线代week8
- 格式:pptx
- 大小:967.74 KB
- 文档页数:62
华东理工大学线性代数 作业簿(第八册)学 院____________专 业____________班 级____________学 号____________姓 名____________任课教师____________6.1 二次型及其标准型1. 填空题(1)设三阶矩阵A 的行列式为0,且有两个特征值为1,1-,矩阵A 与B 合同,B 与C 合同,则矩阵C 是_____阶矩阵,其秩_____)(=C r .解:三,2.(2) 设n 阶矩阵A 与正交阵B 合同,则_____)(=A r . 解:n . 因B 为正交阵,故B 可逆.A 与B 合同即存在可逆矩阵C ,使得B AC C =T ,故)()(B r A r ==n .(3)二次型211221)(),,,(∑∑==-=⋅⋅⋅ni i ni i n x x n x x x f , 则此二次型的矩阵=A , 二次型的秩为______, 二次型的正交变换标准型为________________.解:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------1 (11)...1...111...11n n n ,1-n ,222121,n ny ny ny -++⋅⋅⋅+ 提示:二次型的秩就是二次型的矩阵的秩,也是其标准型中非零项的个数(注:标准型不唯一). 因此求二次型的秩有两种方法:1) 直接求二次型的矩阵A 的秩,2)先求A 的特征值,A 有几个非零特征值(重根按重数计算),二次型的秩就是几.(4) 二次型,)(T Ax x x f = 其中A A ≠T ,则二次型的矩阵为_____ ____.解:)(21T A A +. 提示:A 不是二次型的矩阵,因A 不是对称阵。
注意到Ax x x f T )(=的值是一个数,即)()(T x f x f =,故有x A A x x f x f x f )(21)]()([21)(T T +=+=. 而)(21T A A +为对称阵.(5) 设n 元(n >2)实二次型()T f x x Ax = )(T A A =其中的正交变换标准型为22212y y -,则=A ______,矩阵A 的迹为 _____.解:0, 1-. 提示:A 的特征值为11,λ=22,λ=-30n λλ=⋅⋅⋅==,根据A A tr ni ini i ==∏∑==11),(λλ 易得.(6) 如果二次型2221231231213(,,)5526f x x x x x cx x x x x =++-+ 236x x - 的秩为2,则参数c = _____,1),,(321=x x x f 表示的曲面为__________.解:3, 椭圆柱面. 提示:二次型的矩阵33⨯A 的秩为2,故0||=A ,由此可求得c = 3. 再求出A 的特征值为9,4,0321===λλλ,即标准型为232294y y f +=,由此知1),,(321=x x x f 为椭圆柱面.2. 已知二次型322322213212332),,(x ax x x x x x x f +++=(0a >) 通过正交变换化成标准型23222152y y y f ++=,求a 的值及所用的正交变换矩阵Q .解:二次型的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3030002a a A ,)9(22a A -=,由123A λλλ=即10)9(22=-a 得 2=a .A 有三个不同的特征值1,2,5,故对应这三个特征值的特征向量线性无关。
线性代数公式大全第一章 行列式1.逆序数 1.1 定义n 个互不相等的正整数任意一种排列为:12n i i i ⋅⋅⋅,规定由小到大为标准次序,当某两个元素的先后次序与标准次序不同时,就说有一个逆序数,该排列全部逆序数的总合用()12n i i i τ⋅⋅⋅表示,()12n i i i τ⋅⋅⋅等于它所有数字中后面小于前面数字的个数之和。
1.2 性质一个排列中任意两个元素对换,排列改变奇偶性,即 ()211ττ=-。
证明如下:设排列为111l m n a a ab b bc c ,作m 次相邻对换后,变成111l m n a a abb b c c ,再作1m +次相邻对换后,变成111l m n a a bb b ac c ,共经过21m +次相邻对换,而对不同大小的两元素每次相邻对换逆序数要么增加1 ,要么减少1 ,相当于()211ττ=-,也就是排列必改变改变奇偶性,21m +次相邻对换后()()2121111m τττ+=-=-,故原命题成立。
2.n 阶行列式的5大性质性质1:转置(行与列顺次互换)其值不变。
性质2:互换任意两行(列)其值变号。
性质3:任意某行(列)可提出公因子到行列式符号外。
性质4:任意行列式可按某行(列)分解为两个行列式之和。
性质5:把行列式某行(列)λ倍后再加到另一行(列),其值不变。
行列式的五大性质全部可通过其定义证明;而以后对行列式的运算主要是利用这五个性质。
