线性代数模拟试卷(1)
- 格式:doc
- 大小:208.00 KB
- 文档页数:4
考研数学一(线性代数)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设A是三阶矩阵,B是四阶矩阵,且|A|=2,|B|=6,则为( ).A.24B.一24C.48D.一48正确答案:D解析:知识模块:线性代数部分2.设A为二阶矩阵,且A的每行元素之和为4,且|E+A|=0,则|2E+A2|为( ).A.0B.54C.-2D.-24正确答案:B解析:因为A的每行元素之和为4,所以A有特征值4,又|E+A|=0,所以A有特征值一1,于是2E+A2的特征值为18,3,于是|2E+A2|=54,选(B).知识模块:线性代数部分3.设n维行向量,A=E—αTα,B=E+2αTα,则AB为( ).A.0B.一EC.ED.E+αTα正确答案:C解析:知识模块:线性代数部分4.设A,B为n阶矩阵,则下列结论正确的是( ).A.若A,B可逆,则A+B可逆B.若A,B可逆,则AB可逆C.若A+B可逆,则A—B可逆D.若A+B可逆,则A,B都可逆正确答案:B解析:若A,B可逆,则|A|≠0,|B|≠0,又|AB|=|A||B|,所以|AB|≠0,于是AB可逆,选(B).知识模块:线性代数部分5.设A,B为n阶对称矩阵,下列结论不正确的是( ).A.AB为对称矩阵B.设A,B可逆,则A-1+B-1为对称矩阵C.A+B为对称矩阵D.kA为对称矩阵正确答案:A解析:由(A+B)T=AT+BT=A+B,得A+B为对称矩阵;由(A-1+B-1)T=(A-1)T+(B-1)T=A-1+B-1,得A-1+B-1为对称矩阵;由(ka)T=kAT=kA,得kA为对称矩阵,选(A).知识模块:线性代数部分6.设A,B皆为n阶矩阵,则下列结论正确的是( ).A.AB=0的充分必要条件是A=0或B=0B.AB≠0的充分必要条件是A≠0且B≠0C.AB=0且r(A)=n,则B=0D.若AB≠0,则|A|≠0或|B|≠0正确答案:C解析:知识模块:线性代数部分7.n阶矩阵A经过若干次初等变换化为矩阵B,则( ).A.|A|=|B|B.|A|≠|B|C.若|A|=0则|B|=0D.若|A|>0则|B|>0正确答案:C解析:因为A经过若干次初等变换化为B,所以存在初等矩阵P1,Ps,Q1,…,Qt,使得B=Ps…P1AQ1…Qt,而P1,…,Ps,Q1,…,Q都是可逆矩阵,所以r(A)=r(B),若|A|=0,即r(A)<n,则r(B)<n,即|B|=0,选(C).知识模块:线性代数部分8.设A为m×n阶矩阵,C为n阶矩阵,B=AC,且r(A)=r,r(B)=r1,则( ).A.r>r1B.r<r1C.r≥r1D.r与r1的关系依矩阵C的情况而定正确答案:C解析:因为r1=r(B)=r(AC)≤r(A)=r,所以选(C).知识模块:线性代数部分9.设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则( ).A.r>mB.r=mC.r<mD.r≥m正确答案:C解析:显然AB为m阶矩阵,r(A)≤n,r(B)≤n,而r(AB)≤min{r(A),r(B))≤n<m,所以选(C).知识模块:线性代数部分10.设A为四阶非零矩阵,且r(A*)=1,则( ).A.r(A)=1B.r(A)=2C.r(A)=3D.r(A)=4正确答案:C解析:因为r(A*)=1,所以r(A)=4—1=3,选(C).知识模块:线性代数部分11.设A,B都是n阶矩阵,其中B是非零矩阵,且AB=0,则( ).A.r(B)=nB.r(B)<nC.A2一B2=(A+B)(A—B)D.|A|=0正确答案:C解析:因为AB=0,所以r(A)+r(B)≤n,又因为B是非零矩阵,所以r(B)≥1,从而r(A)<n,于是|A|=0,选(D).知识模块:线性代数部分12.设A,B分别为m阶和n阶可逆矩阵,则的逆矩阵为( ).A.B.C.D.正确答案:D解析:知识模块:线性代数部分13.A.B=P1P2AB.B=P2P1AC.B=P2AP1D.B=AP2P1正确答案:D解析:P1=E12,P2=E23(2),显然A首先将第2列的两倍加到第3列,再将第1及第2列对调,所以B=AE23(2)E12=AP2P1,选(D).知识模块:线性代数部分14.A.B=P1AP2B.B=P2AP1C.B=P2-1AP1D.B=P1-1AP2-1正确答案:D解析:知识模块:线性代数部分填空题15.正确答案:23解析:按行列式的定义,f(x)的3次项和2次项都产生于(x+2)(2x+3)(3x+1),且该项带正号,所以x2项的系数为23.知识模块:线性代数部分16.设A为三阶矩阵,A的第一行元素为1,2,3,|A|的第二行元素的代数余子式分别为a+1,a一2,a一1,则a=_________.正确答案:1解析:由(a+1)+2(a一2)+3(a一1)=0得a=1.知识模块:线性代数部分17.设A是m阶矩阵,B是n阶矩阵,且=_________.正确答案:(-1)mnab解析:将B的第一行元素分别与A的行对调m次,然后将B的第二行分别与A的行对调m次,如此下去直到B的最后一行与A的行对调m次,则知识模块:线性代数部分18.设A=(α1,α2,α3)为三阶矩阵,且|A|=3,则|α1+2α2,α2—3α3,α3+2α1|=________.