而事件AB 所包含的基本事件空间不变,故P (B |A )≠P (AB ). (2)提示:P (AB )=14,P (A )=12,∴P (B |A )=12.故选B.课堂探究 问题导学活动与探究1:1.【答案】B【解析】∵P (A )=C 22+C 23C 25=410,P (AB )=C 22C 25=110, ∴P (B |A )=P (AB )P (A )=14.2.【答案】38 34【解析】由已知P (A )=415,P (B )=215,P (AB )=110,∴P (B |A )=P (AB )P (A )=110415=38,P (A |B )=P (AB )P (B )=34.迁移与应用: 1.【答案】23【解析】设事件A :出现的点数不超过3. 事件B :出现的点数是奇数. 法一:n (A )=3,n (AB )=2, ∴P (B |A )=n (AB )n (A )=23.法二:P (A )=12,P (AB )=13,∴P (B |A )=P (AB )P (A )=1312=23.2.解:设“第一次取到新球”为事件A ,“第二次取到新球”为事件B . 法一:因为n (A )=3×4=12,n (AB )=3×2=6, 所以P (B |A )=n (AB )n (A )=612=12.法二:P (A )=35,P (AB )=C 23C 25=310.∴P (B |A )=P (AB )P (A )=31035=12.活动与探究2:解:由题意得球的分布如下:设A ={取得蓝球},B ={取得玻璃球}, 则P (A )=1116,P (AB )=416=14.∴P (B |A )=P (AB )P (A )=141116=411.迁移与应用:解:设A 表示“在兴趣小组内任选一名同学,该同学在第一小组内”,B 表示“在兴趣小组内任选一名同学,该同学是三好学生”,而第二问中所求概率为P (A |B ). (1)由等可能事件概率的定义知,P (A )=C 15C 110=12.(2)P (B )=C 14C 110=25,P (AB )=C 12C 110=15.∴P (A |B )=P (AB )P (B )=12.当堂检测 1.【答案】B【解析】P (B |A )=P (AB )P (A )=31035=12.2.【答案】C【解析】记A :取的球不是红球,B :取的球是绿球. 则P (A )=1520=34,P (AB )=1020=12,∴P (B |A )=P (AB )P (A )=1234=23.3.【答案】B【解析】记A :抛掷两颗骰子,红色骰子点数为4或6,B :两颗骰子的点数积大于20. P (A )=1236=13,P (AB )=436=19,∴P (B |A )=P (AB )P (A )=1913=13.4.【答案】12【解析】设A :出生算起活到20岁.B :出生算起活到25岁. P (A )=0.8,P (AB )=0.4, ∴P (B |A )=P (AB )P (A )=0.40.8=12.5.【答案】(1)2π (2)14【解析】该题为几何概型,圆的半径为1,正方形的边长为2, ∴圆的面积为π,正方形面积为2,扇形面积为π4.故P (A )=2π,P (B |A )=P (AB )P (A )=12π2π=14.。
2.2.1 条件概率教学设计一. 教学目标(一)知识与技能:掌握条件概率的定义、判断、及求解方法。
(二)过程与方法:通过知识的探索让学生体会数学来源于生活,采用分析、归纳、总结为主的方法,以培养学生自学能力。
(三)情感态度与价值观:通过生活中的实例让学生体会数学知识的重要性,培养学生思维的灵活性和知识的迁移能力,让学生养成善于观察,分析总结的良好习惯。
二 . 教学重点、难点教学重点:条件概率的定义、公式的推导及计算;为了让学生能够区分一般概率和条件概率的区别,在教学时应特别注意条件概率的定义的引入;但能否解决问题,并解决学生知其然,不知其所以然的情况,还在于对公式的理解,所以本节课的重点是让学生理解公式的推导及应用。
教学难点:条件概率的判断与计算;在理解的基础上能运用自如才是教学的真正目的,所以在教学中选择适当的练习题让学生理解究竟什么是条件概率及条件概率该如何解决。