4的重要拓展: 设n 阶同型矩阵,()()(); ij ij ij ij A a B b A B a b ==⇒+=+,而行列式只是就某一列分解,所以,A B +应当是2n个行列式之和,即A B A B+≠+。
()121201201110; ; 1n nnn nn n n n n n n i i j i i i j i n n n a a aa x a x a xa x x x x a a a ------=≠==++++=⇒=-==-∑∑∏一、行列式定义 1.定义111212122212n n n n nna a a a a a a a a n n nj j j j j j a a a 221211)()1(τ∑-=其中逆序数 ()121n j j j j τ=后面的1j 小的数的个数 2j +后面比2j 小的数的个数+1n j -+后面比1n j -小的数的个数.2.三角形行列式1112122200n n nna a a a a a 11212212000n n nna a a a a a =1122nn a a a =1211000n n n nn nna a a a a -1112121221n n a a a a a a =()()12112111n n n n n a a a τ-⋅⎡⎤⎣⎦-=-()()1212111n n n n n a a a --=-二、行列式性质和展开定理1.会熟练运用行列式性质,进行行列式计算. 2.展开定理1122i k i k in kn ik a A a A a A A δ+++=A A a A a A a jk nk nj k j k j δ=+++2211三、重要公式 设A 是n 阶方阵,则1.T A A=2.11A A --= 3.1*n A A-=4.n kA k A =5.AB A B =,其中B 也是n 阶方阵6.设B 为m 阶方阵,则0A C A A B B C B ==()010mnA CA AB BC B==-7.德蒙行列式()1222212111112111n ijnj i nn n n nx x x x x x x x x x x ≤<≤---=-∏四.有关结论 1.对于,n n n n A B ⨯⨯(1)00A A ⇒==⇐ (2) A B A B⇒==⇐2.A 为n 阶可逆矩阵A E A E ⇔→⇔→行变列变(A 与E 等价)0AX ⇔=只有惟一零解AX b ⇔=有惟一解(克莱姆法则) A ⇔的行(列)向量组线性无关 A ⇔的n 个特征值0,1,2,,i i n λ≠=⇔A 可写成若干个初等矩阵的乘积 ⇔)()(B r AB r = ⇔A A T 是正定矩阵⇔A 是n R 中某两组基之间的过渡矩阵3.A 为n 阶不可逆矩阵0=A 0AX ⇔=有非零解⇔n A r <)(⇔0是A 的特征值⇔A A -=4.若A 为n 阶矩阵,)2,1(n i i =λ为A 的n 个特征值,则∏==ni i A 1λ5.若B A ~,则B A =行列式的基本计算方法:1. 应用行列式的性质化简行列式(例如化为三角形行列式就是一个常用方法)。
《线性代数》课程教学大纲第一篇:《线性代数》课程教学大纲《线性代数》课程教学大纲课程编码:414002(A)课程英文名称:Linear Algebra 先修课程:微积分适用专业:理科本科专业总学分:3.5 总学时:56讲课学时 56 实验学时 0实习学时 0一、课程性质、地位和任务课程名称:线性代数线性代数是我校计算机科学与技术专业的一门重要基础课。
它不但是其它后继专业课程的基础,而且是科技人员从事科学研究和工程设计必备的数学基础。
通过本课程的教学,使学生获得矩阵、行列式、向量、线性方程组、二次型等方面的基本知识,掌握处理离散问题常用的方法,增强学生“用”数学的意识,培养学生“用”数学的能力。
二、课程基本要求1.了解行列式的定义和性质,掌握利用行列式的性质及展开法则,掌握三、四阶行列式的计算法,会计算简单的n阶行列式;理解和掌握克拉默(Cramer)法则。
2.理解矩阵概念并掌握矩阵的线性运算、乘法、转置及其运算规律;理解逆矩阵的概念,掌握逆矩阵存在的条件,掌握求逆矩阵的方法;掌握对称矩阵的性质;了解分块矩阵及其运算。
3.理解n维向量、向量组线性相关与线性无关的概念;了解有关向量组线性相关、线性无关的重要结论;理解向量组的最大线性无关组与向量组的秩的概念;了解n维向量空间、子空间、基底、维数、坐标等概念;掌握齐次线性方程组有非零解的充要条件及非齐次线性方程组有解的充要条件;会求齐次线性方程组的基础解系、通解;掌握非齐次线性方程组的解的结构,会求非齐次线性方程组的通解;了解向量的内积、正交和向量的长度等概念;会利用施密特(Schmidt)方法把线性无关的向量组正交规范化。
4.掌握Gauss消元法;掌握用Gauss消元法求线性方程组通解的方法;掌握用初等变换求齐次线性方程组和非齐次线性方程组解的方法。
5.掌握矩阵的特征值与特征向量的概念,会求矩阵的特征值与特征向量;理解相似矩阵的概念、性质及矩阵可相似对角化的充要条件。