正确答案:-33解析:|α1+2α2,α2—3α3,α3+2α1|=|α1,α2—3α3,α3+2α1|+|2α2,α2—3α3,α3+2α1|=|α1,α2-3α3,α3|+2|α2,-3α3,α3+2α1|=|α1,α2,α3|一6|α2,α3,α3+2α1|=|α1,α2,α3|一6|α2,α3,2α1|=|α1,α2,α3|一12|α2,α3,α1|=|α1,α2,α3|一12|α1,α2,α3|=一33 知识模块:线性代数部分19.设三阶矩阵A=(α,γ1,γ2),B=(β,γ1,γ2),其中α,β,γ1,γ2是三维列向量,且|A|=3,|B|=4,则|5A一2B|=________.正确答案:63解析:由5A一2B=(5α,5γ1,5γ2)一(2β,2γ1,2γ2)=(5α一2β,3γ1,3γ2),得|5A一2B|=|5α一2β,3γ1,3γ2|=9|5α一2β,γ1,γ2|=9(5|α,γ1,γ2|一2|β,γ1,γ2|)=63 知识模块:线性代数部分20.设α=(1,一1,2)T,β=(2,1,1)T,A=αβT,则An=_________.正确答案:解析:知识模块:线性代数部分21.正确答案:0解析:由A2=2A得An=2n-1A,An-1=2n-2A,所以An一2An-1=0.知识模块:线性代数部分22.正确答案:解析:知识模块:线性代数部分23.A2一B2=(A+B)(A—B)的充分必要条件是_________.正确答案:AB=BA解析:A2一B2=(A+B)(A一B)=A2+BA—AB一B2的充分必要条件是AB=BA.知识模块:线性代数部分24.设A是三阶矩阵,且|A|=4,则=__________正确答案:2解析:知识模块:线性代数部分25.正确答案:解析:知识模块:线性代数部分26.正确答案:8解析:因为A为四阶矩阵,且|A*|=8,所以|A*|=|A|3=8,于是|A|=2.又AA*=|A|E=2E,所以A*=2A-1,故知识模块:线性代数部分27.设A为三阶矩阵,且|A|=3,则|(一2A)*|=_________.正确答案:576解析:因为(一2A)*=(一2)2A*=4A*,所以|(一2A)*|=|4A*|=43|A|2=64×9=576.知识模块:线性代数部分28.正确答案:解析:知识模块:线性代数部分29.正确答案:解析:知识模块:线性代数部分30.正确答案:解析:知识模块:线性代数部分31.正确答案:解析:知识模块:线性代数部分32.设A为n阶可逆矩阵(n≥2),则[(A*)*]-1=_________(用A*表示).正确答案:解析:知识模块:线性代数部分33.正确答案:解析:知识模块:线性代数部分34.设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,,且B为A的逆矩阵,则a=________.正确答案:-1解析:知识模块:线性代数部分35.设三阶矩阵A,B满足关系A-1BA=6A+BA,且,则B=__________.正确答案:解析:由A-1BA=6A+BA,得A-1B=6E+B,于是(A-1-E)B=6E,知识模块:线性代数部分36.设A是4×3阶矩阵且r(A)=2,B=,则r(AB)=__________.正确答案:2解析:因为|B|=10≠0,所以r(AB)=r(A)=2.知识模块:线性代数部分37.正确答案:2解析:因为AB=0,所以r(A)+r(B)≤3,又因为B≠0,所以r(B)≥1,从而有r(A)≤2,显然A有两行不成比例,故r(A)≥2,于是r(A)=2.知识模块:线性代数部分38.正确答案:解析:知识模块:线性代数部分解答题解答应写出文字说明、证明过程或演算步骤。
线性代数(文)模拟试卷(一)参考答案一。
填空题(每小题3分,共12分)1.设⎪⎪⎪⎭⎫⎝⎛=333222111c b a c b a c b a A ,⎪⎪⎪⎭⎫⎝⎛=333222111d b a d b a d b a B ,2=A ,3=B ,则B A -2=1. 解 B A -2=3332221113332221113333222211112222d b a d b a d b a c b a c b a c b a d c b a d c b a d c b a -=---=12=-B A .2。
已知向量)3,2,1(=α,)31,21,1(=β,设βαT A =,其中T α是α的转置,则n A =A n 13-.解 注意到3321)31,21,1(=⎪⎪⎪⎭⎫ ⎝⎛=T βα,故n A =βαβαβαβαT n T T T 个)())((=ββαβαβααβαTn T T T T 个)1()())((-=A n T n 1133--=βα。
注 若先写出A ,再求2A ,…,n A 将花比前更多的时间.3。
若向量组T )1,0,1(1-=α,T k )0,3,(2=α,T k ),4,1(3-=α线性相关,则k =3-.解 由1α,2α,3α线性相关,则有321,,ααα=k k 0143011--=1043011--k k k =04)1(3143=--=-k k k k 。
由此解得3-=k .4。
若4阶矩阵A 与B 相似,矩阵A 的特征值为21,31,41,51,则行列式E B --1 =24.解 因为A 与B 相似,所以A ,B 有相似的特征值,从而E B --1有特征值1,2,3,4。
故2443211=⋅⋅⋅=--E B . 注 本题解答中要用到以下结论:(1)若A 可逆,A 的特征值为λ,则1-A 的特征值为λ1。
(2)若λ是A 的特征值,则)(A f 的特征值为)(λf ,其中)(x f 为任意关于x 的多项式。
《线性代数 》考试卷1说明:考生应将全部答案都写在答题纸上,否则作无效处理。
