函数的导数与极值限时训练
- 格式:doc
- 大小:44.00 KB
- 文档页数:2
导数单调性和极值练习题一.填空题1.函数()263f x x x =-+的单调增区间为 ,单调减区间为2.函数()ln f x x =在()2,e e 上的最大值为 ,最小值为3.函数322y x x =-的单调增区间为 ,单调减区间为4.设函数()3237f x x x =-+,当x = 时,函数()f x 的极大值为5.函数()x f x xe =,当x = 时,函数()f x 的最小值为6.函数()ln f x x x = ()0x >的单调增区间为7.函数2sin y x x =-在()0,2π内的单调减区间为8.函数3233852y x x =-+取得极大值时的x 值为9.函数()()2f x x x c =-在2x =处有极小值,则c =10.已知函数()3128f x x x =-+在区间[]3,3-上的最大值为11.若函数()33f x x ax a =-+在()1,2内有极小值,则实数a 的取值范围是12.已知函数32y x bx cx =++d +的单调减区间是[]1,2-,则b c +=13.已知函数32y x bx cx =++d +在区间[]1,2-上是减函数,那么b c +的最大值为14.已知函数()3231f x x ax ax =-++在区间(),-∞+∞内既有极大值,又有极小值,则实数a 的取值范围是15.已知函数32321y x x =+-在区间(),0m 内为减区间,则m 的取值范围是16.函数3y x ax b =++在区间()1,1-为减函数,在()1,+∞为增函数,则a =17.设函数()331f x ax x =-+,若对于任意[]1,1x ∈-,都有()0f x ≥成立,则实数a 的取值范围是18.抛物线2y x =-上的点到直线4380x y +-=的距离的最小值是19.点P 是曲线2ln y x x =-上任意一点,则点P 到直线20x y --=的距离的最小值是20.已知实数a 、b 、c 、d 成等比数列,且曲线33y x x =-的极大值点坐标为(),b c ,则ad =21.在函数38y x x =-的图像上,其切线的倾斜角小于4π的点中,坐标为整数点的个数有 个22.已知函数()32f x x px qx =--的图像与x 轴相切于()1,0点,则()f x 的极大值为 极小值为23.已知函数()322f x x ax bx a =--+,在1x =时,有极值为10,则a = ,b =24.若0a >,0b >,且函数()32422f x x ax bx =--+在1x =处有极值,则ab 的最大值为25.已知函数()()()322141152723f x x m x m m x =--+--+在(),-∞+∞上是增函数,则m 的取值范围是26.已知函数()321343f x x x x =--+,直线l :920x y c ++=,若当[]2,2x ∈-时,函数()y f x =的图像恒在直线l 的下方,则c 的取值范围是二.解答题已知函数()33f x x x =-(1)求函数()f x 在33,2⎡⎤-⎢⎥⎣⎦上的最大值和最小值 (2)过点()2,6P -作曲线()y f x =的切线,求此切线方程设函数()322338f x x ax bx c =+++,在1x =及2x =时取得极值(1)求a 、b 的值;(2)若对于任意的[]0,3x ∈,都有()2f x c <成立,求c 的取值范围已知函数()()3231132a f x x x a x =-+++,其中a 为实数, (1)若函数()f x 在1x =处取得极值,求a 的值(2)若不等式()2'1f x x x a >--+对任意()0,a ∈+∞都成立,求x 的取值范围已知函数()322f x x mx nx =++-的图像过点()1,6--,且函数()()'6g x f x x =+的图像关于y 轴对称(1)求m 、n 的值及函数()y f x =的单调增区间;(2)若0a >,求函数()y f x =在区间()1,1a a -+内的极值已知1x =是函数()()32311f x mx m x nx =-+++的一个极值点,其中m 、n R ∈,0m <.(1)求m 与n 的关系表达式; (2)求()f x 的单调区间;(3)当[]1,1x ∈-时,函数()y f x =的图像上任意一点的切线斜率恒大于3m ,求m 的取值范围。
三、知识新授(一)函数极值的概念(二)函数极值的求法:(1)考虑函数的定义域并求f'(x);(2)解方程f'(x)=0,得方程的根x(可能不止一个)(3)如果在x0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x)是极大值;反之,那么f(x)是极大值题型一图像问题1、函数()f x的导函数图象如下图所示,则函数()f x在图示区间上()(第二题图) A.无极大值点,有四个极小值点 B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点2、函数()f x的定义域为开区间()a b,,导函数()f x'在()a b,内的图象如图所示,则函数()f x在开区间()a b,内有极小值点()A.1个 B.2个 C.3个 D.4个3、若函数2()f x x bx c=++的图象的顶点在第四象限,则函数()f x'的图象可能为()D.C.B.A.4、设()f x'是函数()f x的导函数,()y f x'=的图象如下图所示,则()y f x=的图象可能是()C.A.5、已知函数()f x 的导函数()f x '的图象如右图所示,那么函数()f x的图象最有可能的是( )-11 f '(x )yxO6、()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是( )2xO222D.C.B.A.OxOx x Ox y7、如果函数()y f x =的图象如图,那么导函数()y f x '=的图象可能是( )yyyxx xyxDCBA xyy=f(x)8、如图所示是函数()y f x =的导函数()y f x '=图象,则下列哪一个判断可能是正确的( )A .在区间(20)-,内()y f x =为增函数B .在区间(03),内()y f x =为减函数C .在区间(4)+∞,内()y f x =为增函数D .当2x =时()y f x =有极小值9、如果函数()y f x =的导函数的图象如图所示,给出下列判断:①函数()y f x =在区间13,2⎛⎫-- ⎪⎝⎭内单调递增;②函数()y f x =在区间1,32⎛⎫- ⎪⎝⎭内单调递减; ③函数()y f x =在区间(4,5)内单调递增; ④当2x =时,函数()y f x =有极小值; ⑤当12x =-时,函数()y f x =有极大值; 则上述判断中正确的是___________. 10、函数321()2f x x x =-+的图象大致是 ( )DCBA11、己知函数()32f x ax bx c=++,其导数()f x '的图象如图所示,则函数()f x 的极小值是( )A .a b c ++B .84a b c ++C .32a b +D .c题型二 极值求法 1 求下列函数的极值(1)f(x)=x 3-3x 2-9x+5; (2)f(x)=ln x x (3)f(x)=1cos ()2x x x ππ+-<<2、设a 为实数,函数y=e x -2x+2a,求y 的单调区间与极值3、设函数f(x)=313x -+x 2+(m 2-1)x,其中m>0。
