最新-北京九中2018学年高二数学椭圆与双曲线部分测验
- 格式:doc
- 大小:603.91 KB
- 文档页数:3
椭圆、双曲线综合能力测试时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.椭圆x 23+y 22=1的焦点坐标是( )A .(±5,0)B .(0,±5)C .(±1,0)D .(0,±1)2.已知双曲线方程为x 220-y 25=1,那么它的半焦距是( )A .5B .2.5 C.152D.153.平面内两定点的距离为10,则到这两个定点的距离之差的绝对值为12的点的轨迹为( )A .双曲线B .线段C .射线D .不存在4.设P 是椭圆x 2169+y 225=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .135.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1B.x 212+y 216=1C.x 216+y 24=1D.x 24+y 216=1 6.双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m 等于( ) A .-14B .-4C .4D.147.双曲线的虚轴长为4,离心率e =62,F 1、F 2分别为它的左、右焦点,若过F 1的直线与双曲线的左支交于A 、B 两点,且|AB |是|AF 2|与|BF 2|的等差中项,,则|AB |等于( )A .8 2B .4 2C .2 2D .88.已知动圆P 过定点A (-3,0),并且与定圆B :(x -3)2+y 2=64内切,则动圆的圆心P 的轨迹是( )A .线段B .直线C .圆D .椭圆9.3<m <5是方程x 2m -5+y 2m 2-m -6=1表示的图形为双曲线的( )A .充分但非必要条件B .必要但非充分条件C .充分必要条件D .既非充分又非必要条件10.已知椭圆的长轴长为20,短轴长为16,则椭圆上的点到椭圆中心距离的取值范围是( )A .[6,10]B .[6,8]C .[8,10]D .[16,20]11.双曲线与椭圆x 216+y 264=1有相同的焦点,它的一条渐近线为y =-x ,则双曲线方程为( )A .x 2-y 2=96B .y 2-x 2=160C .x 2-y 2=80D .y 2-x 2=2412.(2010·辽宁文,9)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A. 2B. 3C.3+12D.5+12二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.与双曲线x 29-y 216=1有共同的渐近线,并且经过点(-3,32)的双曲线方程为__________.14.双曲线x 24-y 23=1的焦点到渐近线的距离为______.15.若椭圆x 25+y 2m =1的离心率为e =22,则实数m 的值等于________.17.(本题满分12分)求下列双曲线的标准方程.(1)与椭圆x216+y225=1共焦点,且过点(-2,10)的双曲线;(2)与双曲线x216-y24=1有公共焦点,且过点(32,2)的双曲线.18.(本题满分12分)方程x2sinα-y2cosα=1表示焦点在y轴上的椭圆,求α的取值范围.[分析]根据焦点在y轴上的椭圆的标准方程的特点,先将条件方程化为标准式,得到关于α的关系式,再求α的取值范围.19.(本题满分12分)已知动圆M与⊙O1:x2+(y-1)2=1和⊙O2:x2+(y+1)2=4都外切,求动圆圆心M的轨迹方程.20.(本题满分12分)如图,点A是椭圆C:x2a2+y2b2=1(a>b>0)的短轴位于x轴下方的端点,过A作斜率为1的直线交椭圆于B点,P点在y轴上,且BP∥x轴,AB→·AP→=9.(1)若P的坐标为(0,1),求椭圆C的方程;(2)若P的坐标为(0,t),求t的取值范围.21.(本题满分12分)设F1、F2是双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点,点P在双曲线上,若PF1→·PF2→=0,且|PF1→|·|PF2→|=2ac,其中c=a2+b2,求双曲线的离心率.22.(本题满分14分)若椭圆的中心为原点,焦点在x轴上,点P是椭圆上的一点,P在x轴上的射影恰为椭圆的左焦点,P与中心O的连线平行于右顶点与上顶点的连线,且左焦点与左顶点的距离等于10-5,试求椭圆的离心率及其方程.1[答案] C[解析]∵a2=3,b2=2,∴c2=1.又焦点在x 轴上,故选C. 2[答案] A[解析] ∵a 2=20,b 2=5,∴c 2=25,∴c =5. 3[答案] D[解析] 设两定点为A 、B ,则平面内到两定点A 、B 的距离的差的绝对值小于或等于这两定点的距离.4[答案] A[解析] 由椭圆的定义知,|PF 1|+|PF 2|=26,因为|PF 1|=4,所以|PF 2|=22. 5[答案] D[解析] 将x 24-y 212=-1化为y 212-x 24=1,易知双曲线的焦点在y 轴上,焦点为(0,±4),顶点为(0,±23),所以椭圆的a =4,c =23,因此b 2=16-12=4,所以椭圆方程为x 24+y216=1.6[答案] A[解析] 双曲线mx 2+y 2=1的方程可化为: y 2-x2-1m=1,∴a 2=1,b 2=-1m ,由2b =4a ,∴2-1m =4,∴m =-14. 7[答案] A[解析] ∵c a =62,2b =4,∴a 2=8,a =22,|AF 2|-|AF 1|=2a =42, |BF 2|-|BF 1|=2a =42,两式相加得|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=82, 又∵|AF 2|+|BF 2|=2|AB |,|AF 1|+|BF 1|=|AB |,∴|AB |=8 2. 8[答案] D[解析] 如下图,设动圆P 和定圆B 内切于M ,则动圆的圆心P 到两点,即定点A (-3,0)和定圆的圆心B (3,0)的距离之和恰好等于定圆半径,即|P A |+|PB |=|PM |+|PB |=|BM |=8.