一、 选择题(每小题3分,共24分)1.设向量组1α=(1,0,1,0)T ,2α=(2,-1,2,1)T ,3α=(1,-1,1,1)T , 4α=(2,-1,1,1)T ,5α =(1,-2,1,2)T ,则该向量组的极大线性无关组是( ) A 、1α,2α,3α B 、1α,2α,4α C 、1α,2α,5α D 、1α,2α,3α,5α2.设向量组(1)α1,α2(2)α1,α2,α3(3)α1,α2,α4(4)α1,α2,α3,α4,若(1)(2)的秩为2,(3)的秩为3,则向量组(4)的秩为 。
A.1 B.2 C.3 D.43.设A 是4×3矩阵,r (A )=1,321,,ξξξ是非齐次线性方程组Ax =b 的三个线性无关解,下列哪个是Ax =0的基础解系?A 、1ξ+2ξ+3ξB 、1ξ+2ξ-23ξC 、2ξ-1ξ,3ξ-2ξD 、1ξ+2ξ,2ξ+3ξ4.设A,B 均为n 阶方阵,且满足关系式AB=0,则必有。
A .A=0或B=0 B .A+B=0C .∣A ∣=0或∣B ∣=0D .∣A ∣+∣B ∣=05.设1α,…,m α)2,,,1,(>=∈m m i R a n i 线性无关,下列哪个成立? A 、对任意常数m k k ,,1 有011=++m m k k αα B 、任意)(m k k <个向量k i i αα ,1线性相关 C 、对任意,n R ∈ββαα,,,1m 线性相关 D 、任意)(m k k <个向量k i i i ααα,,,21 线性无关6.设A 是m ×n 矩阵,AX=0是非齐次线性方程组AX=b 所对应的齐次方程组,则下述结论中正确的是 。
A .若AX=0仅有零解,则AX=b 有唯一解;B .若AX=0有非零解,则AX=b 有无穷多解;C .若AX=b 有无穷多解,则AX=0仅有零解;D .若AX=b 有无穷多解,则AX=0有非零解。
模拟试卷一一、填空题 (共5 小题,每题 3 分,共计15 分)1. 设 1231231234a a a b b b c c c =,则 123312331233222a a a a b b b b c c c c -+-+-+= -8 2. n 元齐次线性方程AX=0,若R(A)=r<n, 则AX=0必有 解,基础解系含 有 个解向量,解空间的维数是3. 设 1403,2112A B ⎛⎫⎛⎫== ⎪ ⎪---⎝⎭⎝⎭,则TAB =() -4 1 11 -8 4. 向量组1(1,0,0)Tα→=, 2(1,3,0)Tα→=-, 3(1,2,1)T α→=-的秩为 . 5. 设 12,,βαα 线性相关,23,,βαα线性无关,则123,,,βααα线性 二、选择题 (共 5 小题,每题 3 分,共计15 分)1. 设,A B 为n 阶方阵,且0,0A AB ≠=,下列结论必然正确的是( ) (A) 0B =; (B) ()222A B A B +=+; (C) ()222A B A BA B -=-+; (D) ()()22A B A B A B -+=-. 2. 设A 为三阶方阵,且det 2A =,则det(3)A -=( ) (A) -54; (B) 18;(C) 27; (D) -6.3. 设A 是m n ⨯阶矩阵,()()min ,R A r m n =<,则A 中( ) (A )至少有一个r 阶子式不等于零,没有等于零的r 阶子式; (B) 有不等于零的r 阶子式,没有不等于零的r +1阶子式; (C ) 有等于零的r 阶子式,没有不等于零的r +1阶子式; (D) 任何r 阶子式等于零,任何r +1阶子式都等于零。
4.下列向量中与121α⎛⎫ ⎪= ⎪ ⎪-⎝⎭正交的是( )(A) 011⎛⎫ ⎪⎪ ⎪⎝⎭; (B)201⎛⎫ ⎪⎪ ⎪⎝⎭; (C) 311⎛⎫ ⎪⎪ ⎪⎝⎭; (D) 101⎛⎫ ⎪ ⎪ ⎪⎝⎭. 5. 若A 是m n ⨯矩阵,B 是n p ⨯矩阵,C 是p m ⨯矩阵,则下列运算不可行的是( )(A) ()TC AB + ; (B) ABC ; (C) ()TBC A - ; (D) T AC . 三、证明行列式(共计 10分)0111111111111111144342414433323134232221241312111=++++++++++++++++y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x四.(10) 解矩阵方程⎪⎪⎪⎭⎫⎝⎛--=+⎪⎪⎪⎭⎫ ⎝⎛101010101000200320X X 五. (10)求下列非齐次线性方程组的通解⎪⎩⎪⎨⎧-=+-=++-=+-694432542321321321x x x x x x x x x 六、(共2 小题,每题 8 分,共计16 分)(1)求向量组123411204012,,,13160133αααα⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭的一个最大无关组。