三 . 学情分析(一)学生已有知识基础或学习起点这是一节新授课,本班学生对数学科特别是概率内容的学习有很高的热情,本班学生具备较好的逻辑思维能力,并能够用已学的定理和概念解决一些常见问题,但分析问题的能力有待提高。
(二)学生已有生活经验和学习该内容的经验学生通过小学、初中的学习,具备了基本的逻辑思维能力,同时在以前的数学学习中学生已经经历了合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
(三)学生的思维水平以及学习风格受以前传统教学方式的影响,学生的思维仍停留在就题论题上,还没有形成一套完整的思维体系去解决一类问题甚至没有形成一种解决问题的思维方法,因此思路不开阔,缺少发散思维和逻辑思维能力。
学习风格上还保留着被动接受的习惯,缺乏主动思考和探索的精神。
(四)学生学习该内容可能的困难在学习中,学生可能对对条件概率的判断和计算上会有些困难,但相比较计算上困难会更大一些,因为通过本节课的学习,我们掌握了两种解决条件概率的方法,分别是公式法和缩减基本事件空间的方法,能不能运用的好可能是学生在学习中遇到的困难。
2.2.1条件概率[学习目标]1.通过对具体情景的分析,了解条件概率的定义. 2.掌握求条件概率的两种方法.3.利用条件概率公式解决一些简单的问题.【情景引入】一场精彩的足球赛将要举行,5个球迷同学好不容易才搞到一张入场券.大家都想去,只好用抽签的方式来解决.五张卡片中只有一张上写有“入场券”,其余的什么也没写.有人提出异议:先抽的人当然要比后抽的人抽到的机会大.老师过来说:“大家不必争论,你们一个一个按次序来,每人抽到的机会是一样大的.”到底谁说的对呢?提示:老师的回答是对的. 【新知探究】1.条件概率的概念一般地,设A ,B 为两个事件,且P (A )>0,称为在 发生的条件下, 发生的条件概率.P (B |A )读作 发生的条件下 发生的概率.2.条件概率的性质(1)条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即 . (2)如果B 和C 是两个互斥事件,则【例题讲解】例1 现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.【思路启迪】 (1)(2)问是古典概型问题,(3)是求条件概率,利用条件概率公式求解. 【解】 设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB .(1)从6个节目中不放回地依次抽取2个的事件数为n (Ω)=A 26=30, 根据分步计数原理n (A )=A 14A 15=20,于是P (A )=n (A )n (Ω)=2030=23. (2)因为n (AB )=A 24=12,于是P (AB )=n (AB )n (Ω)=1230=25. (3)由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为P (B |A )=P (AB )P (A )=2523=35.求条件概率P (B |A )的关键就是抓住事件A 作为条件和A 与B 同时发生这两件事,然后具体问题具体分析,公式P (B |A )=P (AB )P (A )既是条件概率的定义,同时也是求条件概率的公式,同学们应熟练掌握.例2 一个盒子内装有4个产品,其中3个一等品,1个二等品,从中取两次,每次任取1个,作不放回抽取.设事件A 为“第一次取到的是一等品”,事件B 为“第二次取到的是一等品”,试求条件概率P (B |A ).【思路启迪】 列出基本事件空间,利用古典概型求解.【解】 将产品编号为1,2,3号的看作一等品,4号为二等品,以(i ,j )表示第一次、第二次分别取到第i 号、第j 号产品,则试验的基本事件空间为Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}, 基本事件A 有9个基本事件,AB 有6个基本事件. ∴P (B |A )=n (AB )n (A )=69=23.