∴点P 的轨迹是以A、B 为焦点的椭圆,故选D.9[答案] A[解析] 当3<m <5时,m -5<0,m 2-m -6>0, ∴方程x 2m -5+y 2m 2-m -6=1表示双曲线.若方程x 2m -5+y 2m 2-m -6=1表示双曲线,则(m -5)(m 2-m -6)<0, ∴m <-2或3<m <5,故选A. 10[答案] C[解析] 由题意知a =10,b =8,设椭圆上的点M (x 0,y 0),由椭圆的范围知,|x 0|≤a =10,|y 0|≤b =8,点M 到椭圆中心的距离d =x 20+y 20,又因为x 20100+y 2064=1,所以y 20=64⎝⎛⎭⎫1-x 20100=64-1625x 20,则d =x 20+64-1625x 20=925x 20+64,因为0≤x 20≤100,所以64≤925x 20+64≤100,所以8≤d ≤10.故选C.11[答案] D[解析] ∵椭圆x 216+y 264=1的焦点(0,±43)为双曲线焦点,又它的一条渐近线为y =-x ,∴双曲线方程为y 2-x 2=24.12[答案] D[分析] 考查双曲线的渐近线方程及如何用a ,b ,c 三者关系转化出离心率 [解析] 设F (-c,0) B (0,b )则K FB =bc与直线FB 垂直的渐近线方程为y =-ba x∴b c =ab,即b 2=ac 又b 2=c 2-a 2,∴有c 2-a 2=ac 两边同除以a 2得e 2-e -1=0∴e =1±52∵e >1,∴e =1+52,选D.13[答案] y 22-8x 29=1[解析] 设双曲线方程为:x 29-y 216=λ(λ≠0)又点(-3,32)在双曲线上,∴λ=-18.故双曲线方程为y 22-8x29=1.14[答案]3[解析] 双曲线x 24-y 23=1的一条渐近线方程为:y =32x ,焦点F (7,0)到该渐近线的距离为:3×73+4= 3.15[答案] 10或52[解析] 若m <5,则e =22=5-m 5,解得m =52;若m >5,则e =22=m -5m,解得m =10.16.F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是________.16[答案] 2 3[解析] 由题意可知12×c ×32c =3,∴c =2,故P (1,3)在椭圆x 2b 2+4+y 2b 2=1上,即1b 2+4+3b2=1,解得b 2=2 3.三、解答题(共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17[解析] (1)∵椭圆x 216+y 225=1的焦点为(0,±3),∴所求双曲线方程设为:y 2a 2-x 29-a 2=1,又点(-2,10)在双曲线上,∴10a 2-49-a 2=1,解得a 2=5或a 2=18(舍去). ∴所求双曲线方程为y 25-x 24=1.(2)∵双曲线x 216-y 24=1的焦点为(±25,0),∴设所求双曲线方程为:x 2a 2-y 220-a 2=1,又点(32,2)在双曲线上,∴18a 2-420-a 2=1,解得a 2=12或30(舍去), ∴所求双曲线方程为x 212-y 28=1.18[解析] ∵x 2sin α-y 2cos α=1,∴x 21sin α+y 2-1cos α=1.又∵此方程表示焦点在y 轴上的椭圆,∴⎩⎪⎨⎪⎧1sin α>0-1cos α>01sin α<-1cos α,即⎩⎪⎨⎪⎧sin α>00<-cos α<sin α,∴2k π+π2<α<2k π+34π(k ∈Z ).故所求α的范围为⎝⎛⎭⎫2k π+π2,2k π+3π4(k ∈Z ). 19[解析] 设动圆圆心M 的坐标为(x ,y ),半径为r , 由题意得|MO 1|=1+r ,|MO 2|=2+r , ∴|MO 2|-|MO 1|=2+r -1-r =1<|O 1O 2|=2,由双曲线定义知,动圆圆心M 的轨迹是以O 1、O 2为焦点,实轴长为1的双曲线的上支, 双曲线方程为:4y 2-43x 2=1.(y ≥34)20[解析] (1)A (0,-b ),l 的方程为y +b =x ,P (0,1),则B (1+b,1), AB →=(1+b,1+b ),AP →=(0,b +1),又∵AB →·AP →=9,∴(1+b,1+b )·(0,b +1)=9, 即(b +1)2=9,∴b =2,∴点B (3,1)在椭圆上,∴9a 2+14=1,∴a 2=12,所求的椭圆方程为x 212+y 24=1.(2)P (0,t ),A (0,-b ),B (t +b ,t ),AB →=(t +b ,t +b ),AP →=(0,t +b ),AB →·AP →=9, ∴(t +b )2=9,∴b =3-t ,B (3,t ),代入椭圆9a 2+t 2(3-t )2=1,∴a 2=3(t -3)23-2t, ∵a 2>b 2,∴3(t -3)23-2t>(3-t )2,∴0<t <32.21[解析] 由双曲线定义知,||PF 1|-|PF 2||=2a , ∴|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4a 2, 又|PF 1|2+|PF 2|2=4c 2,∴|PF 1|·|PF 2|=2b 2, 又|PF 1→|·|PF 2→|=2ac ,∴2ac =2b 2,∴b 2=c 2-a 2=ac ,∴e 2-e -1=0,∴e =1+52,即双曲线的离心率为1+52.22[解析] 令x =-c 代入x 2a 2+y 2b 2=1(a >b >0),得y 2=b 2(1-c 2a 2)=b 4a 2,∴y =±b 2a .设P ⎝⎛⎭⎫-c ,b2a ,而椭圆的右顶点A (a,0),上顶点B (0,b ). ∵OP ∥AB ,∴k OP =k AB ,∴-b 2ac =-b a,∴b =c ;而a 2=b 2+c 2=2c 2,∴a =2c ,∴e =c a =22.又∵a -c =10-5,解得a =10,c =5,∴b =5, ∴所求的椭圆方程为:x 210+y 25=1.。