导数--函数的极值练习题一、选择题1.下列说法正确的是( )A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2.下列四个函数,在x =0处取得极值的函数是 ( )①y =x 3 ②y =x 2+1 ③y =|x | ④y =2x A.①② B.②③ C.③④ D.①③ 3.函数y =216x x+的极大值为( ) A.3 B.4 C.2 D.54.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为( )A.0 B.1 C.2 D.45.y =ln 2x +2ln x +2的极小值为( ) A.e -1 B.0 C.-1 D.1 6.y =2x 3-3x 2+a 的极大值为6,那么a 等于( )A.6B.0C.5D.17.对可导函数,在一点两侧的导数异号是这点为极值点的A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件 8.下列函数中, 0=x 是极值点的函数是( )A.3x y -= B.x y 2cos = C.x x y -=tan D.x y 1=9.下列说法正确的是( )A. 函数在闭区间上的极大值一定比极小值大;B. 函数在闭区间上的最大值一定是极大值;C. 对于12)(23+++=x px x x f ,若6||<p ,则)(x f 无极值;D.函数)(x f 在区间),(b a 上一定存在最值.10.函数223)(a bx ax x x f +--=在1=x 处有极值10, 则点),(b a 为( ) A.)3,3(- B.)11,4(- C. )3,3(-或)11,4(- D.不存在 11.函数|6|)(2--=x x x f 的极值点的个数是( )A. 0个B. 1个C. 2个D.3个 12.函数xxx f ln )(=( ) A.没有极值 B.有极小值 C. 有极大值 D.有极大值和极小值二.填空题:13.函数x x x f ln )(2=的极小值是 14.定义在]2,0[π上的函数4cos 2)(2-+=x ex f x的极值情况是15.函数)0(3)(3>+-=a b ax x x f 的极大值为6,极小值为2,则)(x f 的减区间是16.下列函数①32x y =,②x y tan =,③|1|3++=x x y ,④xxe y =,其中在其定义区间上存在极值点的函数序号是17.函数f (x )=x 3-3x 2+7的极大值为___________. 18.曲线y =3x 5-5x 3共有___________个极值.19.函数y =-x 3+48x -3的极大值为___________;极小值为___________. 20.若函数y =x 3+ax 2+bx +27在x =-1时有极大值,在x =3时有极小值,则a =___________,b =___________.三.解答题21.已知函数f (x )=x 3+ax 2+bx +c ,当x =-1时,取得极大值7;当x =3时,取得极小值.求这个极小值及a 、b 、c 的值.22.函数f (x )=x +xa+b 有极小值2,求a 、b 应满足的条件.23.已知函数f(x)=x 3+ax 2+bx+c 在x =2处有极值,其图象在x =1处的切线垂直于直线y =31x -2 (1)设f(x)的极大值为p ,极小值为q ,求p-q 的值;(2)若c 为正常数,且不等式f(x)>mx 2在区间(0,2)内恒成立,求实数m 的取值范围。
导数与函数的极值、最值1.下列命题中正确的是( )A .导数为0的点一定是极值点B .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0且f ′(x 0)=0,那么f (x 0)是极大值C .如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0且f ′(x 0)=0,那么f (x 0)是极小值D .如果在点x 0附近的左侧f ′(x )<0,右侧f ′(x )>0且f ′(x 0)=0,那么f (x 0)是最小值2.函数y =x +1x 的极值情况是( )A .既无极小值,也无极大值B .当x =1时,极小值为2,但无极大值C .当x =-1时,极大值为-2,但无极小值D .当x =1时,极小值为2,当x =-1时,极大值为-23.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3处取得极值,则a =( )A .2B .3C .4D .54.已知函数y =f (x )的导函数y =f ′(x )的图象如图K15-1,则( )A .函数f (x )有1个极大值点,1个极小值点B .函数f (x )有2个极大值点,2个极小值点C .函数f (x )有3个极大值点,1个极小值点D .函数f (x )有1个极大值点,3个极小值点5. 函数f (x )=ax 3+bx 在x =1a 处有极值,则ab 的值为( )A .2B .-2C .3D .-36.设函数f (x )=2x +1x -1(x <0),则f (x )( )A .有最大值B .有最小值C .是增函数D .是减函数7. 若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( )A .2B .3C .6D .98.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32D .m <329. 设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图象不可能...为y =f (x )的图象是( )图K15-210.函数f (x )=12x 2-ln x 的最小值为________. 11. 已知函数f (x )=x 3+3mx 2+nx +m 2在x =-1时有极值0,则m +n =________.12.已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________.13.已知函数f(x)=13x3-bx2+c(b,c为常数).当x=2时,函数f(x)取得极值,若函数f(x)只有三个零点,则实数c的取值范围为________.14.(10分)已知函数f(x)=x5+ax3+bx+1,仅当x=-1,x=1时取得极值,且极大值比极小值大4.(1)求a、b的值;(2)求f(x)的极大值和极小值.15.(13分)已知f(x)=x3+bx2+cx+2.(1)若f(x)在x=1时有极值-1,求b、c的值;(2)在(1)的条件下,若函数y=f(x)的图象与函数y=k的图象恰有三个不同的交点,求实数k 的取值范围.16.(12分)已知函数f(x)=x ln x.(1)求f(x)的最小值;(2)若对所有x≥1都有f(x)≥ax-1成立,求实数a的取值范围.课时作业(十五)A【基础热身】1.B [解析] 根据可导函数极值的判别方法,如果在点x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值,反之是极小值,而导数为0的点不一定是极值点.2.D [解析] 函数的定义域为(-∞,0)∪(0,+∞),y ′=1-1x 2=x 2-1x 2,令y ′=0,得x=-13.D [解析] f ′(x )=3x 2+2ax +3,由题意得f ′(-3)=0,解得a =5.4.A [解析] x 1、x 4是导函数的不变号零点,因此它们不是极值点,而x 2与x 3是变号零点,因此它们是极值点,且x 2是极大值点,x 3是极小值点.【能力提升】5.D [解析] 由f ′⎝ ⎛⎭⎪⎫1a =3a ⎝ ⎛⎭⎪⎫1a 2+b =0,可得ab =-3.故选D. 6.A [解析] 由题意可得f ′(x )=2-1x 2(x <0),令f ′(x )=0得x =-22(舍正),列表如下:f (x )在-∞,-22单调递增,在-22,0单调递减,故选A.7.D [解析] f ′(x )=12x 2-2ax -2b ,∵f (x )在x =1处有极值, ∴f ′(1)=0,即12-2a -2b =0,化简得 a +b =6,∵a >0,b >0,∴ab ≤⎝ ⎛⎭⎪⎫a +b 22=9,当且仅当a =b =3时,ab 有最大值,最大值为9,故选D. 8.A [解析] 因为函数f (x )=12x 4-2x 3+3m ,所以f ′(x )=2x 3-6x 2,令f ′(x )=0,得x =0或x =3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272,不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32.9.D [解析] 设F (x )=f (x )e x ,∴F ′(x )=e x f ′(x )+e x f (x )=e x (2ax +b +ax 2+bx +c ),又∵x =-1为f (x )e x 的一个极值点,∴F ′(-1)=e -1(-a +c )=0,即a =c ,∴Δ=b 2-4ac =b 2-4a 2,当Δ=0时,b =±2a ,即对称轴所在直线方程为x =±1;当Δ>0时,⎪⎪⎪⎪⎪⎪b 2a >1,即对称轴在直线x =-1的左边或在直线x =1的右边. 又f (-1)=a -b +c =2a -b <0,故D 错,选D.10.12 [解析] 由⎩⎪⎨⎪⎧f ′(x )=x -1x >0,x >0,得x >1. 由⎩⎪⎨⎪⎧ f ′(x )=x -1x <0,x >0,得0<x <1,∴f (x )在x =1时,取得最小值f (1)=12-ln1=12.11.11 [解析] f ′(x )=3x 2+6mx +n ,依题意有⎩⎨⎧ f (-1)=0,f ′(-1)=0,即⎩⎨⎧m 2+3m -n -1=0,-6m +n +3=0, 解得⎩⎨⎧ m =2,n =9或⎩⎨⎧ m =1,n =3,检验知当⎩⎨⎧ m =1,n =3时,函数没有极值.