初等数论
- 格式:doc
- 大小:4.17 MB
- 文档页数:150
1111
数论是一门研究整数性质的数学分支,它包括了初等数论和高等数论两个方面。
初等数论主要研究整数的基本性质,如整除性、质数、合数、最大公约数、最小公倍数等。
这些概念和性质在小学和初中的数学课程中就已经涉及到了,因此也被称为“小学数论”或“初中数论”。
初等数论的研究方法主要是通过观察、归纳和证明来得出结论,它的研究对象比较具体,结论也比较直观。
高等数论则是在初等数论的基础上,进一步深入研究整数的性质和结构。
它涉及到的概念和方法更加抽象和复杂,如素数分布、数的几何、代数数论、解析数论等。
高等数论的研究需要运用到高等数学的知识和方法,如微积分、线性代数、抽象代数等。
高等数论的研究成果不仅在数学领域有着广泛的应用,而且在计算机科学、物理学、密码学等领域也有着重要的应用。
总的来说,初等数论是高等数论的基础,高等数论则是初等数论的延伸和深化。
无论是初等数论还是高等数论,它们都是数学中非常重要的分支,对于我们深入理解整数的性质和结构、推动数学的发展都有着重要的意义。
序言数论是研究整数性质的一门很古老的数学分支,其初等部分是以整数的整除性为中心的,包括整除性、不定方程、同余式、连分数、素数(即整数)分布以及数论函数等内容,统称初等数论(Elementary Number Theory)。
初等数论的大部份内容早在古希腊欧几里德的《几何原本》中就已出现。
欧几里得证明了素数有无穷多个,他还给出求两个自然数的最大公约数的方法,即所谓欧几里得算法。
我国古代在数论方面亦有杰出之贡献,现在一般数论书中的“中国剩余定理”正是我国古代《孙子算经》中的下卷第26题,我国称之为“孙子定理”。
近代初等数论的发展得益于费马、欧拉、拉格朗日、勒让德和高斯等人的工作。
1801年,高斯的《算术探究》是数论的划时代杰作。
“数学是科学之王,数论是数学之王”。
-----高斯由于自20世纪以来引进了抽象数学和高等分析的巧妙工具,数论得到进一步的发展,从而开阔了新的研究领域,出现了代数数论、解析数论、几何数论等新分支。
而且近年来初等数论在计算器科学、组合数学、密码学、代数编码、计算方法等领域内更得到了广泛的应用,无疑同时间促进着数论的发展。
数论是以严格和简洁著称,内容既丰富又深刻。
我将会介绍数论中最基本的概念和理论,希望大家能对这门学问产生兴趣,并且对中小学时代学习过的一些基本概念,例如整除性、最大公因子、最小公倍数、辗转相除法等,有较深入的了解。
第一章整数的整除性§1.1整除的概念一、基本概念1、自然数、整数2、正整数、负整数3、奇数、偶数一个性质:整数+整数=整数整数-整数=整数整数*整数=整数二、整除1、定义:设a,b是整数,b≠0。
如果存在一个整数q使得等式:a=bq成立,则称b能整除a或a能被b整除,记作b∣a;如果这样的q不存在,则称b不能整除a。
2、整除的性质(1)如果b∣a,c∣b,则c∣a.(2)如果b∣a,则cb∣ca.(3)如果c∣a,则对任何整数d,c∣da.(4)如果c∣a,c∣b,则对任意整数m,n,有c∣ma+nb.(5)如果a∣b,b∣a,则a=±b.3、质数、合数质数(素数)是指在大于1的自然数中,除了1和它本身外,不能被其他自然数整除(除0以外)的数称之为素数(质数)。
初等数论的性质与定理总结初等数论是数论中的一个基础分支,研究整数的性质和整数运算规律。
本文将总结初等数论中的一些重要性质与定理。
一、整数的整除性质1. 整数的除法基本性质:对于任意整数a、b和非零整数c,存在唯一的整数q使得a = bq + c。
2. 整除关系的传递性:如果a能整除b,且b能整除c,则a能整除c。
3. 整除关系的辗转相除法:对于任意整数a和非零整数b,存在唯一的整数q和r使得a = bq + r(其中0 ≤ r < |b|)。
二、质数与合数1. 质数的定义:质数是指大于1且只能被1和自身整除的整数。
例如,2、3、5、7等都是质数。
2. 质因数分解定理:每个大于1的整数都可以唯一地表示为若干个质数的乘积。