考研数学二(线性代数)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设n维行向量α=,A=E-αTα,B=E+2αTα,则AB为( ).A.OB.-EC.ED.E+αTα正确答案:C解析:由ααT=,得AB=(E-αTα)(E+2αTα)=E,选(C) 知识模块:线性代数部分2.设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则( ).A.r(B)=nB.r(B)<nC.A2-B2=(A+B)(A-B)D.|A|=0正确答案:D解析:因为AB=O,所以r(A)+r(B)≤n,又因为B是非零矩阵,所以r(B)≥1,从而r(A)<n,于是|A|=0,选(D) 知识模块:线性代数部分3.设n阶矩阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组(Ⅰ):α1,α2,…,αn;(Ⅱ):β1,β2,…,βm;(Ⅲ):γ1,γ2,…,γm,若向量组(Ⅲ)线性相关,则( ).A.(Ⅰ),(Ⅱ)都线性相关B.(Ⅰ)线性相关C.(Ⅱ)线性相关D.(Ⅰ),(Ⅱ)至少有一个线性相关正确答案:D解析:若α1,α2,…,αn线性无关,β1,β2,…,βn线性无关,则r(A)=n,r(B)=n,于是r(AB)=n.因为γ1,γ2,…,γm线性相关,所以r(AB)=r(γ1,γ2,…,γn)只有零解,而无解,故(A)不对;方程组有非零解,而无解,故(B)不对;方程组无解,但只有零解,故(C)不对;若Ax=b有无穷多个解,则r(A)=r()B.C.λ|A|D.λ|A|n-1正确答案:B解析:因为A可逆,所以λ≠0,令AX=λX,则A*AX=λA*X,从而有A*X=选(B) 知识模块:线性代数部分6.设n阶矩阵A与对角矩阵合同,则A是( ).A.可逆矩阵B.实对称矩阵C.正定矩阵D.正交矩阵正确答案:B解析:因为A与对角阵合同,所以存在可逆矩阵P,使得pTAP=A,从而A=(pT)-1P-1=(p-1)TP-1,AT=[(P-1)TP-1]T=(P-1)TP-1=A,选(B) 知识模块:线性代数部分填空题7.设f(x)=,则x2项的系数为_______.正确答案:x解析:按行列式的定义,f(x)的3次项和2次项都产生于(x+2)(2x+3)(3x+1),且该项带正号,所以x2项的系数为23.知识模块:线性代数部分8.设A是三阶矩阵,且|A|=4,则=_______正确答案:2解析:=|2A-1|=23|A-1|=2 知识模块:线性代数部分9.设A=,则(A-2E)-1=_______.正确答案:解析:A-2E= 知识模块:线性代数部分10.设,且α,β,γ两两正交,则a=_______,b=_______.正确答案:-4,-13解析:因为α,β,γ正交,所以,解得a=-4,b=-13.知识模块:线性代数部分11.设A=(a(C1,C2为任意常数)解析:因为AX=0有非零解,所以|A|=0,而|A|==-(a+4)(a-6)且a(C1,C2为任意常数).知识模块:线性代数部分12.设A为三阶矩阵,A的各行元素之和为4,则A有特征值_______,对应的特征向量为_______正确答案:4,解析:因为A的各行元素之和为4,所以,于是A有特征值4,对应的特征向量为知识模块:线性代数部分13.设5x12+x22+tx3x2+4x1x2-2x1x3-2x2x3为正定二次型,则t的取值范围是_______.正确答案:t>2解析:二次型的矩阵为A=,因为二次型为正定二次型,所以有5>0,=1>0,|A|>0,解得t>2.知识模块:线性代数部分解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三线性代数(矩阵的特征值和特征向量)模拟试卷1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设矩阵A=,那么矩阵A的三个特征值是( )A.1,0,-2.B.1,1,-3.C.3,0,-2.D.2,0,-3.正确答案:D解析:根据特征值的性质:∑λi=∑aij 现在∑aii=1+(-3)+1=-1,故可排除选项C.显然,矩阵A中第2、3两列成比例,易知行列式|A|=0,故λ=0必是A的特征值,因此可排除选项B.对于选项A和选项D,可以用特殊值法,由于说明λ=1不是A 矩阵的特征值.故可排除选项A.所以应选D.知识模块:矩阵的特征值和特征向量2.已知A是4阶矩阵,A*是A的伴随矩阵,若A*的特征值是1,-1,2,4,那么不可逆矩阵是( )A.A-EB.2A-EC.A+2ED.A-4E正确答案:C解析:因为A*的特征值是1、-1、2、4,所以|A*|=-8,又因为|A*|=|A|n-1,即|A|3=-8,于是|A|=-2.那么,矩阵A的特征值是:-2,2,-1,因此,A-E的特征值是-3,1,-2,,因为特征值非0,故矩阵A—E可逆.同理可知矩阵A+2E的特征值中含有0,所以矩阵A+2E不可逆.所以应选C.知识模块:矩阵的特征值和特征向量3.已知A是n阶可逆矩阵,那么与A有相同特征值的矩阵是( )A.ATB.A2C.A-1D.A-E.正确答案:A解析:由于|λE-AT|=|(λE-A)T|=|λE-A|,A与AT有相同的特征多项式,所以A与AT有相同的特征值.由Aα=λα,α≠0可得到:A2α=λ2α,A-1α=λ-1α,(A-E)α=(λ-1)α,说明A2、A-1、A-E与A的特征值是不一样的(但A的特征向量也是它们的特征向量).所以应选A.知识模块:矩阵的特征值和特征向量4.已知α=(1,-2,3)T是矩阵A=的特征向量,则( )A.a=-2,b=6.B.a=2,b=-6.C.a=2,b=6.D.a=-2,b=-6.正确答案:A解析:设α是矩阵A属于特征值λ的特征向量,按定义有所以λ=-4,a=-2,b=6,故应选A.知识模块:矩阵的特征值和特征向量5.