利用缩小样本空间计算(局限在古典概型内),即将原来的样本空间Ω缩小为已知的事件A ,原来的事件B 缩小为AB ,利用古典概型计算概率:P (B |A )=n (AB )n (A ).例3 在一个袋子中装有10个球,设有1个红球,2个黄球,3个黑球,4个白球,从中依次摸2个球,求在第一个球是红球的条件下,第二个球是黄球或黑球的概率.【思路启迪】 分别求出在第一个球是红球的条件下,第二个球是黄球和黑球的概率.再用互斥事件概率公式求得概率,也可用古典概型求概率.【解】 方法一:设“摸出第一个球为红球”为事件A ,“摸出第二个球为黄球”为事件B ,“摸出第三个球为黑球”为事件C ,则P (A )=110,P (AB )=1×210×9=145,P (AC )=1×310×9=130. ∴P (B |A )=P (AB )P (A )=145110=1045=29,P (C |A )=P (AC )P (A )=130110=13.∴P (B ∪C |A )=P (B |A )+P (C |A )=29+13=59.∴所求的条件概率为59.方法二:∵n (A )=1×C 19=9,n (B ∪C |A )=C 12+C 13=5,∴P (B ∪C |A )=59.∴所求的条件概率为59.例 一个家庭中有两个小孩,假定生男、生女是等可能的.已知这个家庭有一个是女孩,问另一个小孩是男孩的概率是多少?【正确解答】 方法一:一个家庭的两个小孩只有4种可能:{两个都是男孩},{第一个是男孩,第二个是女孩},{第一个是女孩,第二个是男孩},{两个都是女孩}.由题意知这4个事件是等可能的,设基本事件空间为Ω,A =“其中一个女孩”,B =“其中一个男孩”,则Ω={(男,男),(男,女),(女,男),(女,女)},A ={(男,女),(女,男),(女,女)},B ={(男,男),(男,女),(女,男)},AB ={(男,女),(女,男)}.∴P (AB )=24,P (A )=34. ∴P (B |A )=P (AB )P (A )=2434=23.方法二:由上知n (A )=3,n (AB )=2, ∴P (B |A )=n (AB )n (A )=23.【课堂检测】1.条件概率是在事件A 发生的条件下事件B 发生的概率,解决此类问题一定要分清事件A 及事件B 是什么,分清事件AB 及事件A 发生的概率是什么.2.要注意条件概率公式的变形运用:P (AB )=P (A )P (B |A ).3.运用条件概率的加法公式:P (B ∪C |A )=P (B |A )+P (C |A )时,一定要保证B ,C 为互斥事件.【当堂检测】1.已知P (AB )=310,P (A )=35,则P (B |A )等于( )A.950 B.12 C.910D.14解析:P (B |A )=P (AB )P (A )=31035=12.答案:B2.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是( )A.15B.310C.12D.35解析:A 为事件“数学不及格”,B 为事件“语文不及格”,P (B |A )=P (AB )P (A )=0.030.15=15.所以数学不及格时,该生语文也不及格的概率为15.答案:A3.把一枚硬币任意掷两次,事件A ={第一次正面向上},B ={第二次正面向上},则P (B |A )( )A.14B.12C.16D.18解析:P (AB )=14,P (A )=12,所以P (B |A )=12.答案:B4.6位同学参加百米短跑比赛,赛场共有6条跑道,已知甲同学排在第一跑道,则乙同学排在第二跑道的概率是__________.解析:甲排在第一跑道,其他同学共有A 55种排法,乙排在第二跑道共有A 44种排法,所以所求概率为A 44A 55=15.5.从编号为1,2,…,10的10个大小相同的球中任取4个,在选出4号球的条件下,选出球的最大号码为6的概率为__________.解析:记“选出4号球”为事件A ,“选出球的最大号码为6”为事件B ,则P (A )=C 39C 410=25,P (AB )=C 24C 410=135,所以P (B |A )=P (AB )P (A )=13525=114.。