3. 最大公约数与最小公倍数的性质:对于任意整数a和b,记a和b 的最大公约数为gcd(a, b),最小公倍数为lcm(a, b),则有以下性质: - gcd(a, b) = gcd(b, a)- gcd(a, 0) = |a|- lcm(a, b) = |ab| / gcd(a, b)三、模运算与同余1. 模运算的基本性质:对于任意整数a、b和正整数n,有以下性质:- (a + b) mod n = (a mod n + b mod n) mod n- (a - b) mod n = (a mod n - b mod n) mod n- (a * b) mod n = (a mod n * b mod n) mod n2. 同余关系的性质:对于任意整数a、b和正整数n,如果a与b模n同余(记作a ≡ b (mod n)),则有以下性质:- a + c ≡ b + c (mod n)- ac ≡ bc (mod n)- 如果a ≡ b (mod n),则a^k ≡ b^k (mod n)对于任意正整数k四、费马小定理与欧拉定理1. 费马小定理:如果p是质数,a是任意正整数且p不整除a,则有a^(p-1) ≡ 1 (mod p)。
初等数论初等数论从表面意义来讲,就是作为一门研究数的相关性质的数学学科。
准确地按照潘承洞、潘承彪两位数论大师的说法:初等数论是研究整数最基本的性质,是一门十分重要的数学基础课。
它不仅是中、高等师范院校数学专业,大学数学各专业的必修课,而且也是计算机科学等相关专业所需的课程。
纵观数论发展过程,我国出现了许许多多的数论大师,如:华罗庚的早期研究方向、陈景润、潘承洞等。
第一部分:整除初接触初等数论,经过《初等数论》课本知整除理论是初等数论的基础。
整除理论首先涉及整除。
现向上延伸则想到整除的对象,即自然数、整数。
从小学、中学再到大学,我们从接触最初的1、2、3再到后来的有理数、无理数、实数再到复数,可谓种类繁多。
但数论中的整除运算仅仅局限于自然数及其整数等相关范围内。
首先大学数学中绝大多数数学定义中的自然数不包括0 ,这似乎与中学有一点差别,当然整数的定义改变就相对少得多。
另外,自然数、整数的相关基本性质需懂得及灵活利用,如分配律、交换律、反对称性等。
在初等代数中曾系统地介绍了自然数的起源问题:自然数源于经验,自然数的本质属性是由归纳原理刻画的,它是自然数公理化定义的核心。
自然数集合严格的抽象定义是由Peano定理给出的,他刻画了自然数的本质属性,并导出有关自然数的有关性质。
Peano定理:设N是一个非空集合,满足以下条件:(ⅰ)对每一个n∈N,一定有唯一的一个N中的元素与之对应,这个元素记作n+,称为是n的后继元素(或后继);(ⅱ)有元素e∈N,他不是N中任意元素的后继;(ⅲ)N中的任意一个元素至多是一个元素的后继,即从a+=b+ 一定可以推出a=b;(ⅳ)(归纳原理)设S是N的一个子集合,e∈S, 如果n∈S则必有n+ ∈S,那么,S=N.这样的集合N称为自然数集合,它的元素叫做自然数。
其中的归纳原理是我们常用的数学归纳法的基础。
数学归纳法在中学已属重点内容,此处就不作介绍。
主要描述一下推广状态下的第二种数学归纳法:(第二种数学归纳法)设P(n)是关于自然数n的一种性质或命题。
初等数论 25课时初等数论通常被当作中学数学的一部分,可以在25个课时内完成。
以下是一个可能的课程安排:第1课:整数的定义和性质- 正整数、负整数、零- 自然数的集合和整数的集合- 整数的性质:加法封闭性、乘法封闭性、零元素、相反元素、相反性质、交换性、结合性第2课:整除和倍数- 整除的定义及性质- 倍数的定义及性质- 整除的运算性质:加法、乘法、整除关系的传递性第3课:素数和合数- 素数的定义和性质- 合数的定义和性质- 素数的性质:质因数分解、唯一性、无穷性第4课:最大公因数和最小公倍数- 最大公因数的定义和性质- 最小公倍数的定义和性质- 最大公因数和最小公倍数的关系:辗转相除法第5课:质因数分解- 质因数分解的定义和性质- 使用质因数分解求最大公因数和最小公倍数- 剩余定理:同余第6课:一次不等式- 