设A是n阶矩阵,P是n阶可逆矩阵,n维列向量β是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中(1)A2 (2)P-1AP (3)AT (4)α肯定是其特征向量的矩阵共有( )A.1个.B.2个.C.3个.D.4个.正确答案:B解析:由Aα=λα,α≠0,有A2α=A(λα)=λAa=λ2α,α≠0,即α必是A2属于特征值λ2的特征向量.关于(2)和(3)则不一定成立.这是因为(P-1AP)(P-1α)=P-1Aα=λP-1α,按定义,矩阵P-1AP,的特征向量是P-1α因为P-1α与α不一定共线,因此α不一定是P-1AP的特征向量,即相似矩阵的特征向量是不一样的.线性方程组(λE-A)x=0与(λE-AT)x=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是AT的特征向量.所以应选B.知识模块:矩阵的特征值和特征向量6.设A是n阶矩阵,下列命题中正确的是( )A.若α是AT的特征向量,那么α是A的特征向量.B.若α是A*的特征向量,那么α是A的特征向量.C.若α是A2的特征向量,那么α是A的特征向量.D.若α是2A的特征向量,那么α是A的特征向量.正确答案:D解析:如果α是2A的特征向量,即(2Aα)=λα,α≠0.那么Aα=,所以α是矩阵A属于特征值的特征向量.由于(λE-A)x=0与(λE-AT)x=0不一定同解,所以α不一定是AT的特征向量.例如上例还说明当矩阵A不可逆时,A*的特征向量不一定是A的特征向量;A2的特征向量也不一定是A的特征向量.所以应选D.知识模块:矩阵的特征值和特征向量7.已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是( ) A.αB.Aα+2αC.A2α-AαD.A2α+2Aα-3α正确答案:C解析:因为A3α+2A2α-3Aα=0.故(A+3E)(A2α-Aα)=0=0(A2α-A α),因为α,Aα,A2α线性无关,那么必有A2α-Aα≠0,所以A2α-Aα是矩阵A+3E属于特征值λ=0的特征向量,即矩阵A属于特征值λ=-3的特征向量.所以应选C.知识模块:矩阵的特征值和特征向量8.设A是三阶矩阵,其特征值是1,3,-2,相应的特征向量依次是α1,α2,α3,若P=(α1,2α3,-α2),则P-1AP=( )A.B.C.D.正确答案:A解析:由Aα2=3α2,有A(-α2)=3(-α2),即当α2是矩阵A属于特征值λ=3的特征向量时,-α2仍是矩阵A属于特征值λ=3的特征向量.同理,2α3仍是矩阵A属于特征值λ=-2的特征向量.当P-1AP=A时,P由A的特征向量所构成,A由A的特征值所构成,且P与A的位置是对应一致的,已知矩阵A的特征值是1,3,-2,故对角矩阵A应当由1,3,-2构成,因此排除选项B、C.由于2α3是属于λ=-2的特征向量,所以-2在对角矩阵A中应当是第2列,所以应选A.知识模块:矩阵的特征值和特征向量填空题9.设3阶方阵A的特征值分别为-2,1,1,且B与A相似,则|2B|=______ 正确答案:-16解析:因为相似矩阵有相同的特征向量,矩阵对应的行列式等于特征向量的乘积,因此有知识模块:矩阵的特征值和特征向量10.设3阶矩阵A的特征值分别为1,2,2,E为3阶单位矩阵,则|4A-1-E|=_______正确答案:3解析:根据已知条件A的特征值为1,2,2,A-1的特征值为,因此进一步可得4A-1-E的特征值为3,1,1,所以|4A-1-E|=3×1×1=3.知识模块:矩阵的特征值和特征向量11.设3阶方阵A的特征值是1,2,3,它们所对应的特征向量依次为α1,α2,α3,令P=(3α3,α1,2α2),则P-1AP=______正确答案:解析:因为3α3,α1,2α2分别为A的对应特征值3,1,2的特征向量,所以知识模块:矩阵的特征值和特征向量12.已知A有一个特征值-2,则B=A2+2E必有一个特征值是______正确答案:6解析:因为λ=-2是A的特征值,所以根据特征值的性质,λ2+2=(-2)2+2=6是B=A2+2E的特征值.知识模块:矩阵的特征值和特征向量13.设A是n阶矩阵,λ=2是A的一个特征值,则2A2-3A+5E必定有特征值________正确答案:7解析:如果λ是A的一个特征值,α是对应于A的一个特征向量,则Aα=λα,因此有A2α=A(λα)=λAα=λ2α.因此可知(2A2-3A+5E)α=2A2α-3Aα+5α=(2λ2-3λ+5)α,所以2×22-3×2+5=7一定是2A2-3A+5E的一个特征值.知识模块:矩阵的特征值和特征向量14.设A是3阶矩阵,且各行元素的和都是5,则矩阵A一定有特征值_________正确答案:5解析:已知各行元素的和都是5,即化为矩阵形式,可得知识模块:矩阵的特征值和特征向量15.已知A=,A*是A的伴随矩阵,那么A*的特征值是______正确答案:1,7,7解析:根据矩阵A的特征多项式可得矩阵A的特征值为7,1,1.又因为|A|=∏λi,可得|A|=7.因为如果Aα=λα,则有A*=,因此A*的特征值是1,7,7.知识模块:矩阵的特征值和特征向量16.矩阵A=的三个特征值分别为________正确答案:解析:|λE-A|=所以A的特征值为λ1=2,λ2= 知识模块:矩阵的特征值和特征向量解答题解答应写出文字说明、证明过程或演算步骤。