参考答案例1.解:{}2,5A B =,由古典概型可知()3162P A ==,()56P B =,()2163P AB ==,()()()25P AB P A B P B ==. 例2. 解:根据几何概型,得()19P AB =,()49P B =,所以()()()14P AB P A B P B ==. 例3. 解:记“第1个人摸出红球”为事件A ,“第2个人摸出白球” 为事件B ,则由乘法公式,得()()()101050.2632192019P AB P B A P A ==⨯=≈ 答:所求概率约为0.2632.例4.解:设B 表示取得一等品,A 表示取得合格品,则(1)因为100件产品中有 70件一等品, 70()0.7100P B == (2)方法1:因为95 件合格品中有 70 件一等品,又由于一等品也是合格品 AB B ∴= 70()0.736895P B A ==. 方法2: ()()()P AB P B A P A =701000.736895100=≈. 课堂检测 1.【解析】 事件B 发生的基本事件个数是n (B )=6×6×6-5×5×5=91,事件A ,B 同时发生的基本事件个数为n (AB )=3×5×4=60.∴P (A |B )=n AB n B =6091. 2.【解析】 把问题看成用10个不同的球排前两位,第一次为新球的基本事件数为6×9=54,两次均为新球的基本事件数为A 26=30,所以在第一次摸到新球条件下,第二次也摸到新球的概率为3054=59. 3.【解析】 ∵P (AB )=310,P (B |A )=12,∴P (B |A )=P AB P A .∴P (A )=35. 4.【解析】 设“种子发芽”为事件A ,“种子成长为幼苗”为事件AB (发芽,又成活为幼苗),出芽后的幼苗成活率为:P (B |A )=0.8,P (A )=0.9.根据条件概率公式P (AB )=P (B |A )·P (A )=0.8×0.9=0.72,即这粒种子能成长为幼苗的概率为0.72.5.【解析】 令事件A ={选出的4个球中含4号球},B ={选出的4个球中最大号码为6}.依题意知n (A )=C 39=84,n (AB )=C 24=6,∴P (B |A )=n AB n A =684=114.6.解 设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB .(1)从6个节目中不放回地依次抽取2个的事件数为n (Ω)=A 26=6×5=30,n (A )=A 14A 15=4×5=20,于是P (A )=n A n Ω=2030=23. (2)因为n (AB )=A 24=4×3=12于是P (AB )=n AB n Ω=1230=25. (3)由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为()()()P AB P B A P A =2523=35.。
条件概率一、教学目标 (一)知识目标在具体情境中,了解条件概率的概念,掌握条件概率的计算公式,并能运用条件概率公式解决有关的简单概率问题.(二)情感目标创设教学情境,培养学生学习数学的良好思维习惯和兴趣,加深学生对从特殊到一般的思想认知规律的认识,树立学生善于创新的思维品质.(三)能力目标在知识的教学过程中,培养学生从特殊到一般的探索归纳能力及运算能力和应用新知的能力,渗透归纳、转化的数学思想方法.二、教学重点条件概率的概念,条件概率公式的简单应用. 三、教学难点正确理解条件概率公式,并能灵活运用条件概率公式解决简单实际问题. 四、教学过程 (一)引入课题[教师] 问题1:掷一个骰子,求掷出的点数为3的概率. [学生] (回答)61[教师] (引导学生一起分析)本次试验的全集Ω={1,2,3,4,5,6},设B ={掷出点数为3},则B 的基本事件数为1. 61)(=中的元素数中的元素数Ω=∴B B P[教师] 问题2:掷一个骰子,已知掷出了奇数,求这个奇数是3的概率. [学生] (回答)31 [教师] (引导学生一起分析)已知掷出了奇数后,试验的可能结果只有3个,它们是1,3,5. 