圆锥曲线测试题一、选择题(共12题,每题5分)2 21已知椭圆二11(a 5)的两个焦点为F I、F2 ,且∣F1F2∣=8 ,弦a 25AB过点F i ,则△ ABF2的周长为()(A)10 (B)20 (C) 2 -41(D) 4 412 22椭圆丄丄J上的点P到它的左准线的距离是10,那么点P 100 36到它的右焦点的距离是()(A)15 (B)12 (C)10 (D) 82 23椭圆—y 1的焦点F1、F2 ,P为椭圆上的一点,已知PF^ PF2,25 9则厶F1PF2的面积为()(A)9 (B)12 (C)10 (D)84以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是()(A)X2-y2=2 (B)y2-x2=2(C)X2- y2= 4 或y2 _ X2= 4 (D)X2 -y2 = 2或y2 -X2 = 22 25双曲线--y 1右支点上的一点P到右焦点的距离为2,则P16 9点到左准线的距离为()(A) 6 (B)8 (C)10 (D)126过双曲线X2—y2 =8的右焦点F2有一条弦PQ ∣PQ∣=7,F 1是左焦点,那么△ F1PQ的周长为()(A)28 (B)14-8、2 (C)14 8 2 (D)8 27双曲线虚轴上的一个端点为M,两个焦点为F1、F2, ∙F1MF2 =120 ,则双曲线的离心率为()(A)3(B)兰(C)H (D)三2 3 328在给定双曲线中,过焦点垂直于实轴的弦长为,2 ,焦点到相应准线的距离为1 ,则该双曲线的离心率为()(A) — ( B) 2( C) 2 ( D) 2 222 29如果椭圆2L L "的弦被点(4 , 2)平分,则这条弦所在的直 36 9 线方程是( )(A ) X — 2y =O ( B ) X 2y — 4 =0 ( C ) 2x 3y - 12 =0 ( D ) x 2y — 8 = 0那么点P 到y 轴的距离是()π:(0,2),π (0,—] 4 2 3y2=1 a 0,b 0的右焦点为F ,过F 且斜率为(A)(B)竽(C) 2」6(D) 2 311中心在原点,焦点在 y 轴的椭圆方程是 2 2X Sin l " y cos : -1 ,则C 的离心率为( )w.w.w.k.s.5.u.c.o. mA 、6B 、 7C 、5D 、 55895二 _填空题(20)■3的直线交C 于A 、B 两点,若AF =4FB , 102如果双曲线-42y 2=1上一点P 到双曲线右焦点的距离是 2,A.π (0,—)4BD. [J) 4 212 已知双曲线(Z,F )则 (2 213与椭圆Z 丄=1具有相同的离心率且过点(2, - 3 )的椭圆的43标准方程是是 __________________ 。
高二双曲线椭圆练习题详解双曲线和椭圆是高中数学中的重要内容,具有广泛的应用。
掌握它们的性质和解题方法,对于学习高等数学和应用数学都有很大的帮助。
本篇文章将通过详细解析高二双曲线椭圆的练习题,帮助读者更好地理解和掌握这一知识点。
1. 题目一已知双曲线H的焦点为F1(-2,0),F2(2,0),离心率为e=2。
过点A(3,0)作直线a与双曲线相交于B,C两点,AB的斜率为k,BC的斜率为m。
求证:km=4。
解析:首先,根据双曲线的定义,焦点到任意点的距离之差的绝对值等于离心距的两倍。
可以得到公式:|AF1 - AF2| = 2a其中a为双曲线的椭圆半轴长。
联立双曲线的标准方程和直线a的方程,可以求得B,C两点的坐标分别为B(3, -√(4k^2 - 3)),C(3, √(4k^2 - 3))。
通过计算,可以得到斜率k=(√(4k^2 - 3))/3,斜率m=-√(4k^2 - 3)/3。
将斜率k和斜率m相乘,得到km=(4k^2 - 3)/9。
由于k=(√(4k^2 - 3))/3,代入得到km=(4(4k^2 - 3) - 3)/9,化简可得km=4。
因此,证明了km=4。
2. 题目二已知椭圆E的焦点为F1(-3,0),F2(3,0),离心率为e=2/3。
直线a的斜率为k,过点A(6,0)与椭圆E相交于B和C两点,求证:BC的斜率为-m。
解析:同样地,根据椭圆的定义,焦点到任意点的距离之和的绝对值等于离心距的两倍。
可以得到公式:|AF1 + AF2| = 2a联立椭圆的标准方程和直线a的方程,可以求得B,C两点的坐标分别为B(6, √(4k^2 - 5)),C(6, -√(4k^2 - 5))。
通过计算,可以得到BC的斜率m=(-√(4k^2 - 5))/3。
要证明BC的斜率为-m,只需要证明m=1/m即可。
代入斜率m=-√(4k^2 - 5)/3,可得1/m=(-3)/(√(4k^2 - 5))。
高二数学椭圆一.选择题1.椭圆ax2+by2=1与直线y=1﹣x交于A、B两点,过原点与线段AB中点的直线的斜率为,则的值为()A.B.C.D.2.已知方程表示焦点在y轴上的椭圆,则实数k的取值范围是()A.B.(1,+∞)C.(1,2)D.3.椭圆x2+4y2=1的离心率为()A.B.C.D.4.椭圆+=1的右焦点到直线y=x的距离是()A.B.C.1D.5.以两条坐标轴为对称轴的椭圆过点P(,﹣4)和Q(﹣,3),则此椭圆的方程是()A.+y2=1 B.x2+=1C.+y2=1或x2+=1D.以上均不对6.已知P为椭圆+=1上的点,F1、F2为其两焦点,则使∠F1PF2=90°的点P有()A.4个B.2个C.1个D.0个7.椭圆4x2+9y2=1的焦点坐标是()A.(±,0)B.(0,±)C.(±,0)D.(±,0)8.若椭圆2kx2+ky2=1的一个焦点坐标是(0,4),则实数k的值为()A.B.﹣C.D.﹣9.已知椭圆上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为()A.9B.7C.5D.3二.填空题(共6小题)10.(2009•湖北模拟)如图Rt△ABC中,AB=AC=1,以点C为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB边上,且这个椭圆过A、B两点,则这个椭圆的焦距长为_________.11.