考研数学三线性代数(线性方程组)模拟试卷1(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.某五元齐次线性方程组的系数矩阵经初等变换,化为,则自由变量可取为(1)x4,x5 (2)x3,x5 (3)x1,x5 (4)x2,x3那么正确的共有( ) A.1个B.2个C.3个D.4个正确答案:B解析:因为系数矩阵的秩r(A)=3,有n-r(A)=5-3=2,故应当有2个自由变量.由于去掉x4,x5两列之后,所剩三阶矩阵为,因为其秩与r(A)不相等,故x4,x5不是自由变量.同理,x4,x5不能是自由变量.而x1,x5与x2,x3均可以是自由变量,因为行列式都不为0.所以应选B.知识模块:线性方程组2.已知α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,那么下列向量α1-α2,α1+α2-2α3,(α2-α1),α1-3α2+2α3中能导出方程组Ax=0解的向量共有( )A.4个.B.3个.C.2个.D.1个.正确答案:A解析:由Aαi=b(i=1,2,3)有A(α1-α2)=Aα1-Aα2=b-b=0,A(α1+α2-2α3)=Aα1+Aα2-2Aα3=b+b-2b=0,A(α1-3α2+2α3)=Aα1-3Aα2+2Aα3=b-3b+2b=0,那么,α1-α2,α1+α2-2α3,(α2-α1),α1-3α2+2α3均是齐次方程组Ax=0的解.所以应选A.知识模块:线性方程组3.已知α1=(1,1,-1)T,α2=(1,2,0)T是齐次方程组Ax=0的基础解系,那么下列向量中Ax=0的解向量是( )A.(1,-1,3)TB.(2,1,-3)TC.(2,2,-5)TD.(2,-2,6)T正确答案:B解析:如果A选项是Ax=0的解,则D选项必是Ax=0的解.因此选项A、D均不是Ax=0的解.由于α1,α2是Ax=0的基础解系,那么α1,α2可表示Ax=0的任何一个解η,亦即方程组x,α1+x2α2=η必有解,因为可见第二个方程组无解,即(2,2,-5)T不能由α1,α2线性表示.所以应选B.知识模块:线性方程组4.设n元齐次线性方程组Ax=0的系数矩阵A的秩为r,则Ax=0有非零解的充分必要条件是( )A.r=nB.r≥n.C.r<n.D.r>n.正确答案:C解析:将矩阵A按列分块,A=(α1,α2,…,αn),则Ax=0的向量形式为x1a1+x2a2+…+xnan=0,而Ax=0有非零解甘α1,α2,…,αn线性相关r(α1,α2,…,αn)<nr(A)<n.所以应选C.知识模块:线性方程组5.已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( ) A.B.C.D.正确答案:B解析:由α1+2α2-α3=β知即γ1=(1,2,-1,0)T是Ax=β的解.同理γ2=(1,1,1,1)T,γ3=(2,3,1,2)T也均是Ax=β的解,那么η1=γ1-γ2=(0,1,-2,-1)T,η2=γ3-γ2=(1,2,0,1)T是导出组Ax=0的解,并且它们线性无关.于是Ax=0至少有两个线性无关的解向量,有n-r(A)≥2,即r(A)≤2,又因为α1,α2线性无关,有r(A)=r(α1,α2,α3,α4)≥2.所以必有r(A)=2,从而n-r(A)=2,因此η1,η2就是Ax=0的基础解系,根据解的结构,所以应选B.知识模块:线性方程组6.已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b 的通解是( )A.B.C.D.正确答案:B解析:对于A、C选项,因为所以选项A、C中不含有非齐次线性方程组Ax=b的特解,故均不正确.对于选项D,虽然(β1-β2)是齐次线性方程组Ax=0的解,但它与α1不一定线性无关,故D也不正确,所以应选B.事实上,对于选项B,由于α1,(α1-α2)与α1,α2等价(显然它们能够互相线性表示),故α1,(α1-α2)也是齐次线性方程组的一组基础解系,而由可知,是齐次线性方程组Ax=b的一个特解,由非齐次线性方程组的通解结构定理知,B选项正确. 知识模块:线性方程组7.三元一次方程组,所代表的三个平面的位置关系为( )A.B.C.D.正确答案:C解析:设方程组的系数矩阵为A,对增广矩阵A作初等行变换,有因为r(A)=2,而r(A)=3,方程组无解,即三个平面没有公共交点.又因平面的法向量n1=(1,2,1),n2=(2,3,1),n3=(1,-1,-2)互不平行.所以三个平面两两相交,围成一个三棱柱.所以应选C.知识模块:线性方程组8.设A是m×n矩阵,Ax=0是非齐次线性方程组Ax=b所对应的齐次线性方程组,则下列结论正确的是( )A.若Ax=0仅有零解,则Ax=b有唯一解.B.若Ax=0有非零解,则Ax=b有无穷多个解.C.若Ax=b有无穷多个解,则Ax=0仅有零解.D.若Ax=b有无穷多个解,则Ax=0有非零解.正确答案:D解析:因为不论齐次线性方程组Ax=0的解的情况如何,即r(A)=n或r(A)<n,以此均不能推得r(A)=r(A:b),所以选项A、B均不正确.而由Ax=b有无穷多个解可知,r(A)=r(A:b)<b.根据齐次线性方程组有非零解的充分必要条件可知,此时Ax=0必有非零解.所以应选D.知识模块:线性方程组填空题9.设A为3×3矩阵,且方程组Ax=0的基础解系含有两个解向量,则r(A)=_____正确答案:1解析:由线性方程组的基础解系所含解向量的个数与系数矩阵的秩的和等于未知数的个数,且本题系数矩阵为3×3阶,因此r(A)=n-r=3-2=1.知识模块:线性方程组10.设A是一个五阶矩阵,A*是A的伴随矩阵,若η1,η2是齐次线性方程组Ax=0的两个线性无关的解,则r(A*)=_______正确答案:0解析:η1,η2是齐次线性方程组Ax=0的两个线性无关的解.