本次试验的全集改变为A ={1,3,5},这时相对于问题1,试验的条件已经改变. 设B ={掷出的点数为3},则B ={3},这时全集A 所含基本事件数为3,B 所含基本事件数为1,则P (已知掷出奇数的条件下,掷出3)=31A =中的元素数中的元素数B .[教师] (针对问题2再次设问)问题2与问题1都是求掷出奇数3的概率,为什么结果不一样?[学生] 这两个问题的提法是不一样的,问题1是在原有条件(即掷出点数1,2,3,4,5,6的一切可能情形)下求得的;而问题2是一种新的提法,即在原有条件下还另外增加了一个附加条件(已知掷出点数为奇数)下求得的,显然这种带附加条件的概率不同于P(A)也不同P(A ∩B).[教师] (归纳小结,引出条件概率的概念)问题2虽然也是讨论事件B (掷出点数3)的概率,但是却以已知事件A (掷出奇数为前提的,这样的概率称为A 发生条件下的事件B 发生的条件概率.(板书课题——条件概率) (二)传授新知 1.形成概念[教师] 在引入课题的基础上引出下列概念:(多媒体演示)设A 、B 是事件,用P(B|A)表示已知A 发生的条件下B 发生的条件概率,简称为条件概率.2.归纳公式引例1:某校高中三个年段各派一名男生和一名女生参加市里的中学生运动会,每人参加一个不同的项目,已知一名女生获得冠军,求高一的女生获得冠军的概率.[学生] (口答)设A ={只有一名女生获得冠军},B ={高一女生获得冠军} 依题意知 已知A 发生的条件下,A 成为试验的全集,B 是A 的子集,A 所含元素数为3,B 所含元素数为1,则31A )|(=中元素数中元素数B A B P =[教师] (问)P(A)为多少?P(A ∩B)为多少?P(A),P(A ∩B),P(B|A)之间有何关系? [学生] (口答)61)(,2163)(===B A P A P )()()|(A P B A P A B P =∴[教师] 这个式子的含义是明确的. 由此,便将P(B|A)表示成P(A ∩B)与P(A)之比,这为我们在原样本空间Ω下完成条件概率P(B|A)的计算提供了方便. 那么是否其它情况下条件概率仍有上述的计算公式呢?我们再看一个例子:引例2:在一副扑克的52张(去掉两张王牌后)中任取1张,已知抽到草花的条件下,求抽到的是草花5的概率.[学生] (口答)设A ={抽到草花},B ={抽到草花5},依题意知 已知A 发生的条件下A 成为试验的全集,A 中的元素发生的可能性相同,B 是A 的子集.∵一副扑克中草花有13张 ∴A 所含元素数为13,B 所含元素数为1. 则131A )|(=中元素数中元素数B A B P =.[教师] 本例中P(A)为多少?P(A ∩B)为多少?P(B|A)与P(A)、P(A ∩B)是否仍有上例的关系?[学生] 由于5213)(=A P ,521)(=B A P 所以也有)()()|(A P B A P A B P =.[教师] 综合引例1与引例2我们可由特殊到一般地归纳出下列的条件概率的计算公式: 条件概率公式:若P(A)>0则)()()|(A P B A P A B P =.注:(1)其中P(A)>0是在概率的非负性的基础上,要求P(A)≠0,以保证)()(A P B A P 有意义;(2)类似地,若P(B)>0则)()()|(A P B A P A B P =;(3)公式的变形可得(概率的乘法公式):若P(A)>0,则P(A ∩B)=P(A) P(B|A). (三)讲解例题1.条件概率计算公式的应用例1.由人口统计资料发现,某城市居民从出生算起活到70岁以上的概率为0.7,活到80岁以上的概率是0.4,若已知某人现在70岁,试问他能活到80岁的概率是多少?【解析】设A ={活到70岁以上},B ={活到80岁以上},则P(A)=0.7 P(B)=0.4 又∵B ⊂A ∴P(A ∩B)= P(B)=0.4 ∴)()()|(A P B A P A B P =57.07.04.0≈=.[教师] 在求条件概率时,要求知道两事件之积(A ∩B)的概率,这概率或者题设已经给出,或者隐含在其他条件中,需要对所给条件进行分析才能得到.2.上述例题是通过条件概率公式来计算条件概率,但有时候根据问题的特点可以直接得到结果.