若P是椭圆+=1上任意一点,F1、F2是焦点,则∠F1PF2的最大值为_________.12.F1、F2是椭圆+=1的两个焦点,P是椭圆上一点,则|PF1|•|PF2|有最_________值为_________.13.经过两点P1(),P2(0,)的椭圆的标准方程_________.14.已知焦距为8,离心率为0.8,则椭圆的标准方程为_________.15.点P在椭圆+=1上,F1,F2是椭圆的焦点,若PF1⊥PF2,则点P的坐标是_________.三.解答题(共5小题)16.已知椭圆的中心在坐标原点,焦点在x轴上,离心率为,且过点(1,2),求椭圆的标准方程.17.已知中心在原点,长轴在x轴上的椭圆的两焦点间的距离为,若椭圆被直线x+y+1=0截得的弦的中点的横坐标为﹣,求椭圆的方程.18.已知椭圆的焦点在x轴上,离心率为,且过点P(1,),求该椭圆的方程.19.求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,a=6,e=;(2)焦点在y轴上,c=3,e=.20.已知椭圆两焦点的坐标分别是(﹣2,0),(2,0),并且经过点(2,),求椭圆方程.21.已知:△ABC的一边长BC=6,周长为16,求顶点A的轨迹方程.参考答案与试题解析一.选择题(共9小题)1.(2015•兴国县一模)椭圆ax2+by2=1与直线y=1﹣x交于A、B两点,过原点与线段AB 中点的直线的斜率为,则的值为()A.B.C.D.考点:椭圆的简单性质.专题:综合题.分析:联立椭圆方程与直线方程,得ax2+b(1﹣x)2=1,(a+b)x2﹣2bx+b﹣1=0,A(x1,y1),B(x2,y2),由韦达定理得AB中点坐标:(),AB中点与原点连线的斜率k===.解答:解:联立椭圆方程与直线方程,得ax2+b(1﹣x)2=1,(a+b)x2﹣2bx+b﹣1=0,A(x1,y1),B(x2,y2),,y1+y2=1﹣x1+1﹣x2=2﹣=,AB中点坐标:(),AB中点与原点连线的斜率k===.故选A.点评:本题考查直线和圆锥曲线的经综合运用,解题时要认真审题,仔细解答,注意合理地进行等价转化.2.(2012•香洲区模拟)已知方程表示焦点在y轴上的椭圆,则实数k的取值范围是()A.B.(1,+∞)C.(1,2)D.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据椭圆的标准方程,得焦点在y轴上的椭圆方程中,x2、y2的分母均为正数,且y2的分母较大,由此建立关于k的不等式组,解之即得实数k的取值范围.解答:解:∵方程表示焦点在y轴上的椭圆,∴,解之得1<k<2实数k的取值范围是(1,2)故选:C点评:本题给出标准方程表示焦点在y轴上的椭圆,求参数k的取值范围,着重考查了椭圆的标准方程的概念,属于基础题.3.(2007•安徽)椭圆x2+4y2=1的离心率为()A.B.C.D.考点:椭圆的简单性质.专题:综合题.分析:把椭圆的方程化为标准方程后,找出a与b的值,然后根据a2=b2+c2求出c的值,利用离心率公式e=,把a与c的值代入即可求出值.解答:解:把椭圆方程化为标准方程得:x2+=1,得到a=1,b=,则c==,所以椭圆的离心率e==.故选A点评:此题考查学生掌握椭圆的离心率的求法,灵活运用椭圆的简单性质化简求值,是一道综合题.4.(2006•东城区二模)椭圆+=1的右焦点到直线y=x的距离是()A.B.C.1D.考点:椭圆的简单性质;点到直线的距离公式.专题:计算题.分析:根据题意,可得右焦点F(1,0),由点到直线的距离公式,计算可得答案.解答:解:根据题意,可得右焦点F(1,0),y=x可化为y﹣x=0,则d==,故选B.点评:本题考查椭圆的性质以及点到直线的距离的计算,注意公式的准确记忆.5.以两条坐标轴为对称轴的椭圆过点P(,﹣4)和Q(﹣,3),则此椭圆的方程是()A.+y2=1 B.x2+=1C.+y2=1或x2+=1D.以上均不对考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:设经过两点P(,﹣4)和Q(﹣,3),的椭圆标准方程为mx2+ny2=1(m>0,n >0,m≠n),利用待定系数法能求出椭圆方程.解答:解:设经过两点P(,﹣4)和Q(﹣,3),的椭圆标准方程为mx2+ny2=1(m>0,n>0,m≠n),代入A、B得,,解得m=1,n=,∴所求椭圆方程为x2+=1.故选:B.点评:本题考查椭圆标准方程的求法,是中档题,解题时要认真审题,注意椭圆简单性质的合理运用.6.已知P为椭圆+=1上的点,F1、F2为其两焦点,则使∠F1PF2=90°的点P有()A.4个B.2个C.1个D.0个考点:椭圆的简单性质.专题:直线与圆;圆锥曲线的定义、性质与方程.分析:根据椭圆的标准方程,得出a、b、c的值,由∠F1PF2=90°得出点P在以F1F2为直径的圆(除F1、F2),且r<b,得出圆在椭圆内,点P不存在.解答:解:∵椭圆+=1中,a=4,b=2,∴c==2;∴焦点F1(﹣2,0),F2(2,0);又∵∠F1PF2=90°,∴点P在以F1F2为直径的圆x2+y2=4上(除F1、F2),又∵r=2<2=b,∴圆被椭圆内含,点P不存在.点评:本题考查了椭圆的标准方程与圆的标准方程的应用问题,解题时应灵活利用∠F1PF2=90°,是基础题.7.椭圆4x2+9y2=1的焦点坐标是()A.(±,0)B.(0,±)C.(±,0)D.(±,0)考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:把椭圆方程化为标准方程,再利用c=即可得出.解答:解:椭圆4x2+9y2=1化为,∴a2=,b2=,∴c==∴椭圆的焦点坐标为(±,0).故选:C.点评:熟练掌握椭圆的标准方程及其性质是解题的关键.8.若椭圆2kx2+ky2=1的一个焦点坐标是(0,4),则实数k的值为()A.B.﹣C.D.﹣考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由椭圆的焦点坐标为(0,4)可得k>0,化椭圆方程为标准式,求出c,再由c=4得答案.解答:解:由2kx2+ky2=1,得,∵椭圆2kx2+ky2=1的一个焦点坐标是(0,4),∴,,则,.∴,解得.故选:C.点评:本题考查了椭圆的简单几何性质,考查了椭圆的标准方程,是基础题.9.