一次不等式的定义和性质- 一次不等式的解集表示和图示解- 一元一次不等式的乘法性质和定理第7课:二次不等式- 二次不等式的定义和性质- 二次不等式的解集表示和图示解- 一元二次不等式的乘法性质和定理第8课:整数的奇偶性- 整数的奇数和偶数的定义和性质- 整数的奇数和偶数的四则运算性质- 奇偶性的应用:整数的平方的奇偶性、整数的和的奇偶性第9课:整数的余数- 整数的除法算法及余数的定义和性质- 除法算法的应用:整数的整除性质、整数的周期性第10课:循环小数与无理数- 无限小数的定义和性质- 循环小数的定义和性质- 无理数和有理数的关系第11课:初等数论的证明方法- 数学证明的基本方法和思维方式- 证明的基本结构:前提、推理、结论- 数学归纳法第12课:欧几里得算法和线性同余方程- 欧几里得算法的定义、性质和应用- 线性同余方程的定义和解法第13课:同余模运算- 同余模运算的定义和性质- 同余模运算的运算法则:加法、减法、乘法、幂运算- 同余方程的解法第14课:费马小定理和欧拉函数- 费马小定理的定义和应用- 欧拉函数的定义和性质- 欧拉函数的计算方法第15课:模逆元和扩展欧几里得算法- 模逆元的定义和性质- 模逆元的计算方法- 扩展欧几里得算法的定义、性质和应用第16-25课:综合应用和习题训练- 数论在密码学、编码、排列组合等领域的应用- 习题训练,并讲解常见问题的解法请注意,以上仅是初等数论课程的一个可能安排,具体的教学内容和进度可以根据教学目标和学生水平进行调整。
第一章考点1、会求最大公因数与最小公倍数解法:最大公因数用辗转相除法最小公倍数为两个数的乘积除以两者的最大公约数,所以也是要先求出两者的最大公约数2、判别一个数是为质数还是合数判别法:用小于√x的所有质数除此数,看能否被整除3、证明整除(最好用同余证)例1证:73|8n+2+92n+1(n∈N)解:法一 8n+2+92n+1=64×8n+9×81n=64×8n+9×(73+8)n=64×8n+9×(C0n73n+C1n73n-1×8+…+C n n8n)=64×8n+9(73q+8n)( q∈Z)=73×8n+9q×73所以73|8n+2+92n+1法二 8n+2+92n+1≡64×8n+9×81n≡64×8n+9×8n≡73×8n≡0(mod73)所以73|8n+2+92n+1例2已知17|2x+3y,证明17|9x+5y解:因为9x+5y=17(x+y)- 4(2x+3y) 且17|2x+3y所以17|9x+5y例3设k为正奇数,证:1+2+3+....+9|1k+2k+3k+ (9)证:记S=1k+2k+3k+ (9)则2S=(1k+9k)+(2k+8k)+…+(9k+1k)=(1+9)q1 (q1∈Z)所以10|2S又因为2S=(0k+9k)+(1k+8k)+…+(9k+0k)=(0+9)q2(q2∈Z)所以9|2S又因为(9,10)=1所以90|2S 即45|S从而1+2+3+....+9|1k+2k+3k+ (9)4、证明某种类型的质数有无穷多个例:证明4n+1形的质数的个数为无穷。
(最后一节课讲的)第三章同余考点:1、同余的性质;(应用在同余解题中)P482、简化剩余系和欧拉函数;(求简化剩余系的个数)P583、欧拉定理和费马定理对循环小数的应用;(利用欧拉定理解题;判断是纯循环还是混循环,若是混循环,从第几位开始)P61具体分析:一、同余的性质1、a≡a (mod m)2、若a≡b (mod m),则b≡a (mod m)3、若a≡b (mod m) b≡c (mod m) 则 a≡c (mod m)4、i.若a1≡b1 (mod m) a2≡b2 (mod m) 则 a1+a2≡b1+b2 (mod m)ii. a+b≡c (mod m) 则 a≡c-b (mod m)5、a1≡b1 (mod m) a2≡b2 (mod m) 则 a1a2≡b1b2 (mod m)特别的,若a≡b (mod m) 则 ak≡bk (mod m)6、若a≡b (mod m) 且a=a1d b=b1d (d,m)=1 则 a1≡b1 (modm)7、i.若a≡b (mod m) k>0 则 ak≡bk (mod mk)ii.若a≡b (mod m) d为a,b及m的任一正公因数,则a/d≡b/d (mod m/d)8、若a≡b (mod m) i=1、2…k 则a≡b(mod m1m2…m k)例:一个小于4000的四位数,被3、4、5、7、9除皆余2,求这个数。