如下面的例2就是这样一个典型例子.例2.(课本P54页例3) 把一副扑克的52张随机均分给赵、钱、孙、李四家,A =赵家分得的13张牌中有6张草花,B =孙家分得的13张牌中有3张草花.①计算P(B|A) ②计算P(A ∩B)【解析】①四家各有13张牌,已知A 发生后,A 的13张牌已固定.余下的39张牌中恰有7张草花,在另三家中的分派是等可能的.问题已经转变成:39张牌中有7张草花,将这39张牌随机分给钱、孙、李三家,求孙家得到3张草花的概率.于是 .278.0/)|(13391073937≈=-C C C A B P②在52张牌中任选13张牌有1352C 种不同的等可能的结果.于是Ω中元素数=1352C ,A 中元素数=.739613C C 利用条件概率公式得到 P(A ∩B)=P(A) P(B|A)=278.01352739613⨯C C C ≈0.012.[教师] 综上各例所述我们看到:(Ⅰ)条件概率公式提供了P(A ∩B)、P(A)、 P(B|A)三者之间的关系,三者中知二求三,关键在于分析实际问题中已知什么,要求什么.(Ⅱ)我们也可以把条件概率问题转化为古典概型的概率问题,从而将条件概率的计算转化为古典概型的概率的计算(如例2中)=中元素数中元素数-13391073937C C C )|(Ω=B A B P . (四)技能训练课本第54页练习(1)(2)(3)[学生] 设题中试验的全集Ω={(i,j)|i,j=1,2,3,4,5,6}(1)A ={投掷一枚骰子是偶数点}={(i,j)|i=2,4,6 ,j=1,2,3,4,5,6} B ={投掷另一枚骰子也是偶数点}={(i,j)|i=1,2,…6 ,j=2,4,6} ∴A ∩B={(i,j)|i=2,4,6, j=2,4,6}A ={投掷两枚骰子都是奇数点}={(i,j)|i=1,3,5, j=1,3,5}434111)(1)(16161313=-=-=-=∴C C C C A P A P41)(16161313==CC C C B A P 314341)()()|(===∴A P B A P A B P 因此已知一枚是偶数点,另一枚也是偶数点的概率为.31(2)A ={(1,1),(2,2),(3,3),(4,4)(5,5),(6,6)} B={(3,3)}则A ∩B ={(3,3)} P(A)=61366= 361)(=B A P 6161361)|(==∴A B P因此已知两枚点数相同条件下,点数都是3的概率为.61(3)A ={(3,3),(1,5),(5,1),(2,4),(4,2)} B ={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)} 则A ∩B ={(3,3)} 361)(=B A P 365)(=A P 51365361)|(==∴A B P .因此已知点数和中6 条件下两枚骰子点数相同的概率为.51[教师](引导学生得到(2)(3)题的另一种解法)我们也可以用另一种观点来求 P(B|A) 即通过转化样本空间Ω,将A 看着试验的全集(样本空间),在A 中考虑满足B 的元素数,则有解法2:(2).61A )|(=中元素数中元素数B A B P =(3).51A )|(=中元素数中元素数B A B P =(五)课堂小结1.条件概率是指在已知事件A 发生的条件下,事件B 发生的概率. 2.求条件概率的方法有两种:一是利用条件概率公式即先分别求P(A)和P(A ∩B),再用公式)()()|(A P B A P A B P =来计算.二是转化为概率,即(1)把A 看着试验的全集(样本空间),从而把P(B|A)转化为新样本空间A 下的概率,再用公式中元素数中元素数A )|(B A B P =直接得到结果.(如练习(2)(3)的解法)3.把条件概率问题直接转化为古典概型的问题求解.(如例2(课本P54/例3)的第①题)(六)思维与拓展:1.两台车床加工同一种零件共100个,结果如下表正品数 次品数 总计 第一台车床加工数 35 5 40 第二台车床加工数50 10 60 总 计8515100设A ={从100个零件中任取一个是正品},B ={从100个零件中任取一个是第一台车床加工的},求P(A|B)和)|(A B P . 