所以m +n =11. 12.4 [解析] ∵y ′=3x 2+6ax +3b ,∴⎩⎨⎧ 3×22+6a ×2+3b =0,3×12+6a ×1+3b =-3⇒⎩⎨⎧ a =-1,b =0.∴y ′=3x 2-6x ,令3x 2-6x =0,则x =0或x =2,∴f (x )极大值-f (x )极小值=f (0)-f (2)=4.13.⎝⎛⎭⎪⎫0,43 [解析] ∵f (x )=13x 3-bx 2+c ,∴f ′(x )=x 2-2bx .∵x =2时,f (x )取得极值,∴22-2b ×2=0,解得b =1.∴当x ∈(0,2)时,f (x )单调递减,当x ∈(-∞,0)或x ∈(2,+∞)时,f (x )单调递增.若f (x )=0有3个实根,则⎩⎪⎨⎪⎧f (0)=c >0,f (2)=13×23-22+c <0,解得0<c <43. 14.[解答] (1)∵f (x )=x 5+ax 3+bx +1,∴f ′(x )=5x 4+3ax 2+b .∵x =±1时有极值,∴5+3a +b =0,∴b =-3a -5①,代入f ′(x )得f ′(x )=5x 4+3ax 2-3a -5=5(x 4-1)+3a (x 2-1)=(x 2-1)[5(x 2+1)+3a ]=(x +1)(x -1)[5x 2+(3a +5)].∵f (x )仅当x =±1时有极值,∴5x 2+(3a +5)≠0对任意x 成立.∴3a +5>0,a >-53.考察f (x )、f ′(x )随x 的变化情况:∴f (-1)-f (1)=4,即[(-1)5+a (-1)3+b (-1)+1]-(15+a ·13+b ·1+1)=4,整理得a +b =-3②,由①②解得⎩⎨⎧ a =-1,b =-2.(2)∵a =-1,b =-2,∴f (x )=x 5-x 3-2x +1.∴f (x )的极大值为f (-1)=3.f (x )的极小值为f (1)=-1.15.[解答] (1)∵f (x )=x 3+bx 2+cx +2,∴f ′(x )=3x 2+2bx +c .由已知得f ′(1)=0,f (1)=-1,∴⎩⎨⎧3+2b +c =0,1+b +c +2=-1,解得b =1,c =-5. 经验证,b =1,c =-5符合题意.(2)由(1)知f (x )=x 3+x 2-5x +2,f ′(x )=3x 2+2x -5.由f ′(x )=0得x 1=-53,x 2=1.当x 变化时,f ′(x ),f (x )的变化情况如下表:根据上表,当x =-53时函数取得极大值且极大值为f ⎝ ⎭⎪⎫-53=22927,当x =1时函数取得极小值且极小值为f (1)=-1.根据题意结合上图可知k 的取值范围为⎝ ⎛⎭⎪⎫-1,22927. 【难点突破】16.[解答] (1)f (x )的定义域为(0,+∞),f (x )的导数f ′(x )=1+ln x .令f ′(x )>0,解得x >1e ;令f ′(x )<0,解得0<x <1e .从而f (x )在⎝ ⎛⎭⎪⎫0,1e 单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞单调递增. 所以,当x =1e 时,f (x )取得最小值-1e .(2)法一:令g (x )=f (x )-(ax -1),则g ′(x )=f ′(x )-a =1-a +ln x ,①若a ≤1,当x >1时,g ′(x )=1-a +ln x >1-a ≥0,故g (x )在(1,+∞)上为增函数,所以,x ≥1时,g (x )≥g (1)=1-a ≥0,即f (x )≥ax -1. ②若a >1,方程g ′(x )=0的根为x 0=e a -1,此时,若x ∈(1,x 0),则g ′(x )<0,故g (x )在该区间为减函数.所以x ∈(1,x 0)时,g (x )<g (1)=1-a <0,即f(x)<ax-1,与题设f(x)≥ax-1相矛盾.综上,满足条件的a的取值范围是(-∞,1].法二:依题意,得f(x)≥ax-1在[1,+∞)上恒成立,即不等式a≤ln x+1x对于x∈[1,+∞)恒成立.令g(x)=ln x+1x,则g′(x)=1x-1x2=1x⎝⎛⎭⎪⎫1-1x.当x>1时,因为g′(x)=1x⎝⎛⎭⎪⎫1-1x>0,故g(x)是(1,+∞)上的增函数,所以g(x)的最小值是g(1)=1,所以a的取值范围是(-∞,1].。
极值、最值与导数
1.若函数f(x)=2x3-3x2+c的极大值为6,那么c的值为( )
A.0
B.5
C.6
D.1
2.设函数2
()ln
f x x
x
=+,则( )
A .
1
2
x=为f(x)的极大值点 B .
1
2
x=为f(x)的极小值点
C .x=2为f(x)的极大值点
D .x=2为f(x)的极小值点
3.函数f(x)=(x-3)e x的单调递增区间是________.
4.如图是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:
①-2是函数y=f(x)的极值点; ②1是函数y=f(x)的极值点;
③y=f(x)在x=0处切线的斜率小于零; ④y=f(x)在区间(-2,2)上单调递增. 则正确命题的序号是________.(写出所有正确命题的序号)
5.已知函数f(x)=-x3+3x2+9x-2.
(Ⅰ)求f(x)的单调递减区间; (Ⅱ)求f(x)在区间[-2,2]上的最大值与最小值.
答案:
1.C
2.D
3.(2,+∞)
4.①④
5. (Ⅰ)函数f(x)的单调递减区间为(-∞,-1),(3,+∞).
(Ⅱ)函数f(x)在闭区间[-2,2]上的最大值为f(2)=20,最小值为f(-1)=-7.。
导数与函数的极值、最值(训练题1)1.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点2.已知a 为函数f (x )=x 3-12x 的极小值点,则a 等于( )A .-4B .-2C .4D .23.函数y =x e x 的最小值是( )A .-1B .-eC .-1eD .不存在4.已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则( )A .当k =1时,f (x )在x =1处取得极小值B .当k =1时,f (x )在x =1处取得极大值C .当k =2时,f (x )在x =1处取得极小值D .当k =2时,f (x )在x =1处取得极大值5.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎝ ⎛⎭⎪⎫32 C.⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ D.⎝ ⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞6.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为( )A .1百万件B .2百万件C .3百万件D .4百万件7.函数y =e x +ax 有大于零的极值点,则实数a 的取值范围是________.8.函数f (x )=x 3-3a 2x +a (a >0)的极大值是正数,极小值是负数,则a 的取值范围是________.9.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的最小值为________.10.(2018·长沙调研)已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a =________.11.设函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切. (1)求实数a ,b 的值;(2)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值.12.(2018·武汉质检)已知函数f (x )=⎩⎨⎧-x 3+x 2,x <1,a ln x ,x ≥1. (1)求f (x )在区间(-∞,1)上的极小值和极大值点;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值.13.函数f(x)=x3-3x-1,若对于区间[-3,2]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是()A.20 B.18 C.3 D.014.(2018·忻州模拟)已知函数f(x)=a e x-2x-2a,且a∈[1,2],设函数f(x)在区间[0,ln 2]上的最小值为m,则m的取值范围是________.15.已知函数f(x)=x ln x+m e x(e为自然对数的底数)有两个极值点,则实数m的取值范围是__________.16.已知函数f(x)=ax-ln x,x∈(0,e]的最小值是2,求正实数a的值.。