已知椭圆上的一点P到椭圆一个焦点的距离为3,则P到另一焦点距离为()A.9B.7C.5D.3考点:椭圆的简单性质;椭圆的定义.专题:综合题.分析:由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为3,求出P到另一焦点的距离即可.解答:解:由椭圆,得a=5,则2a=10,且点P到椭圆一焦点的距离为3,由定义得点P到另一焦点的距离为2a﹣3=10﹣3=7.故选B点评:此题考查学生掌握椭圆的定义及简单的性质,是一道中档题.二.填空题(共6小题)10.(2009•湖北模拟)如图Rt△ABC中,AB=AC=1,以点C为一个焦点作一个椭圆,使这个椭圆的另一个焦点在AB边上,且这个椭圆过A、B两点,则这个椭圆的焦距长为.考点:椭圆的简单性质.专题:计算题.分析:设另一焦点为D,则可再Rt△ABC中,根据勾股定理求得BC,进而根据椭圆的定义知AC+AB+BC=4a求得a.再利用AC+AD=2a求得AD最后在Rt△ACD中根据勾股定理求得CD,得到答案.解答:解析:设另一焦点为D,∵Rt△ABC中,AB=AC=1,∴BC=∵AC+AD=2a,AC+AB+BC=1+1+=4a,∴a=又∵AC=1,∴AD=.在Rt△ACD中焦距CD==.故答案为:.点评:本题主要考查了椭圆的简单性质和解三角形的应用.要理解好椭圆的定义和椭圆中短轴,长轴和焦距的关系.11.若P是椭圆+=1上任意一点,F1、F2是焦点,则∠F1PF2的最大值为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先根据椭圆方程求得a和b的大小,进而利用椭圆的基本性质,确定最大角的位置,求出∠F1PF2的最大值.解答:解:根据椭圆的方程可知:+=1,∴a=2,b=,c=1,由椭圆的对称性可知,∠F1PF2的最大时,P在短轴端点,此时△F1PF2是正三角形,∴∠F1PF2的最大值为.故答案为:.点评:本题主要考查了椭圆的应用.当P点在短轴的端点时∠F1PF2值最大,这个结论可以记住它.在做选择题和填空题的时候直接拿来解决这一类的问题.12.F1、F2是椭圆+=1的两个焦点,P是椭圆上一点,则|PF1|•|PF2|有最大值为16.考点:椭圆的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:运用椭圆的定义,可得|PF1|+|PF2|=2a=8,再由基本不等式,即可求得|PF1|•|PF2|的最大值.解答:解:椭圆+=1的a=4,则|PF1|+|PF2|=2a=8,则|PF1|•|PF2|≤()2=16,当且仅当|PF1|=|PF2|=4,则|PF1|•|PF2|有最大值,且为16.故答案为:大,16点评:本题考查椭圆的定义和性质,考查基本不等式的运用:求最值,考查运算能力,属于基础题.13.经过两点P1(),P2(0,)的椭圆的标准方程=1.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n),把两点P1(),P2(0,)代入,能求出结果.解答:解L:设椭圆方程为mx2+ny2=1(m>0,n>0,m≠n)把两点P1(),P2(0,)代入,得:,解得m=5,n=4,∴椭圆方程为5x2+4y2=1,即=1.故答案为:=1.点评:本题考查椭圆的标准方程的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.14.已知焦距为8,离心率为0.8,则椭圆的标准方程为,或.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:由椭圆的焦距是8,离心率0.8,先求出a=5,c=4,b,由此能求出椭圆的标准方程.解答:解:∵椭圆的焦距是8,离心率0.6,∴,解得a=5,c=4,b2=25﹣16=9,∴椭圆的标准方程为,或.故答案为:,或.点评:本题考查椭圆的标准方程的求法,是基础题,解题时要避免丢解.15.点P在椭圆+=1上,F1,F2是椭圆的焦点,若PF1⊥PF2,则点P的坐标是(3,4),(3,﹣4),(﹣3,4),(﹣3,﹣4).考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由椭圆方程求出椭圆的焦点坐标,根据PF1⊥PF2得=0,与椭圆方程联立解得即可.解答:解:由椭圆+=1,得F1(﹣5,0),F2(5,0)设P(x,y),=0,①即(x+5)(x﹣5)+y2=0因为P在椭圆上,所以+=1,②两式联立可得x=±3,∴P(3,4),P(3,﹣4),P(﹣3,4),P(﹣3,﹣4)故答案为:P(3,4),P(3,﹣4),P(﹣3,4),P(﹣3,﹣4).点评:本题主要考查了椭圆的几何性质,向量的应用.三.解答题(共5小题)16.已知椭圆的中心在坐标原点,焦点在x轴上,离心率为,且过点(1,2),求椭圆的标准方程.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:先假设椭圆的方程,再利用的椭圆C的离心率为,且过点(1,2),即可求得椭圆C的方程.解答:解:设椭圆方程为,椭圆的半焦距为c,∵椭圆C的离心率为,∴,∴,①∵椭圆过点(1,2),∴②由①②解得:b2=,a2=49∴椭圆C的方程为.点评:本题重点考查椭圆的标准方程,考查椭圆的性质,解题的关键是待定系数法.17.已知中心在原点,长轴在x轴上的椭圆的两焦点间的距离为,若椭圆被直线x+y+1=0截得的弦的中点的横坐标为﹣,求椭圆的方程.考点:椭圆的标准方程.分析:首先,设椭圆的标准方程为:=1 (a>b>0),然后,设出直线与椭圆的两个交点坐标,然后,将这两个交点坐标代入椭圆方程,两个方程相减,得到关于a,b 的一个方程,再结合给定的a,c的关系式,求解即可.解答:解:设椭圆的标准方程为:=1(a>b>0),∵椭圆被直线x+y+1=0截得的弦的中点的横坐标是﹣,∴弦的中点的纵坐标是﹣,设椭圆与直线x+y+1=0的两个交点为P(x1,y1),Q(x2,y2).则有+=1 ①+=1 ②①﹣②,化简得+=0 ③x1+x2=2×(﹣)=﹣,y1+y2=2×()=﹣,且=﹣1,∴由③得a2=2b2,又由题意2c=,有c=,则可求得c2==b2,a2=,∴椭圆的标准方程为:+=1.