【解析】10085)(=A P 10040)(=B P 10035)(=B A P 10015)(=A P 1005)(=B A P875.04035)()()|(===∴B P B A P B A P333.0155)()()|(≈==A P B A P A B P 2.P(A)>P(A|B)对吗?【解析】一般说来,P(A)与P(A|B)之间并没有什么必然的关系.事实上,“事件B 已经发生”这一条件可能使P(A|B)比P(A)大,也可能使P(A|B)比P(A)小,还可能P(A|B)=P(A).但是如果A ,B 之间存在一些特殊的关系,这时P(A|B)与P(A)谁大谁小将可以有进一步的结论.(1)A ,B 之间有包含关系,则P(A|B)≥P(A). (2)若A ∩B =Φ,则P(A|B)≤P(A). 五、布置作业1.某动物活到20岁的概率为0.8,活到25岁的概率是0.4,问现龄20岁的动物活到25岁的概率是多少?2.投掷两枚骰子,已知点数和为10,求两枚骰子中第一次投掷的点数大于第二次投掷点数的概率.六、教后记。
《条件概率》教学设计一、教学目标1.知识与技能目标:(1)通过对具体情景的分析,理解条件概率的定义,掌握求条件概率的公式;(2)掌握求条件概率的两种方法;(3)通过解决具体问题的实例,理解条件概率的概念,理解事件的交的意义,逐步学会依据具体问题的实际背景分析问题、解决问题的能力。
2.过程与方法目标:(1)情境引入,通过师生共同对“问题链”的探究,运用观察、思考、探究、概括、归纳的方法体会数学知识的形成的过程,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力。
(2)通过小组的探究讨论,让学生学会分享自己的见解,培养学生的团队合作精神。
3.情感态度与价值观目标:本节课的主要特点是贴近生活,体会条件概率在生活中的重要作用。
通过学习,让学生体会生活和学习中与条件概率有关的实例,增强学生解决实际问题的能力;同时,适当地增加学生合作学习交流的机会,培养学生的合作能力.二、重点、难点1. 教学重点:能利用条件概率公式解一些简单的实际问题.2.教学难点:掌握求条件概率的两种方法.三、教学设计目标导学设计意图 1.了解条件概率的概念.2.掌握求条件概率的两种方法.(难点)3.能利用条件概率公式解一些简单的实际问题.(重点)明确学习目标,做到有的放矢.知识回顾设计意图 在古典概型中,随机事件A 的概率为P (A )=事件A 包含的基本事件数试验的基本事件总数熟悉古典概型的概率公式.自学质疑设计意图 1.教材自学:阅读课本48页至49页例1上面的内容,勾画标注本节课的基础知识,写出存在的问题;2.微课助学:观看微课,借助微课进一步理解条件概率的定义,明确求条件概率的公式的由来;3.合作互学:小组讨论,解决自学过程中存在的疑难问题.提高学生的自学能力,培养学生发现问题的能力以及团队合作的能力.100件产品中有93件产品的长度合格,90件产品的质量合格,85件产品的长度、质量都合格.令A={产品的长度合格},B={产品的质量合格},A∩B={产品的长度、质量都合格}.问题1:试求P(A)、P(B)、P(A∩B).提示:P(A)=93100,P(B)=90100,P(A∩B)=85100.问题2:任取一件产品,已知其质量合格(即B发生),求它的长度(即A发生)也合格(记为A|B)的概率.提示:事件A|B发生,相当于从90件质量合格的产品中任取1件长度合格,其概率为P(A|B)=8590.问题3:试探求P(B)、P(A∩B)、P(A|B)间的关系.提示:P(A|B)=8590=1009010085=)()(BPBAP⋂.1.以实际问题引发学生的学习兴趣和求知欲望;2.以此为铺垫,通过具体问题情境引入课题;3.简单直观,符合学生的思维习惯和认知规律.概念形成设计意图1.事件的交事件A和B同时发生所构成的事件D,称为事件A与B的交(或积)记做D=A∩B(或D=AB).2.条件概率对于两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率.