函数的极值与导数测试题及答案函数的极值与导数测试题及答案一、选择题1.已知函数f(x)在点x0处连续,下列命题中,正确的是()A.导数为零的点一定是极值点B.如果在点x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极小值C.如果在点x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值D.如果在点x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值[答案] C[解析] 导数为0的点不一定是极值点,例如f(x)=x3,f(x)=3x2,f(0)=0,但x=0不是f(x)的极值点,故A错;由极值的定义可知C正确,故应选C.2.函数y=1+3x-x3有()A.极小值-2,极大值2B.极小值-2,极大值3C.极小值-1,极大值1D.极小值-1,极大值3[答案] D[解析] y=3-3x2=3(1-x)(1+x)令y=0,解得x1=-1,x2=1当x-1时,y0,函数y=1+3x-x3是减函数,当-11时,y0,函数y=1+3x-x3是增函数,当x1时,y0,函数y=1+3x-x3是减函数,当x=-1时,函数有极小值,y极小=-1.当x=1时,函数有极大值,y极大=3.3.设x0为f(x)的极值点,则下列说法正确的是()A.必有f(x0)=0B.f(x0)不存在C.f(x0)=0或f(x0)不存在D.f(x0)存在但可能不为0[答案] C[解析] 如:y=|x|,在x=0时取得极小值,但f(0)不存在.4.对于可导函数,有一点两侧的导数值异号是这一点为极值的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] C[解析] 只有这一点导数值为0,且两侧导数值异号才是充要条件.5.对于函数f(x)=x3-3x2,给出命题:①f(x)是增函数,无极值;②f(x)是减函数,无极值;③f(x)的递增区间为(-,0),(2,+),递减区间为(0,2);④f(0)=0是极大值,f(2)=-4是极小值.其中正确的命题有()A.1个 B.2个C.3个 D.4个[答案] B[解析] f(x)=3x2-6x=3x(x-2),令f(x)0,得x2或x0,令f(x)0,得02,①②错误.6.函数f(x)=x+1x的极值情况是()A.当x=1时,极小值为2,但无极大值B.当x=-1时,极大值为-2,但无极小值C.当x=-1时,极小值为-2;当x=1时,极大值为2D.当x=-1时,极大值为-2;当x=1时,极小值为2[答案] D[解析] f(x)=1-1x2,令f(x)=0,得x=1,函数f(x)在区间(-,-1)和(1,+)上单调递增,在(-1,0)和(0,1)上单调递减,当x=-1时,取极大值-2,当x=1时,取极小值2.7.函数f(x)的'定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1个 B.2个C.3个 D.4个[答案] A[解析] 由f(x)的图象可知,函数f(x)在区间(a,b)内,先增,再减,再增,最后再减,故函数f(x)在区间(a,b)内只有一个极小值点.8.已知函数y=x-ln(1+x2),则函数y的极值情况是()A.有极小值B.有极大值C.既有极大值又有极小值D.无极值[答案] D[解析] ∵y=1-11+x2(x2+1)=1-2xx2+1=(x-1)2x2+1令y=0得x=1,当x1时,y0,当x1时,y0,函数无极值,故应选D.9.已知函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则函数f(x)的极值是()A.极大值为427,极小值为0B.极大值为0,极小值为427C.极大值为0,极小值为-427D.极大值为-427,极小值为0[答案] A[解析] 由题意得,f(1)=0,p+q=1①f(1)=0,2p+q=3②由①②得p=2,q=-1.f(x)=x3-2x2+x,f(x)=3x2-4x+1=(3x-1)(x-1),令f(x)=0,得x=13或x=1,极大值f13=427,极小值f(1)=0.10.下列函数中,x=0是极值点的是()A.y=-x3 B.y=cos2xC.y=tanx-x D.y=1x[答案] B[解析] y=cos2x=1+cos2x2,y=-sin2x,x=0是y=0的根且在x=0附近,y左正右负,x=0是函数的极大值点.二、填空题11.函数y=2xx2+1的极大值为______,极小值为______.[答案] 1 -1[解析] y=2(1+x)(1-x)(x2+1)2,令y0得-11,令y0得x1或x-1,当x=-1时,取极小值-1,当x=1时,取极大值1.12.函数y=x3-6x+a的极大值为____________,极小值为____________.[答案] a+42 a-42[解析] y=3x2-6=3(x+2)(x-2),令y0,得x2或x-2,令y0,得-22,当x=-2时取极大值a+42,当x=2时取极小值a-42.13.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x =3处有极小值,则a=______,b=________.[答案] -3 -9[解析] y=3x2+2ax+b,方程y=0有根-1及3,由韦达定理应有14.已知函数f(x)=x3-3x的图象与直线y=a有相异三个公共点,则a的取值范围是________.[答案] (-2,2)[解析] 令f(x)=3x2-3=0得x=1,可得极大值为f(-1)=2,极小值为f(1)=-2,y=f(x)的大致图象如图观察图象得-22时恰有三个不同的公共点.三、解答题15.已知函数f(x)=x3-3x2-9x+11.(1)写出函数f(x)的递减区间;(2)讨论函数f(x)的极大值或极小值,如有试写出极值.[解析] f(x)=3x2-6x-9=3(x+1)(x-3),令f(x)=0,得x1=-1,x2=3.x变化时,f(x)的符号变化情况及f(x)的增减性如下表所示:x (-,-1) -1 (-1,3) 3 (3,+)f(x) + 0 - 0 +f(x) 增极大值f(-1) 减极小值f(3) 增(1)由表可得函数的递减区间为(-1,3);(2)由表可得,当x=-1时,函数有极大值为f(-1)=16;当x=3时,函数有极小值为f(3)=-16.16.设函数f(x)=ax3+bx2+cx,在x=1和x=-1处有极值,且f(1)=-1,求a、b、c的值,并求出相应的极值.[解析] f(x)=3ax2+2bx+c.∵x=1是函数的极值点,-1、1是方程f(x)=0的根,即有又f(1)=-1,则有a+b+c=-1,此时函数的表达式为f(x)=12x3-32x.f(x)=32x2-32.令f(x)=0,得x=1.当x变化时,f(x),f(x)变化情况如下表:x (-,-1) -1 (-1,1) 1 (1,+)f(x) + 0 - 0 +f(x) ? 极大值1 ? 极小值-1 ?由上表可以看出,当x=-1时,函数有极大值1;当x=1时,函数有极小值-1.17.已知函数f(x)=ax3+bx2-3x在x=1处取得极值.(1)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;(2)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.[解析] (1)f(x)=3ax2+2bx-3,依题意,f(1)=f(-1)=0,即解得a=1,b=0.f(x)=x3-3x,f(x)=3x2-3=3(x-1)(x+1).令f(x)=0,得x1=-1,x2=1.若x(-,-1)(1,+),则f(x)>0,故f(x)在(-,-1)上是增函数,f(x)在(1,+)上是增函数.若x(-1,1),则f(x)<0,故f(x)在(-1,1)上是减函数.f(-1)=2是极大值;f(1)=-2是极小值.(2)曲线方程为y=x3-3x.点A(0,16)不在曲线上.设切点为M(x0,y0),则点M的坐标满足y0=x30-3x0.∵f(x0)=3(x20-1),故切线的方程为y-y0=3(x20-1)(x-x0).注意到点A(0,16)在切线上,有16-(x30-3x0)=3(x20-1)(0-x0).化简得x30=-8,解得x0=-2.切点为M(-2,-2),切线方程为9x-y+16=0.18.(2010北京文,18)设函数f(x)=a3x3+bx2+cx+d(a0),且方程f(x)-9x=0的两个根分别为1,4.(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;(2)若f(x)在(-,+)内无极值点,求a的取值范围.[解析] 本题考查了函数与导函数的综合应用.由f(x)=a3x3+bx2+cx+d得f(x)=ax2+2bx+c∵f(x)-9x=ax2+2bx+c-9x=0的两根为1,4.(1)当a=3时,由(*)式得,解得b=-3,c=12.又∵曲线y=f(x)过原点,d=0.故f(x)=x3-3x2+12x.(2)由于a0,所以“f(x)=a3x3+bx2+cx+d在(-,+)内无极值点”等价于“f (x)=ax2+2bx+c0在(-,+)内恒成立”由(*)式得2b=9-5a,c=4a.又∵=(2b)2-4ac=9(a-1)(a-9)解得a[1,9],即a的取值范围[1,9].。