第一章整除理论整除性理论是初等数论的基础。
本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。
第一节数的整除性定义1设a,b是整数,b≠ 0,如果存在整数c,使得a = bc成立,则称a被b整除,a是b的倍数,b是a的约数(因数或除数),并且使用记号b∣a;如果不存在整数c使得a = bc成立,则称a不被b整除,记为b|/a。
显然每个非零整数a都有约数±1,±a,称这四个数为a的平凡约数,a的另外的约数称为非平凡约数。
被2整除的整数称为偶数,不被2整除的整数称为奇数。
定理1下面的结论成立:(ⅰ) a∣b⇔±a∣±b;(ⅱ) a∣b,b∣c⇒a∣c;(ⅲ) b∣a i,i = 1, 2, , k⇒b∣a1x1+a2x2+ +a k x k,此处x i(i = 1, 2, , k)是任意的整数;(ⅳ) b∣a ⇒bc∣ac,此处c是任意的非零整数;(ⅴ) b∣a,a≠ 0 ⇒ |b| ≤ |a|;b∣a且|a| < |b| ⇒a = 0。
证明留作习题。
定义2若整数a≠ 0,±1,并且只有约数±1和±a,则称a是素数(或质数);否则称a为合数。
以后在本书中若无特别说明,素数总是指正素数。
定理2任何大于1的整数a都至少有一个素约数。
证明若a是素数,则定理是显然的。
若a不是素数,那么它有两个以上的正的非平凡约数,设它们是d1, d2, , d k 。
不妨设d1是其中最小的。
若d1不是素数,则存在e1 > 1,e2 > 1,使得d1 = e1e2,因此,e1和e2也是a的正的非平凡约数。
这与d1的最小性矛盾。
所以d1是素数。
证毕。
推论证明使用定理2中的记号,有a = d1d2,其中d1 > 1是最小的素约数,所以d12≤a。
证毕。
例1设r是正奇数,证明:对任意的正整数n,有n+ 2|/1r+ 2r+ +n r。
第一章 整除理论整除性理论是初等数论的基础。
本章要介绍带余数除法,辗转相除法,最大公约数,最小公倍数,算术基本定理以及它们的一些应用。
第一节 数的整除性定义1 设a ,b 是整数,b ≠ 0,如果存在整数c ,使得a = bc成立,则称a 被b 整除,a 是b 的倍数,b 是a 的约数(因数或除数),并且使用记号b ∣a ;如果不存在整数c 使得a = bc 成立,则称a 不被b 整除,记为b |/a 。
显然每个非零整数a 都有约数 ±1,±a ,称这四个数为a 的平凡约数,a 的另外的约数称为非平凡约数。
被2整除的整数称为偶数,不被2整除的整数称为奇数。
定理1 下面的结论成立: (ⅰ) a ∣b ⇔ ±a ∣±b ; (ⅱ) a ∣b ,b ∣c ⇒ a ∣c ;(ⅲ) b ∣a i ,i = 1, 2, , k ⇒ b ∣a 1x 1 + a 2x 2 + + a k x k ,此处x i (i = 1, 2, , k )是任意的整数; (ⅳ) b ∣a ⇒ bc ∣ac ,此处c 是任意的非零整数;(ⅴ) b ∣a ,a ≠ 0 ⇒ |b | ≤ |a |;b ∣a 且|a | < |b | ⇒ a = 0。
定义2 若整数a ≠ 0,±1,并且只有约数 ±1和 ±a ,则称a 是素数(或质数);否则称a 为合数。
以后在本书中若无特别说明,素数总是指正素数。
定理2 任何大于1的整数a 都至少有一个素约数。
证明 若a 是素数,则定理是显然的。
若a 不是素数,那么它有两个以上的正的非平凡约数,设它们是d 1, d 2, , d k 。
不妨设d 1是其中最小的。
若d 1不是素数,则存在e 1 > 1,e 2 > 1,使得d 1 = e 1e 2,因此,e 1和e 2也是a 的正的非平凡约数。