用符号“P(B|A)”表示.即条件概率公式P(B|A)=P(A∩B)P(A),P(A)>0.1.理解事件的交,并会用数学符号表示.2.强调条件概率的定义、公式的形式.1.用定义法求条件概率P (B |A )的步骤 (1)分析题意,弄清概率模型; (2)计算P (A ),P (A ∩B );(3)代入公式求P (B |A )=P A ∩BP A .2.计算条件概率的两种方法:(1)在原样本空间Ω中,先计算P (A ∩B ),P (A ),再按公式 P (B |A )=P (A ∩B )P (A )计算求得P (B |A ). (2)在缩小后的样本空间ΩA 中计算事件B 发生的概率,即 P (B |A )=事件A ∩B 所含基本事件的个数事件A 所含基本事件的个数.《条件概率》学情分析学生在日常生活中都接触过概率,特别是必修3中已经学习了概率的概念、古典概型等知识,具备一定的概率基础。
高二数学导学案主备人:备课时间:备课组长:
§概率条件
2.2.1条件概率
一、学习目标
知识与技能:通过对具体情景的分析,了解条件概率的定义。
过程与方法:掌握一些简单的条件概率的计算。
情感、态度与价值观:通过对实例的分析,会进行简单的应用。
二、学习重、难点
学习重点:条件概率定义的理解
学习难点: 概率计算公式的应用
三、学法指导:教材51—53页,复习古典概型计算公式
四、知识链接
A1.古典概型:
A2. 古典概型计算公式:
A3.什么是互斥事件:
五、学习过程
A问题1:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小?3名同学抽到中奖奖券的概率分别为多少?
B问题2:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少?有影响吗?
B问题3:已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?
B问题4:对于上面的事件A和事件B,P ( B|A)与它们的概率有什么关系呢?((|)
P B A读作A 发生的条件下 B 发生的概率.)其中A表示事件“第一名同学没有抽到中奖奖券”.B表示事件“最后一名同学抽到奖券”
B问题5:事件AB表示什么意思?
B问题6:条件概率的.定义:
B问题7:条件概率的性质:
(1)非负性:;
(2)规范性:P(Ω|B)=1;(Ω表示所有可能结果)
(3)可列可加性:如果B和C是两个互斥事件,则。
C例1、在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2 道题,求:(l)第1次抽到理科题的概率;
(2)第1次和第2次都抽到理科题的概率;
(3)在第 1 次抽到理科题的条件下,第2次抽到理科题的概率.
C例2、一张储蓄卡的密码共6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:
(1)任意按最后一位数字,不超过 2 次就按对的概率;
(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.
五、课堂检测
B1、抛掷一颗质地均匀的骰子所得的样本空间为S={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},求P(A),P(B),P(AB),P(A︱B)。
B2、从一副不含大小王的52张扑克牌中不放回的抽取两次,每次抽一张,已知第一次抽到A,求第二次也抽到A的概率。
C3、一个正方形被平均分成9个部分,向大正方形区域随机地投掷一个点(每次都能投中),设投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,求P(AB),P(A︱B)。
C4、在一个盒子中有大小一样的20个球,其中10个红球,10个白球。
求第1个人摸出1个红球,紧接着第2个人摸出1个白球的概率。
C5、100件产品中有5件次品,不放回的抽取两次,每次抽一件,已知第一次抽出的是次品,求第二次抽出的是正品的概率。
七、课堂小结
八、课后反思。