因此由方程组的基础解系所含解向量的个数与系数矩阵秩的关系,因此有n-r(A)≥2,即r(A)≤3.又因为A是五阶矩阵,而r(A)≤3,因此|A|4阶子式一定全部为0,因此代数余子式Aij恒为零,即A*=O,所以r(A*)=0.知识模块:线性方程组11.设A是n阶矩阵,对于齐次线性方程组Ax=0,如果矩阵A中的每行元素的和均为0,且r(A)=n-1,则方程组的通解是______正确答案:k(1,1,…,1)T,k是任意常数.解析:由题干可知r(A)=n-1,则线性方程组Ax=0的基础解系由1个解向量组成,即任意的一个非零解都可以成为基础解系.又已知矩阵每行的元素之和都为0,因此有Ai1+Ai2+…+Ain=1×Ai1+1×Ai2+…+1×Ain=0,故(1,1,…,1)T满足每一个方程,是Ax=0的解,所以通解为k(1,1,…,1)T,k 是任意常数.知识模块:线性方程组12.方程组有非零解,则k=_______正确答案:-1解析:一个齐次线性方程组有非零解的充分必要条件是方程组的系数矩阵对应的行列式等于零,即=12(K+1)=0,因此得k=-1.知识模块:线性方程组13.设A=,A*是A的伴随矩阵,则A*x=0的通解是_____正确答案:k1(1,2,-1)T+k2(1,0,1)T解析:A是一个3阶矩阵,由已知得|A|=0,且r(A)=2,因此r(A*)=1,那么可知n-r(A*)=3-1=2,因此A*x=0有两个基础解系,其通解形式为k1η1+k2η2.又因为A*A=|A|E=0,因此矩阵A的列向量是A*x=0的解,故通解是k1(1,2,-1)T+k2(1,0,1)T 知识模块:线性方程组14.已知方程组总有解,则λ应满足的条件是______正确答案:解析:对于任意的b1,b2,b3,方程组有解的充分必要条件是系数矩阵A 的秩为3,即|A|≠0,由可知λ≠1且λ≠知识模块:线性方程组解答题解答应写出文字说明、证明过程或演算步骤。
51附录一:模拟试卷试卷一一、填空题 (4×5=20分)1.111110110110111= .2. 设4阶方阵A 的秩为2,则其伴随矩阵的秩为 .3. 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x x x x x x λλ只有零解,则λ应满足的条件是 .二、选择题 (4×5=20分)1. 设B A ,为n 阶方阵,满足等式0=AB ,则必有( )(A )A=0,或B=0; (B )A+B=0; (C )|A|=0或|B|=0; (D )|A|+|B|=0三、计算下列各题 (2×10=20分)1. 已知X =AX+B , 其中,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101111010A ,⎪⎪⎪⎭⎫⎝⎛--=350211B ,求矩阵X . 四、设线性方程组 (10分)(I )⎪⎩⎪⎨⎧=-++=-++=-++04253033202432143214321x x x x x x x x x x x x (II )⎩⎨⎧=++=++020321421x nx x mx x x(1)求线性方程组(I )的通解.(2)n m ,取何值时,(I )(II )有公共非零解.试卷二一、填空题:(4×5=20分)1.设A 是4阶矩阵,已知=-=*A A 则,64)2( . 2.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=300041003A ,⎪⎪⎪⎭⎫⎝⎛=100010001I ,则逆矩阵=--1)2(I A .523.设⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛=010100001P ,则54AP P = . 4.设0121211230101120)(-==a i j A ,ij A 为ij a 的代数余子式(j i ,=1.2,3,4),则=+++433323132A A A A .二、选择题:(4×5=20分)1.设B A ,都是n 阶非零矩阵,且0=AB ,则B A 和的秩( )(A )必有一个等于0; (B )一个小于n ,一个等于n ; (C )都小于n ;(D )都等于n 。
线性代数(试卷一)一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC=,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是 _________5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为_____________。
6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫⎝⎛=-1230120011A ,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()T k 11=α与()T 121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤ C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8- C.34D.34- 3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R < C.)()(A R B R = D.)()(A R B R ≥ 4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