这与d 1的最小性矛盾。
所以d 1是素数。
证毕。
推论 任何大于1的合数a 必有一个不超过a 的素约数。
证明 使用定理2中的记号,有a = d 1d 2,其中d 1 > 1是最小的素约数,所以d 12 ≤ a 。
证毕。
例1 设r 是正奇数,证明:对任意的正整数n ,有n + 2|/1r + 2 r + + n r 。
解 对于任意的正整数a ,b 以及正奇数k ,有a k +b k = (a + b )(a k - 1 - a k - 2b + a k - 3b 2 - + b k - 1) = (a + b )q ,其中q 是整数。
记s = 1r + 2 r + + n r ,则2s = 2 + (2 r + n r ) + (3 r + (n - 1)r ) + + (n r + 2 r ) = 2 + (n + 2)Q ,其中Q 是整数。
若n + 2∣s ,由上式知n + 2∣2,因为n + 2 > 2,这是不可能的,所以n + 2|/s 。
例2 设A = { d 1, d 2, , d k }是n 的所有约数的集合,则B =}{,,,21kd nd n d n 也是n 的所有约数的集合。
解 由以下三点理由可以证得结论: (ⅰ) A 和B 的元素个数相同; (ⅱ) 若d i ∈A ,即d i ∣n ,则|id nn ,反之亦然; (ⅲ) 若d i ≠ d j ,则ji d nd n ≠。
例3 以d (n )表示n 的正约数的个数,例如:d (1) = 1,d (2) = 2,d (3) = 2,d (4) = 3, 。
问:d (1) + d (2) + + d (1997)是否为偶数?解 对于n 的每个约数d ,都有n = d ⋅dn ,因此,n 的正约数d 与d n 是成对地出现的。
只有当d =d n,即n = d 2时,d 和dn才是同一个数。
故当且仅当n 是完全平方数时,d (n )是奇数。
因为442 < 1997 < 452,所以在d (1), d (2), , d (1997)中恰有44个奇数,故d (1) + d (2) + + d (1997)是偶数。
例4 设凸2n 边形M 的顶点是A 1, A 2, , A 2n ,点O 在M 的内部,用1, 2, , 2n 将M 的2n 条边分别编号,又将OA 1, OA 2, , OA 2n 也同样进行编号,若把这些编号作为相应的线段的长度,证明:无论怎么编号,都不能使得三角形OA 1A 2, OA 2A 3, , OA 2n A 1的周长都相等。
解 假设这些三角形的周长都相等,记为s 。
则2ns = 3(1 + 2 + + 2n ) = 3n (2n + 1),即2s = 3(2n + 1),因此2∣3(2n + 1),这是不可能的,这个矛盾说明这些三角形的周长不可能全都相等。
例5 设整数k ≥ 1,证明:(ⅰ) 若2k ≤ n < 2k + 1,1 ≤ a ≤ n ,a ≠ 2k ,则2k |/a ; (ⅱ) 若3k ≤ 2n - 1 < 3k + 1,1 ≤b ≤ n ,2b - 1 ≠ 3k ,则3k |/2b - 1。
解 (ⅰ) 若2k |a ,则存在整数q ,使得a= q 2k 。
显然q 只可能是0或1。
此时a= 0或2k ,这都是不可能的,所以2k |/a ; (ⅱ) 若 3k |2b-1,则存在整数q ,使得2b-1= q 3k ,显然q 只可能是0,1, 或2。
此时2b-1= 0,3k ,或k32⋅,这都是不可能的,所以3k |/2b - 1。
例6 写出不超过100的所有的素数。
解 将不超过100的正整数排列如下:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 8081 82 83 84 85 86 87 88 89 9091 92 93 94 95 96 97 98 99 100按以下步骤进行:(ⅰ) 删去1,剩下的后面的第一个数是2,2是素数;(ⅱ) 删去2后面的被2整除的数,剩下的2后面的第一个数是3,3是素数;(ⅲ) 再删去3后面的被3整除的数,剩下的3后面的第一个数是5,5是素数;(ⅳ) 再删去5后面的被5整除的数,剩下的5后面的第一个数是7,7是素数;照以上步骤可以依次得到素数2, 3, 5, 7, 11, 。