导数与函数的极值、最值课时作业一、选择题1.如图2是函数y=f(x)的导函数y=f′(x)的图象,给出下列命题:图2①-2是函数y=f(x)的极值点;②1是函数y=f(x)的极值点;③y=f(x)的图象在x=0处切线的斜率小于零;④函数y=f(x)在区间(-2,2)上单调递增.则正确命题的序号是()A.①③B.②④C.②③D.①④解析:根据导函数图象可知,-2是导函数的零点且-2的左右两侧导函数符号异号,故-2是极值点;1不是极值点,因为1的左右两侧导函数符号一致;0处的导函数值即为此点的切线斜率,显然为正值,导函数在(-2,2)上恒大于或等于零,故为函数的增区间,所以选D.答案:D2.设f(x)=12x2-x+cos(1-x),则函数f(x)()A.仅有一个极小值B.仅有一个极大值C.有无数个极值D.没有极值解析:由f(x)=12x2-x+cos(1-x),得f′(x)=x-1+sin(1-x).设g(x)=x-1+sin(1-x),则g′(x)=1-cos(1-x)≥0.所以g(x)为增函数,且g(1)=0.所以当x∈(-∞,1)时,g(x)<0,f′(x)<0,则f(x)单调递减;当x∈(1,+∞)时,g(x)>0,f′(x)>0,则f(x)单调递增.又f′(1)=0,所以函数f(x)仅有一个极小值f(1).故选A.答案:A3.已知函数f(x)=x3+ax2+bx+a2在x=1处取极值10,则a=()A .4或-3B .4或-11C .4D .-3 解析:∵f (x )=x 3+ax 2+bx +a 2, ∴f ′(x )=3x 2+2ax +b .由题意得⎩⎨⎧f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 即⎩⎨⎧2a +b =-3,a +b +a 2=9,解得⎩⎨⎧a =-3,b =3或⎩⎨⎧a =4,b =-11.当⎩⎨⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,故函数f (x )单调递增,无极值.不符合题意.∴a =4.故选C. 答案:C 4.函数f (x )=2+ln x x +1在[1e ,e]上的最小值为 ( ) A .1 B.e 1+e C.21+e D.31+e解析:∵f ′(x )=x +1x -(2+ln x )(x +1)2=1x-1-ln x (x +1)2,∴当e ≥x >1时,f ′(x )<0;当1e ≤x <1时,f ′(x )>0. 所以f (x )的最小值为min ⎩⎨⎧⎭⎬⎫f (1e ),f (e )=min{e 1+e ,31+e }=e 1+e ,选B.答案:B5.若函数f (x )=(a +1)e 2x -2e x +(a -1)x 有两个极值点,则实数a 的取值范围是 ( )A .(0,62)B .(1,62)C .(-62,62)D .(63,1)∪(1,62) 解析:∵f (x )=(a +1)e 2x -2e x +(a -1)x , ∴f ′(x )=2(a +1)e 2x -2e x +a -1,∵f (x )=(a +1)e 2x -2e x +(a -1)x 有两个极值点, ∴f ′(x )=0有两个不等实根,设t =e x >0,则关于t 的方程2(a +1)t 2-2t +a -1=0有两个不等正根,可得⎩⎪⎨⎪⎧a -12(a +1)>0,22(a +1)>0,4-8(a -1)(a +1)>0⇒1<a <62,∴实数a 的取值范围是(1,62),故选B. 答案:B 6.图1如图1,可导函数y =f (x )在点P (x 0,f (x 0))处的切线为l :y =g (x ),设h (x )=f (x )-g (x ),则下列说法正确的是( )A .h ′(x 0)=0,x =x 0是h (x )的极大值点B .h ′(x 0)=0,x =x 0是h (x )的极小值点C .h ′(x 0)≠0,x =x 0不是h (x )的极值点D .h ′(x 0)≠0,x =x 0是h (x )的极值点解析:由题意可得函数f (x )在点(x 0,f (x 0))处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0), ∴h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), ∴h ′(x )=f ′(x )-f ′(x 0), ∴h ′(x 0)=f ′(x 0)-f ′(x 0)=0. 又当x <x 0时,f ′(x )<f ′(x 0), 故h ′(x )<0,h (x )单调递减; 当x >x 0时,f ′(x )>f ′(x 0), 故h ′(x )>0,h (x )单调递增.∴x =x 0是h (x )的极小值点.故选B. 答案:B7.若函数g (x )=mx +sin xe x 在区间(0,2π)内有一个极大值和一个极小值,则实数m 的取值范围是 ( )A .[-e -2π,e -π2)B .(-e -π,e -2π)C .(-e π,e -5π2) D .(-e -3π,e π) 解析:函数g (x )=mx +sin xe x , 求导得g ′(x )=m +cos x -sin xe x. 令f (x )=m +cos x -sin x e x,则f ′(x )=-2cos xe x .易知,当x ∈(0,π2)时,f ′(x )<0,f (x )单调递减; 当x ∈(π2,3π2)时,f ′(x )>0,f (x )单调递增; 当x ∈(3π2,2π)时,f ′(x )<0,f (x )单调递减. 且f (0)=m +1,f (π2)=m -e -π2,f (3π2)=m +e -3π2, f (2π)=m +e -2π,有f (π2)<f (2π),f (0)>f (3π2).根据题意可得⎩⎪⎨⎪⎧f (π2)=m -e -π2<0,f (2π)=m +e -2π≥0,解得-e-2π≤m <e -π2.故选A.答案:A8.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值和最小值分别是 ( )A .-4,-15B .5,-15C .5,-4D .5,-16 解析:由题意知y ′=6x 2-6x -12, 令y ′>0,解得x >2或x <-1,故函数y=2x3-3x2-12x+5在[0,2]上递减,在[2,3]上递增,当x=0时,y=5;当x=3时,y=-4;当x=2时,y=-15.由此得函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是5,-15.故选B.答案:B9.若函数f(x)=13x3-⎝⎛⎭⎪⎫1+b2x2+2bx在区间[-3,1]上不是单调函数,则f(x)在R上的极小值为()A.2b-43 B.32b-23C.0 D.b2-16b3解析:由题意得f′(x)=(x-b)(x-2).因为f(x)在区间[-3,1]上不是单调函数,所以-3<b<1.由f′(x)>0,解得x>2或x<b;由f′(x)<0,解得b<x<2.所以f(x)的极小值为f(2)=2b-43.故选A.答案:A10.已知函数f(x)=ln x+a,g(x)=ax+b+1,若∀x>0,f(x)≤g(x),则ba的最小值是()A.1+e B.1-e C.e-1D.2e-1解析:由题意,∀x>0,f(x)≤g(x),即ln x+a≤ax+b+1,即ln x-ax+a≤b+1,设h(x)=ln x-ax+a,则h′(x)=1x-a,当a≤0时,h′(x)=1x-a>0,函数h(x)单调递增,无最大值,不合题意;当a>0时,令h′(x)=1x-a=0,解得x=1a,当x∈(0,1a)时,h′(x)>0,函数h(x)单调递增;当x∈(1a,+∞)时,h′(x)<0,函数h(x)单调递减,所以h(x)max=h(1a)=-ln a+a-1,故-ln a+a-1≤b+1,即-ln a+a-b-2≤0,令ba=k,则b=ak,所以-ln a+(1-k)a-2≤0,设φ(a)=-ln a+(1-k)a-2,则φ′(a)=-1a+(1-k),若1-k≤0,则φ′(a)<0,此时φ(a)单调递减,无最小值,所以k<1,由φ′(a)=0,得a=11-k,此时φ(a)min=ln(1-k)-1≤0,解得k≥1-e,所以k的小值为1-e,故选B.