点评:本题重点考查了椭圆的几何性质、标准方程、直线与椭圆的位置关系等知识,属于中档题,涉及到弦的中点问题,处理思路是“设而不求”的思想.18.已知椭圆的焦点在x轴上,离心率为,且过点P(1,),求该椭圆的方程.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:设椭圆方程为(a>b>0),由已知得,由此能求出椭圆方程.解答:解:设椭圆方程为(a>b>0),由已知得,解得,b2=1,∴椭圆方程为.点评:本题考查椭圆方程的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.19.求适合下列条件的椭圆的标准方程:(1)焦点在x轴上,a=6,e=;(2)焦点在y轴上,c=3,e=.考点:椭圆的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:(1)由离心率公式,求得c,再由a,b,c的关系,求得b,即可得到椭圆方程;(2)由离心率公式,求得a,再由a,b,c的关系,求得b,即可得到椭圆方程.解答:解:(1)a=6,e=,即,解得c=2,b2=a2﹣c2=32,则椭圆的标准方程为:=1;(2)c=3,e=,即,解得,a=5,b2=a2﹣c2=25﹣9=16.则椭圆的标准方程为:=1.点评:本题考查椭圆的性质和方程,考查运算能力,属于基础题.20.已知椭圆两焦点的坐标分别是(﹣2,0),(2,0),并且经过点(2,),求椭圆方程.考点:椭圆的标准方程. 专题:圆锥曲线的定义、性质与方程. 分析:直接根据焦点的坐标设出椭圆的方程,再根据点的坐标求出结果. 解答: 解:椭圆两焦点的坐标分别是(﹣2,0),(2,0),所以:设椭圆的方程为:由于:椭圆经过点(2,), 则:, 且a 2=b 2+4, 则:,解得:.椭圆方程为:.点评:本题考查的知识要点:椭圆方程的求法,属于基础题型.21. 以BC 边为x 轴,BC 线段的中垂线为y 轴建立直角坐标系,则A 点的轨迹是椭圆,其方程为:116y 25x 22=+。
北京九中高二(1)班周测试题2018、11、28 姓名 学号 成绩1.若椭圆)0(12222>>=+b a b y a x 的离心率为23,则双曲线12222=-by a x 的离心率___2.已知双曲线的两个焦点为)0,5(1-F ,)0,5(2F ,P 是此双曲线上的一点,且21PF PF ⊥,2||||21=∙PF PF ,则该双曲线的方程是_______________3.已知点A(-9,0),B(-1,0),动点P 满足|PA|=3|PB|,则P 点轨迹为( )A 、x 2+9y 2=9B 、9x 2+y 2=9C 、x 2+y 2=9D 、9x 2-y 2=94.设动圆P 过定点A (-3,0),并且在定圆B :64)3(22=+-y x 的内部与其内切,则动圆的圆心P 的轨迹方程为________________ 5.双曲线的虚轴长为4,离心率26=e ,F 1、F 2分别是它的左,右焦点,若过F 1的直线与双曲线的左支交于A 、B 两点,且|AB|是|AF 2|与|BF 2|的等差中项,则|AB|为( ) A .28 B .24 C .22 D .86.若直线l 过点(3,0),且l 与双曲线224936x y -=只有一个公共点,则这样的直线有( )A .1条B .2条C .3条D .4条7.直角坐标平面xoy 中,若定点A(1,2)与动点P(x,y)满足⋅=4。
则点P 的轨迹方程是__________________.8.以3x-4y-2=0, 3x+4y-10=0为渐近线,以5y+4=0为一条准线的双曲线方程为________. 9.把椭圆19y 25x 22=+绕它的左焦点顺时针方向旋转2π,则所得新椭圆的准线方程是_____________10.已知A 为双曲线x 2-4y 2=1的左顶点,点B ,C 为双曲线的一条渐近线与抛物线y 2=4x 的交点,则△ABC 的面积为( ) A 、4 B 、8 C 、128 D 、13611.双曲22221x y a b-=的左焦点为F 1,顶点为A 1,A 2,P 是双曲线上任意一点,则分别以线段PF 1、A 1A 2为直径的两圆位置关系为( )A .相切B .相交C .相离D .以上情况都有可能12.12F F 、是双曲线22221(0)4x y a a a-=>的两个焦点,P 为双曲线上一点,01290FPF ∠=,且12FPF ∆的面积为1,则a 的值是13.若圆锥曲线my x 224+=1的一条准线恰好为圆x 2+y 2+6x-7=0的一条切线,则满足题意的m 的值共有_________个.14. 设F 1、F 2为椭圆两焦点,点P 是以F 1,F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5∠PF 2F 1,则椭圆离心率为( ) A.32 B.36 C.22 D.2315.已知中心在原点的双曲线C 的右焦点为(2,0))。
高二数学椭圆双曲线专项练习含答案YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】高二数学椭圆双曲线专项练习选择题:1、双曲线x 2-ay 2=1的焦点坐标是( ) A .(a +1, 0) , (-a +1, 0) B .(a -1, 0), (-a -1, 0)C .(-a a 1+, 0),(a a 1+, 0) D .(-a a 1-, 0), (aa 1-, 0) 2、设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则该双曲线的离心率为( )A .5BCD .5/43.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF = ( ) A .3/2B .3C .4 了D .7/24.过椭圆左焦点F 且倾斜角为60°的直线交椭圆于B A ,两点,若FB FA 2=,则椭圆的离心率等于 ( ) A32 B 22 C 21 D 32 5.