c)(A *kA)(B *A k n )(C *-A k n 1)(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。
《线性代数》模拟试卷(一)
一、单项选择题(共10小题,每小题2分,共20分)
1.行列式
1
2
1112
01122101
----第二行第三列元素的代数余子式=23A ( )
A. 6-
B. 6
C. 0
D. 1
2.设矩阵⎪⎪⎭
⎫
⎝⎛=21A ,)1,2(-=B ,则=AB ( )
A. 0
B. ⎪⎪⎭⎫ ⎝⎛--2412
C. ⎪⎪⎭⎫ ⎝⎛--2412
D. ⎪⎪⎭
⎫
⎝⎛2412
3.设A ,B ,C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( )
A.ACB
B.CAB
C.CBA
D.BCA
4.设A ,B 均为n 阶可逆矩阵,则下列正确的是 ( )
A.B A +可逆
B.AB 可逆
C.B A -可逆
D.kA 可逆,其中k 为任意常数
5.在下列命题中,正确的是 ( )
A.T T T B A AB =)(
B.若,B A ≠ 则B A ≠
C.设A ,B 为三角矩阵,则B A +也是三角矩阵
D.))((22E A E A E A -+=-
6.n 维列向量n ααα,,,21 是n R 的标准正交基的充分必要条件是 ( )
A. 两两正交
B. 均为单位向量
C. 线性无关
D. E n T n =),,,(),,,(2121αααααα
7.设⎪⎩⎪
⎨⎧=+-=+=++0
0 20
2321
21321x x x kx x x x kx ,则有非零解的充分必要条件是 ( )
A. 3=k
B. 2-=k
C.3=k 或2-=k
D.23-≠≠k k 且 8.向量组)0,1,1(),1,1,0(,)1,0,1(321-=-=-=ααα的秩是 ( )
A.3
B.2
C.1
D.0
9.设1λ,2λ,3λ是矩阵5
430320
02
--=A 的三个特征值,则=321λλλ( )
A.30
B.15
C.10
D.6
10.设A ,B 均为同阶的正交矩阵、正定矩阵,则 ( )
A.B A +仍为正交、正定矩阵
B.A ,B 的特征值均为±1
C.A ,B 均为可逆矩阵
D.AB 为对称矩阵
二、填空题(共10小题,每小题2分,共20分)
1.行列式1
002103
21的值是________。
2.若21,αα线性无关,且321,,βββ均可由21,αα线性表示,则321,,βββ线性______。
3.若A ,B 为n 阶矩阵,且2=A ,1=B ,设⎪⎪⎭
⎫
⎝
⎛=B O
O A
M ,则|-2M |=_____。
4.若2222)(B AB A B A +-=-,则A 和B 的关系为________。
5.设s ααα,,,21 都是非齐次线性方程组b AX =的解,若
s s k k k ααα+++ 2211也是b AX =的解,则常数s k k k ,,,21 满足关系式
______。
6.设A 为n 阶方阵,且1)(-=n A r ,21,αα是b AX =的两个不同的解,则
O AX =的全部解为___________。
7.设2
)1,3(R T ∈=α,则它在基T T )1,2(,)2,1(21==ηη下的坐标为_________。
8.设矩阵A 的三个特征值为1, 2, 4,则=--E A A 432 。
9.二次型322
2
2121321422),,(x x x x x x x x x f +++=的秩为_______。
10.二次型AX X f T =经可逆线性变换CY X =化成BY Y f T =,则A 和B 的关系________。
三、计算题(共6小题,每小题9分,共54分)
1.计算行列式)4,3,2,1,0(11
1
1
1111111111114
3
2
1
4=≠++++=
i a a a a a D i 。
2.给定线性方程组⎪⎪⎩⎪⎪⎨⎧=+--=+-+=+++=+++3
233234323
32432143214
3214321bx x x x a x x x x x x x x x x x x 。
讨论b a ,为何值时,方
程组(1)无解(2)有唯一解(3)有无穷多解。
并在有无穷多解时求出其全部解(用基础解系表示)。
3.计算下列所给出的向量组的秩,并求出它的极大无关组,且把所有向量用其极大无关组线性表示。
)3,1,3,4(),3,0,1,3(),7,3,1,2(),0,1,0,1(4321--=-=--==αααα
4.设⎪⎪⎪
⎭⎫
⎝⎛=101020101A ,且X A E AX +=-2,求X 。
5.设矩阵⎪⎪⎪
⎭
⎫
⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛=5000100011212221B b b A ,相似,
(1)求b ;(2)求一正交矩阵P ,使B AP P AP P T ==-1。
6.化二次型322
23121213214222),,(x x x x x x x x x x x f ++++=为标准形,并写出所对
应的非奇异线性变换。
四.证明题(本题6分)
设A 为n s ⨯阶矩阵,证明:存在一个非零的m n ⨯矩阵B ,使得O AB =的 充分必要条件是n A r <)(。