答案:B11.已知函数f(x)=-x3+ax2-4在x=2处取得极值,若m,n∈[-1,1],则f(m)+f′(n)的最小值是()A.-13 B.-15 C.10 D.15解析:∵f′(x)=-3x2+2ax,函数f(x)=-x3+ax2-4在x=2处取得极值,∴-12+4a=0,解得a=3,∴f′(x)=-3x2+6x,f(x)=-3x3+3x2-4,∴n∈[-1,1]时,f′(n)=-3n2+6n,当n=-1时,f′(n)最小,最小为-9,当m∈[-1,1]时,f(m)=-m3+3m2-4,f′(m)=-3m2+6m,令f′(m)=0,得m=0或m=2,所以当m=0时,f(m)最小,最小为-4,故f(m)+f′(n)的最小值为-9+(-4)=-13.故选A.答案:A12.设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在(a,b)上,f″(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知当m≤2时,f(x)=16x3-12mx2+x在(-1,2)上是“凸函数”,则f(x)在(-1,2)上() A.既有极大值,也有极小值B.没有极大值,有极小值C.有极大值,没有极小值D.没有极大值,也没有极小值解析:由题设可知,f″(x)<0在(-1,2)上恒成立,由于f ′(x )=12x 2-mx +1,从而f ″(x )=x -m ,所以有x -m <0在(-1,2)上恒成立,故知m ≥2,又因为m ≤2,所以m =2,从而f (x )=16x 3-x 2+x ,f ′(x )=12x 2-2x +1=0,得x 1=2-2∈(-1,2),x 2=2+2∉(-1,2),且当x ∈(-1,2-2)时,f ′(x )>0,当x ∈(2-2,2)时,f ′(x )<0,所以f (x )在x =2-2处取得极大值,没有极小值.答案:C 二、填空题13.已知函数f (x )=1-x x +ln x ,则f (x )在[12,2]上的最大值等于________.解析:∵函数f (x )=1-xx +ln x , ∴f ′(x )=-1x 2+1x =x -1x 2.故f (x )在[12,1]上单调递减,在[1,2]上单调递增, 又∵f (12)=1-ln2,f (2)=ln2-12,f (1)=0, f (12)-f (2)=32-2ln2>0,∴f (x )max =1-ln2,故答案为1-ln2. 答案:1-ln214.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )极大值与极小值之差为________.解析:求导得f ′(x )=3x 2+6ax +3b ,因为函数f (x )在x =2处取得极值,所以f ′(2)=3·22+6a ·2+3b =0,即4a +b +4=0 ①,又因为图象在x =1处的切线与直线6x +2y +5=0平行, 所以f ′(1)=3+6a +3b =-3,即2a +b +2=0 ②, 联立①②可得a =-1,b =0, 所以f ′(x )=3x 2-6x =3x (x -2), 当f ′(x )>0时,x <0或x >2; 当f ′(x )<0时,0<x <2,∴函数的单调增区间是(-∞,0)和(2,+∞),函数的单调减区间是(0,2), 因此求出函数的极大值为f (0)=c , 极小值为f (2)=c -4,故函数的极大值与极小值的差为c -(c -4)=4, 故答案为4. 答案:415.若函数f (x )=2x 3-ax 2+1(a ∈R )在(0,+∞)内有且只有一个零点,则f (x )在[-1,1]上的最大值与最小值的和为________.解析:由f ′(x )=6x 2-2ax =0,得x =0或x =a3,因为函数f (x )在(0,+∞)上有且仅有一个零点且f (0)=1,所以a 3>0,f (a 3)=0,因此2(a 3)3-a (a3)2+1=0,a =3.从而函数f (x )在[-1,0]上单调递增,在[0,1]上单调递减,所以f (x )max =f (0),f (x )min =min{f (-1),f (1)}=f (-1),f (x )max +f (x )min =f (0)+f (-1)=1-4=-3.答案:-316.已知函数f (x )=x 3+ax 2+(a +6)x +1,(1)若函数f (x )的图象在点(1,f (1))处的切线斜率为6,则实数a =________;(2)若函数在(-1,3)内既有极大值又有极小值,则实数a 的取值范围是________.解析:∵f (x )=x 3+ax 2+(a +6)x +1, ∴f ′(x )=3x 2+2ax +(a +6), ∴f ′(1)=3a +9=6,∴a =-1.函数在(-1,3)内既有极大值又有极小值,则f ′(x )=3x 2+2ax +(a +6)=0在(-1,3)内有不同的实数根,则⎩⎪⎨⎪⎧Δ=4a 2-12(a +6)>0,f ′(-1)=-a +9>0,f ′(3)=7a +33>0,-1<-2a 6<3,∴-337<a <-3.答案:-1 (-337,-3) 三、解答题17.已知函数f (x )=x +ax ln x (a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数f (x )=x +ax ln x 存在极大值,且极大值点为1,证明:f (x )≤e -x +x 2. 解:(1)由题意x >0,f ′(x )=1+a +a ln x ,①当a =0时,f (x )=x ,函数f (x )在(0,+∞)上单调递增; ②当a >0时,函数f ′(x )=1+a +a ln x 单调递增,f ′(x )=1+a +a ln x =0⇒x =e -1-1a >0,故当x ∈(0,e -1-1a )时,f ′(x )<0,当x ∈(e -1-1a ,+∞)时,f ′(x )>0,所以函数f (x )在(0,e -1-1a )上单调递减,函数f (x )在(e -1-1a ,+∞)上单调递增;③当a <0,函数f ′(x )=1+a +a ln x 单调递减,f ′(x )=1+a +a ln x =0⇒x =e -1-1a >0,故当x ∈(0,e -1-1a )时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫e -1-1a ,+∞时,f ′(x )<0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,e -1-1a 上单调递增,函数f (x )在⎝ ⎛⎭⎪⎫e -1-1a ,+∞上单调递减. (2)由f ′(1)=0,得a =-1,令h (x )=e -x +x 2-x +x ln x ,则h ′(x )=-e -x +2x +ln x ,h ″(x )=e -x +2+1x >0,∴h ′(x )在(0,+∞)上单调递增,∵h ′⎝ ⎛⎭⎪⎫1e =-e -1e +2e -1<0,h ′(1)=-e -1+2>0, ∴∃x 0∈⎝ ⎛⎭⎪⎫1e ,1,使得h ′(x 0)=0,即-e -x 0+2x 0+ln x 0=0. ∴当x ∈(0,x 0)时,h ′(x )<0; 当x ∈(x 0,+∞)时,h ′(x )>0,∴h (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, ∴h (x )≥h (x 0).由-e -x 0+2x 0+ln x 0=0,得e -x 0=2x 0+ln x 0, ∴h (x 0)=e -x 0+x 20-x 0+x 0ln x 0 =(x 0+1)(x 0+ln x 0).当x 0+ln x 0<0时,ln x 0<-x 0⇒x 0<e -x 0 ⇒-e -x 0+x 0<0,所以-e -x 0+x 0+x 0+ln x 0<0与-e -x 0+2x 0+ln x 0=0矛盾; 当x 0+ln x 0>0时,ln x 0>-x 0⇒x 0>e -x 0⇒-e -x 0+x 0>0, 所以-e -x 0+x 0+x 0+ln x 0>0与-e -x 0+2x 0+ln x 0=0矛盾; 当x 0+ln x 0=0时,ln x 0=-x 0⇒x 0=e -x 0⇒-e -x 0+x 0=0, 得-e -x 0+2x 0+ln x 0=0,故x 0+ln x 0=0成立, 得h (x 0)=(x 0+1)(x 0+ln x 0)=0,所以h (x )≥0, 即f (x )≤e -x +x 2.18.