已知椭圆222253n y m x +和双曲线222232ny m x -=1有公共的焦点,那么双曲线的渐近线方程是( )A .x =±y 215 B .y =±x 215 C .x =± y 43 D .y =±x 436.设F 1和F 2为双曲线-42x y 2=1的两个焦点,点P 在双曲线上,且满足∠F 1PF 2=90°,则△F 1PF 2的面积是( ) A .1 B .25C .2D .5 7.已知F 1、F 2是两个定点,点P 是以F 1和F 2为公共焦点的椭圆和双曲线的一个交点,并且PF 1⊥PF 2,e 1和e 2分别是椭圆和双曲线的离心率,则有( ) A .221≥e eB .42221≥+e e C .2221≥+e eD .2112221=+e e 8.已知方程1||2-m x +my -22=1表示焦点在y 轴上的椭圆,则m 的取值范围是( )A .m<2B .1<m<2C .m<-1或1<m<2D .m<-1或1<m<23 9.已知双曲线22a x -22b y =1和椭圆22mx +22b y =1(a >0,m>b >0)的离心率互为倒数,那么以a 、b 、m为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形10.椭圆13422=+y x 上有n 个不同的点: P 1, P 2, …, P n , 椭圆的右焦点为F. 数列{|P n F|}是公差大于1001的等差数列, 则n 的最大值是( ) A .198 B .199 C .200 D .201 一、 填空题: 11.对于曲线C ∶1422-+-k y k x =1,给出下面四个命题:①由线C 不可能表示椭圆;②当1<k <4时,曲线C 表示椭圆;③若曲线C 表示双曲线,则k <1或k >4;④若曲线C 表示焦点在x 轴上的椭圆,则1<k <25其中所有正确命题的序号为_____________12.设圆过双曲线16922y x -=1的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心距离__13.双曲线16922y x -=1的两焦点为F 1、F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到x 轴的距离____14.若A (1,1),又F 1是5x 2+9y 2=45椭圆的左焦点,点P 是椭圆的动点,则|PA|+|P F 1|的最小值_______15、已知B(-5,0),C(5,0)是△ABC 的两个顶点,且sinB-sinC=53sinA,则顶点A 的轨迹方程是二、 解答题:16、设椭圆方程为422y x +=1,求点M (0,1)的直线l 交椭圆于点A 、B ,O 为坐标原点,点P 满足→→→+=)(21OB OA OP ,当l 绕点M 旋转时,求动点P 的轨迹方程.17、已知F 1、F 2为双曲线12222=-by a x (a >0,b >0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30°.求双曲线的渐近线方程.18、已知椭圆)0(12222>>=+b a by a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,向量AB 与OM 是共线向量.(1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;图19、已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3(。
高二数学_椭圆、双曲线测试题1(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2高二数学 椭圆、双曲线测试题班级__________ 姓名___________ 学号___________ 一、填空题(每小题5分,共30分) 1、双曲线22221124x y m m-=+-的焦距是 。
2、双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是 。
3、已知椭圆22189x y a +=+的离心率为12,则a = 。
4、双曲线2233mx my -=的一个焦点为()0,2,则m 的值是 。
5、平面内有两个顶点21,F F 和一动点M,设命题甲:21MF MF -是定值;命题乙:点M 的轨迹是双曲线。
则命题甲是命题乙的________________条件。
6、若方程11422=-+-t y t x 所表示的曲线为C ,给出下列四个命题:①若C 为椭圆,则1<t<4; ②若C 为双曲线,则t>4或t<1; ③曲线C 不可能是圆; ④若C 表是椭圆,且长轴在x 轴上, 则231<<t .其中真命题的序号为 (把所有正确命题的序号都填上)。
二、解答题(7大题,共70分)7、已知12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A ,B 两点,若⊿2ABF 是正三角形,求这个椭圆的离心率。
38、中心在原点,焦点在x 轴上的一个椭圆与一双曲线有共同的焦点F 1,F 2,且13221=F F ,椭圆的长半轴与双曲线的半实轴之差为4,离心率之比为3:7,求这两条曲线的方9、已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设点11,2A ⎛⎫ ⎪⎝⎭. (1)求该椭圆的标准方程; (2)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程;10、设12F F 、为椭圆221625400x y +=的焦点,P 为椭圆上的一点,且012120F PF ∠=,求12PF F ∆的面积。
高二数学椭圆双曲线练习题1. 已知椭圆的焦点F₁、F₂分别为(-2,0)和(2,0),离心率为3/4。
求椭圆的方程。
解答:设椭圆的长轴为2a,短轴为2b,则焦距为2ae。
根据离心率的定义可知 3/4 = ae/a,化简得 e = 3/4。
椭圆的方程为:(x + 2)² / a² + y² / b² = 12. 求椭圆 9x² + 25y² - 90x + 450y + 729 = 0 的标准方程,并求出椭圆的离心率和焦距。