由定理2推论可知,不超过100的合数必有一个不超过10的素约数,因此在删去7后面被7整除的数以后,就得到了不超过100的全部素数。
在例6中所使用的寻找素数的方法,称为Eratosthenes筛法。
它可以用来求出不超过任何固定整数的所有素数。
在理论上这是可行的;但在实际应用中,这种列出素数的方法需要大量的计算时间,是不可取的。
例7证明:存在无穷多个正整数a,使得n4+a(n = 1, 2, 3, )都是合数。
解取a = 4k4,对于任意的n∈N,有n4+ 4k4 = (n2+ 2k2)2- 4n2k2 = (n2+ 2k2+ 2nk)(n2+ 2k2- 2nk)。
因为n2+ 2k2- 2nk = (n-k)2+k2≥k2,所以,对于任意的k = 2, 3, 以及任意的n∈N,n4+a是合数。
例8设a1, a2, , a n是整数,且a1+a2+ +a n = 0,a1a2 a n = n,则4∣n。
解如果2|/n,则n, a1, a2, , a n都是奇数。
于是a1+a2+ +a n是奇数个奇数之和,不可能等于零,这与题设矛盾,所以2∣n,即在a1, a2, , a n中至少有一个偶数。
如果只有一个偶数,不妨设为a1,那么2|/a i(2 ≤i≤n)。
此时有等式a2+ +a n = -a1,在上式中,左端是(n- 1)个奇数之和,右端是偶数,这是不可能的,因此,在a1, a2, , a n中至少有两个偶数,即4∣n。
例9若n是奇数,则8∣n2- 1。
解设n = 2k+ 1,则n2- 1= (2k+ 1)2- 1 = 4k(k+ 1)。
在k和k+ 1中有一个是偶数,所以8∣n2- 1。
例9的结论虽然简单,却是很有用的。
例如,使用例3中的记号,我们可以提出下面的问题:问题d(1)2+d(2)2+ +d(1997)2被4除的余数是多少?例10证明:方程a12+a22+a32 = 1999 (1) 无整数解。
解若a1,a2,a3都是奇数,则存在整数A1,A2,A3,使得a12 = 8A1+ 1,a22 = 8A2+ 1,a32 = 8A3+ 1,于是a12+a22+a32 = 8(A1+A2+A3) + 3。
由于1999被8除的余数是7,所以a1,a2,a3不可能都是奇数。
由式(1),a1,a2,a3中只能有一个奇数,设a1为奇数,a2,a3为偶数,则存在整数A1,A2,A3,使得a12 = 8A1+ 1,a22 = 8A2+r,a32 = 8A3+s,于是a12+a22+a32 = 8(A1+A2+A3) + 1 +r+s,其中r和s是整数,而且只能取值0或4。
这样a12+a22+a32被8除的余数只可能是1或5,但1999被8除的余数是7,所以这样的a1,a2,a3也不能使式(2)成立。
综上证得所需要的结论。
习题一1. 证明:若m-p∣mn+pq,则m-p∣mq+np。
2.证明:任意给定的连续39个自然数,其中至少存在一个自然数,使得这个自然数的数字和能被11整除。
3. 设p是n的最小素约数,n = pn1,n1 > 1,证明:若p >3n,则n1是素数。
4. 证明:存在无穷多个自然数n,使得n不能表示为a2+p(a > 0是整数,p为素数)的形式。
第二节带余数除法在本节中,我们要介绍带余数除法及其简单应用。
定理1(带余数除法) 设a与b是两个整数,b≠ 0,则存在唯一的两个整数q和r,使得a = bq+r,0 ≤r < |b|。
(1)证明存在性若b∣a,a = bq,q∈Z,可取r = 0。
若b|/a,考虑集合A = { a +kb;k∈Z },其中Z表示所有整数的集合,以后,仍使用此记号,并以N表示所有正整数的集合。
在集合A中有无限多个正整数,设最小的正整数是r = a +k0b,则必有0 < r < |b|,(2) 否则就有r ≥ |b|。