已知函数f (x )=x ln x .(1)求函数y =f (x )的单调区间和最小值;(2)若函数F (x )=f (x )-a x 在[1,e]上的最小值为32,求a 的值; (3)若k ∈Z ,且f (x )+x -k (x -1)>0对任意x >1恒成立,求k 的最大值. 解:(1)f (x )的单调增区间为[1e ,+∞),单调减区间为⎝ ⎛⎦⎥⎤0,1e , f (x )min =f (1e )=-1e .(2)F (x )=ln x -ax ,F ′(x )=x +a x 2,(ⅰ)当a ≥0时,F ′(x )>0,F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32,所以a =-32∉[0,+∞),舍去.(ⅱ)当a <0时,F (x )在(0,-a )在上单调递减, 在(-a ,+∞)上单调递增,①若a ∈(-1,0),F (x )在[1,e]上单调递增,F (x )min =F (1)=-a =32,所以a =-32∉(-1,0),舍去;②若a ∈[-e ,-1],F (x )在[1,-a ]上单调递减,在[-a ,e]上单调递增,所以F (x )min =F (-a )=ln(-a )+1=32,解得a =-e ∈[-e ,-1];③若a ∈(-∞,-e), F (x )在[1,e]上单调递减, F (x )min =F (e)=1-a e =32,所以a =-e 2∉(-∞,-e),舍去.综上所述, a =- e.(3)由题意得,k (x -1)<x +x ln x 对任意x >1恒成立,即k <x ln x +x x -1对任意x >1恒成立. 令h (x )=x ln x +x x -1,则h ′(x )=x -ln x -2(x -1)2, 令φ(x )=x -ln x -2(x >1),则φ′(x )=1-1x =x -1x >0,所以函数φ(x )在(1,+∞)上单调递增,因为方程φ(x )=0在(1,+∞)上存在唯一的实根x 0,且x 0∈(3,4),当1<x <x 0时,φ(x )<0,即h ′(x )<0,当x >x 0时,φ(x )>0,即h ′(x )>0.所以函数h (x )在(1,x 0)上递减,在(x 0,+∞)上单调递增.所以h (x )min =h (x 0)=x 0(1+ln x 0)x 0-1=x 0(1+x 0-2)x 0-1=x 0∈(3,4),所以k <g (x )min =x 0, 又因为x 0∈(3,4),故整数k 的最大值为3.19.高三模拟考试)已知函数f (x )=-4x 3+ax ,x ∈R .(1)讨论函数f (x )的单调性;(2)若函数f (x )在[-1,1]上的最大值为1,求实数a 的取值集合.解:(1)f ′(x )=-12x 2+a .当a =0时,f (x )=-4x 3在R 上单调递减;当a <0时,f ′(x )=-12x 2+a <0,即f (x )=-4x 3+ax 在R 上单调递减;当a >0时,f ′(x )=-12x 2+a =0,解得x 1=36a ,x 2=-3a 6,∴当x ∈⎝⎛⎭⎪⎫-∞,-3a 6时,f ′(x )<0, f (x )在⎝⎛⎭⎪⎫-∞,-3a 6上递减;当x ∈⎝⎛⎭⎪⎫-3a 6,3a 6时,f ′(x )>0, f (x )在⎝⎛⎭⎪⎫-3a 6,3a 6上递增; 当x ∈⎝ ⎛⎭⎪⎫3a 6,+∞时,f ′(x )<0, f (x )在⎝ ⎛⎭⎪⎫3a 6,+∞上递减. 综上,当a ≤0时,f (x )在R 上单调递减;当a >0时,f (x )在⎝⎛⎭⎪⎫-∞,-3a 6上递减; 在⎝ ⎛⎭⎪⎫-3a 6,3a 6上递增;在⎝ ⎛⎭⎪⎫3a 6,+∞上递减. (2)∵函数f (x )在[-1,1]上的最大值为1,∴对任意x ∈[-1,1],f (x )≤1恒成立,即-4x 3+ax ≤1对任意x ∈[-1,1]恒成立,变形可得ax ≤1+4x 3.当x =0时,a ·0≤1+4·03,即0≤1,可得a ∈R ;当x ∈(0,1]时,a ≤1x +4x 2,则a ≤⎝ ⎛⎭⎪⎫1x +4x 2min, 令g (x )=1x +4x 2,则g ′(x )=-1x 2+8x =8x 3-1x 2.当x ∈⎝ ⎛⎭⎪⎫0,12时,g ′(x )<0,当x ∈⎝ ⎛⎦⎥⎤12,1时, g ′(x )>0. 因此,g (x )min =g ⎝ ⎛⎭⎪⎫12=3, ∴a ≤3.当x ∈[-1,0)时,a ≥1x +4x 2,则a ≥⎝ ⎛⎭⎪⎫1x +4x 2max, 令g (x )=1x +4x 2,则g ′(x )=-1x 2+8x =8x 3-1x 2,当x ∈[-1,0)时,g ′(x )<0,因此,g (x )max =g (-1)=3,∴a ≥3.综上,a=3.∴a的取值集合为{3}。
有关函数的极值与导数的测试题及答案一、选择题1.已知函数fx在点x0处连续,下列命题中,正确的是A.导数为零的点一定是极值点B.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极小值C.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极大值D.如果在点x0附近的左侧fx0,右侧fx0,那么fx0是极大值[答案] C[解析] 导数为0的点不一定是极值点,例如fx=x3,fx=3x2,f0=0,但x=0不是fx的极值点,故A错;由极值的定义可知C正确,故应选C.2.函数y=1+3x-x3有A.极小值-2,极大值2B.极小值-2,极大值3C.极小值-1,极大值1D.极小值-1,极大值3[答案] D[解析] y=3-3x2=31-x1+x令y=0,解得x1=-1,x2=1当x-1时,y0,函数y=1+3x-x3是减函数,当-11时,y0,函数y=1+3x-x3是增函数,当x1时,y0,函数y=1+3x-x3是减函数,当x=-1时,函数有极小值,y极小=-1.当x=1时,函数有极大值,y极大=3.3.设x0为fx的极值点,则下列说法正确的是A.必有fx0=0B.fx0不存在C.fx0=0或fx0不存在D.fx0存在但可能不为0[答案] C[解析] 如:y=|x|,在x=0时取得极小值,但f0不存在.4.对于可导函数,有一点两侧的导数值异号是这一点为极值的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件[答案] C[解析] 只有这一点导数值为0,且两侧导数值异号才是充要条件.5.对于函数fx=x3-3x2,给出命题:①fx是增函数,无极值;②fx是减函数,无极值;③fx的’递增区间为-,0,2,+,递减区间为0,2;④f0=0是极大值,f2=-4是极小值.其中正确的命题有A.1个 B.2个C.3个 D.4个[答案] B[解析] fx=3x2-6x=3xx-2,令fx0,得x2或x0,令fx0,得02,①②错误. 6.函数fx=x+1x的极值情况是A.当x=1时,极小值为2,但无极大值B.当x=-1时,极大值为-2,但无极小值C.当x=-1时,极小值为-2;当x=1时,极大值为2D.当x=-1时,极大值为-2;当x=1时,极小值为2[答案] D[解析] fx=1-1x2,令fx=0,得x=1,函数fx在区间-,-1和1,+上单调递增,在-1,0和0,1上单调递减,当x=-1时,取极大值-2,当x=1时,取极小值2.7.函数fx的定义域为开区间a,b,导函数fx在a,b内的图象如图所示,则函数fx在开区间a,b内有极小值点A.1个 B.2个C.3个 D.4个[答案] A[解析] 由fx的图象可知,函数fx在区间a,b内,先增,再减,再增,最后再减,故函数fx在区间a,b内只有一个极小值点.8.已知函数y=x-ln1+x2,则函数y的极值情况是A.有极小值B.有极大值C.既有极大值又有极小值D.无极值[答案] D[解析] ∵y=1-11+x2x2+1=1-2xx2+1=x-12x2+1令y=0得x=1,当x1时,y0,当x1时,y0,函数无极值,故应选D.9.已知函数fx=x3-px2-qx的图象与x轴切于1,0点,则函数fx的极值是 A.极大值为427,极小值为0B.极大值为0,极小值为427C.极大值为0,极小值为-427D.极大值为-427,极小值为0[答案] A[解析] 由题意得,f1=0,p+q=1①f1=0,2p+q=3②由①②得p=2,q=-1.fx=x3-2x2+x,fx=3x2-4x+1=3x-1x-1,令fx=0,得x=13或x=1,极大值f13=427,极小值f1=0.10.下列函数中,x=0是极值点的是A.y=-x3 B.y=cos2xC.y=tanx-x D.y=1x[答案] B[解析] y=cos2x=1+cos2x2,y=-sin2x,x=0是y=0的根且在x=0附近,y左正右负,x=0是函数的极大值点.二、填空题11.函数y=2xx2+1的极大值为______,极小值为______.[答案] 1-1[解析] y=21+x1-xx2+12,令y0得-11,令y0得x1或x-1,当x=-1时,取极小值-1,当x=1时,取极大值1.12.函数y=x3-6x+a的极大值为____________,极小值为____________.[答案] a+42 a-42[解析] y=3x2-6=3x+2x-2,令y0,得x2或x-2,令y0,得-22,当x=-2时取极大值a+42,当x=2时取极小值a-42.13.已知函数y=x3+ax2+bx+27在x=-1处有极大值,在x=3处有极小值,则a =______,b=________.[答案] -3-9[解析] y=3x2+2ax+b,方程y=0有根-1及3,由韦达定理应有14.已知函数fx=x3-3x的图象与直线y=a有相异三个公共点,则a的取值范围是________.[答案] -2,2[解析] 令fx=3x2-3=0得x=1,可得极大值为f-1=2,极小值为f1=-2,y=fx的大致图象如图观察图象得-22时恰有三个不同的公共点.三、解答题15.已知函数fx=x3-3x2-9x+11.1写出函数fx的递减区间;2讨论函数fx的极大值或极小值,如有试写出极值.[解析] fx=3x2-6x-9=3x+1x-3,令fx=0,得x1=-1,x2=3.x变化时,fx的符号变化情况及fx的增减性如下表所示:x -,-1 -1 -1,3 3 3,+fx + 0 - 0 +fx 增极大值f-1 减极小值f3 增1由表可得函数的递减区间为-1,3;2由表可得,当x=-1时,函数有极大值为f-1=16;当x=3时,函数有极小值为f3=-16.16.设函数fx=ax3+bx2+cx,在x=1和x=-1处有极值,且f1=-1,求a、b、c的值,并求出相应的极值.[解析] fx=3ax2+2bx+c.∵x=1是函数的极值点,-1、1是方程fx=0的根,即有又f1=-1,则有a+b+c=-1,此时函数的表达式为fx=12x3-32x.fx=32x2-32.令fx=0,得x=1.当x变化时,fx,fx变化情况如下表:x -,-1 -1 -1,1 1 1,+fx + 0 - 0 +fx ? 极大值1 ? 极小值-1 ?由上表可以看出,当x=-1时,函数有极大值1;当x=1时,函数有极小值-1.17.已知函数fx=ax3+bx2-3x在x=1处取得极值.1讨论f1和f-1是函数fx的极大值还是极小值;2过点A0,16作曲线y=fx的切线,求此切线方程.[解析] 1fx=3ax2+2bx-3,依题意,f1=f-1=0,即解得a=1,b=0.fx=x3-3x,fx=3x2-3=3x-1x+1.令fx=0,得x1=-1,x2=1.若x-,-11,+,则fx>0,故fx在-,-1上是增函数,fx在1,+上是增函数.若x-1,1,则fx<0,故fx在-1,1上是减函数.f-1=2是极大值;f1=-2是极小值.2曲线方程为y=x3-3x.点A0,16不在曲线上.设切点为Mx0,y0,则点M的坐标满足y0=x30-3x0.∵fx0=3x20-1,故切线的方程为y-y0=3x20-1x-x0.注意到点A0,16在切线上,有16-x30-3x0=3x20-10-x0.化简得x30=-8,解得x0=-2.切点为M-2,-2,切线方程为9x-y+16=0.18.2021北京文,18设函数fx=a3x3+bx2+cx+da0,且方程fx-9x=0的两个根分别为1,4.1当a=3且曲线y=fx过原点时,求fx的解析式;2若fx在-,+内无极值点,求a的取值范围.[解析] 本题考查了函数与导函数的综合应用.由fx=a3x3+bx2+cx+d得fx=ax2+2bx+c∵fx-9x=ax2+2bx+c-9x=0的两根为1,4.1当a=3时,由*式得,解得b=-3,c=12.又∵曲线y=fx过原点,d=0.故fx=x3-3x2+12x.2由于a0,所以“fx=a3x3+bx2+cx+d在-,+内无极值点”等价于“fx=ax2+2bx+c0在-,+内恒成立”由*式得2b=9-5a,c=4a.又∵=2b2-4ac=9a-1a-9解得a[1,9],即a的取值范围[1,9].感谢您的阅读,祝您生活愉快。
完整版)导数与极值、最值练习题三、知识新授一)函数极值的概念函数极值指的是函数在某个点上的最大值或最小值,包括极大值和极小值。
二)函数极值的求法:1)确定函数的定义域,并求出函数的导数f'(x);2)解方程f'(x)=0,得到方程的根x(可能不止一个);3)如果在x附近的左侧f'(x)>0,右侧f'(x)<0,则f(x)是极大值;反之,则f(x)是极小值。
题型一图像问题1、函数f(x)的导函数图像如下图所示,则函数f(x)在图示区间上()第二题图)A.无极大值点,有四个极小值点B.有三个极大值点,两个极小值点C.有两个极大值点,两个极小值点D.有四个极大值点,无极小值点2、函数f(x)的定义域为开区间(a,b),导函数f'(x)在(a,b)内的图像如图所示,则函数f(x)在开区间(a,b)内有极小值点()A.1个B.2个C.3个D.4个3、若函数f(x)=x+bx+c的图像的顶点在第四象限,则函数f'(x)的图像可能为()图略)4、设f'(x)是函数f(x)的导函数,y=f'(x)的图像如下图所示,则y=f(x)的图像可能是()图略)A。
B。
C。
D。
5、已知函数f(x)的导函数f'(x)的图像如右图所示,那么函数f(x)的图像最有可能的是()图略)6、f'(x)是f(x)的导函数,f'(x)的图像如图所示,则f(x)的图像只可能是()图略)A。
B。
C。
D。
7、如果函数y=f(x)的图像如图,那么导函数y=f'(x)的图像可能是()图略)ABCD8、如图所示是函数y=f(x)的导函数y=f'(x)图像,则下列哪一个判断可能是正确的()图略)A.在区间(-2,0)内y=f(x)为增函数B.在区间(0,3)内y=f(x)为减函数C.在区间(4,+∞)内y=f(x)为增函数D.当x=2时y=f(x)有极小值9、如果函数y=f(x)的导函数的图像如图所示,给出下列判断:①函数y=f(x)在区间(-3,-1/2)内单调递增;②函数y=f(x)在区间(-1/2,2)内单调递减。
函数的导数与极值限时训练
一.选择题
1.函数y=f(x)的定义域为(a,b),y=f′(x)的图象如图,则函数
y=
f(x)在开区间(a,b)内取得极小值的点有
( )
A.1个B.2个
C.3个D.4个
2.下列关于函数的极值的说法正确的是( ) A.导数值为0的点一定是函数的极值点
B.函数的极小值一定小于它的极大值
C.函数在定义域内有一个极大值和一个极小值
D.若f(x)在(a,b)内有极值,那么f(x)在(a,b)内不是单调函数
3.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于( ) A.2 B.3 C.6 D.9
4.函数y=x3-3x2-9x(-2<x<2)有()A.极大值5,极小值-27
B.极大值5,极小值-11
C.极大值5,无极小值
D.极小值-27,无极大值
5.已知函数f(x),x∈R,且在x=1处,f(x)存在极小值,则( ) A.当x∈(-∞,1)时,f′(x)>0;
当x∈(1,+∞)时,f′(x)<0
B.当x∈(-∞,1)时,f′(x)>0;
当x∈(1,+∞)时,f′(x)>0
C.当x∈(-∞,1)时,f′(x)<0;
当x∈(1,+∞)时,f′(x)>0
D.当x∈(-∞,1)时,f′(x)<0;
当x∈(1,+∞)时,f′(x)<0
6.若函数y=x3-3ax+a在(1,2)内有极小值,则实数a的取值范围是( ) A.1<a<2 B.1<a<4
C.2<a<4 D.a>4或a<1
二、填空题
7.若函数f (x )=x 2+a x +1
在x =1处取极值,则a =________. 8. 设函数f (x )=6x 3+3(a +2)x 2
+2ax .若f (x )的两个极值点为x 1,x 2,且x 1x 2=1,则实
数a 的值为________.
9. 如果函数y =f (x )的导函数的图象如图所示,给出下列判断:
①函数y =f (x )在区间⎝ ⎛⎭⎪⎫-3,-12内单调递增; ②函数y =f (x )在区间⎝ ⎛⎭
⎪⎫-12,3内单调递减; ③函数y =f (x )在区间(4,5)内单调递增;
④当x =2时,函数y =f (x )有极小值;
⑤当x =-12
时,函数y =f (x )有极大值. 则上述判断正确的是________ .(填序号)
三.解答题
10.求下列函数的极值:
(1)f (x )=x 3-2
x -2; (2)f (x )=x 2e -x .
11.已知f (x )=x 3+12mx 2-2m 2x -4(m 为常数,且m >0)有极大值-52
,求m 的值.。