解答:将方程展开得:9(x - 5)² + 25(y + 9)² = 144标准方程为:(x - 5)² / 16 + (y + 9)² / 9 = 1由方程可知,a = 4,b = 3。
因此,离心率e = √(1 - b²/a²) = √(1 - 9/16) = √(7/16) = √7/4。
焦距f = √(a² - b²) = √(16 - 9) = √7。
3. 求椭圆 4x² + 25y² + 8x - 150y - 44 = 0 的标准方程,并求出椭圆的离心率和焦距。
解答:将方程展开得:4(x + 1)² + 25(y - 3)² = 400标准方程为:(x + 1)² / 100 + (y - 3)² / 16 = 1由方程可知,a = 10,b = 4。
因此,离心率e = √(1 - b²/a²) = √(1 - 16/100) = √(84/100) = √21/10。
焦距f = √(a² - b²) = √(100 - 16) = √84 = 2√21。
4. 求双曲线 25x² - 9y² + 50x - 18y = 9 的标准方程,并判断其所属类型。
高二数学圆锥曲线椭圆测试题带答案一、选择题(每小题5分,共12小题60分)1、在平面直角坐标xoy 中,椭圆C 的中心为原点,焦点1F ,2F 在x 轴上,离心率为22,过1F 的直线l交C 于A ,B 两点,且2ABF ∆的周长为16,那么C 的方程为()A.181622=+y x B.12422=+y x C. 1182422=+y x D. 191622=+y x 2、已知椭圆C :)0(12222>>=+b a b y a x 的左右焦点为1F ,2F ,离心率为33,过2F 的直线l 交C 与A ,B 两点,若B AF 1∆的周长为34,则C 的方程为( )A.12322=+y x B.1322=+y xC.181222=+y x D.141222=+y x 3、曲线192522=+y x 与曲线)9(192522<=-+-k ky k x 的 ( ) A.长轴长相等B.短轴长相等C.焦距相等D.离心率相等4、图,1F ,2F 是椭圆1C :1422=+y x 与双曲线2C 的公共焦点,A ,B 分别是1C ,2C 在第二、四象限的公共点,若四边形21BF AF 为矩形,则2C 的离心率是( )A.2B.3C.23D.265、已知椭圆110222=-+-m y m x 的长轴在x 轴上,焦距为4,则m 等于( ) A.8B.7C.6D.56、已知()2,4是直线l 被椭圆193622=+y x 所截得的线段的中点,则直线l 的方程是( ) A.02=-y xB.042=-+y xC.0432=++y xD.082=-+y x7、设1F ,2F 分别是椭圆)0(12222>>=+b a b y a x 的左、右焦点,与直线b y =相切的⊙2F 交椭圆于点E ,E 恰好是直线1EF 与⊙2F 的切点,则椭圆的离心率为( )A.23B .33 C.35D.458、已知椭圆191622=+y x 及以下3个函数:①x x f =)(;②x x f sin )(=;③x x x f sin )(=,其中函数图像能等分该椭圆面积的函数个数有( ) A.0个 B.1个C.2个D.3个9、椭圆C :)0(12222>>=+b a by a x 的左、右焦点为1F ,2F ,过1F 作直线l 交C 于A ,B 两点,若2ABF ∆是等腰直角三角形,且︒=∠902B AF ,则椭圆C 的离心率为( ) B.221-C.12-D.2210、设椭圆C :)0(12222>>=+b a b y a x 的左、右焦点分别为1F ,2F ,P 是C 上的点,212F F PF ⊥,︒=∠3021F PF ,则C 的离心率为( ) A.63B.31C.21D.3311、椭圆)0(12222>>=+b a by a x 的一个焦点为1F ,若椭圆上存在一个点P ,满足以椭圆短轴为直径的圆与线段1PF 相切于该线段的中点,则椭圆的离心率为( )A.22 B.32C.95D.3512、已知1A ,2A 分别为椭圆C :)0(12222>>=+b a by a x 的左右顶点,椭圆C 上异于1A ,2A 的点P 恒满足9421-=⋅PA PA k k ,则椭圆C 的离心率为( )A.94B.32C.95D.35二、填空题(每小题5分,共4小题20分)13、已知1F ,2F 是椭圆11222=+++k y k x 的左、右焦点,过1F 的直线交椭圆于A ,B 两点,若2ABF ∆的周长为8,则k 的值为__________ 14、短轴长为52,离心率32=e 的椭圆两焦点为1F ,2F ,过1F 作直线交椭圆于A ,B 两点,则2ABF ∆的周长为__________15、直线01=-+y x 交椭圆122=+ny mx 于A ,B 两点,过原点与线段,AB 中点直线的斜率为22,则=n m__________16、在平面直角坐标系xOy 中,经过点()2,0且斜率为的直线l 与椭圆1222=+y x 有两个不同的交点P 和Q .则k 的取值范围为__________.三、解答题(每小题10分,共2小题20分) 17、已知椭圆1422=+y x 与直线l :0=+-λy x 相切.(1)求λ的值;(2)设直线:m 054=+-y x ,求椭圆上的点到直线m 的最短距离.18、已知椭圆4422=+y x 与斜率为1的直线l 交椭圆于A ,B 两点.(1)求弦AB 长的最大值;(2)求ABO ∆面积的最大值及此时直线l 的方程(O 为坐标原点)高二数学椭圆测试题答案解析第4题答案D第4题解析解答:第5题答案A第6题答案D第6题解析第7题答案C第7题解析第8题答案C第8题解析第9题答案C第10题答案D第10题解析第11题答案D第11题解析第12题答案D第12题解析第13题答案2第13题解析第14题答案12第14题解析第15题答案22第17题答案第18题答案。
北京九中高二(1)班椭圆与双曲线部分测验
姓名 学号 成绩
1.如果双曲线136
642
2=-y x 上一点P 到它的左焦点的距离是8,那么点P 到它的右准线的距离是( )
A .325
B .645
C .965
D .1285
2.双曲线122
22=-a
y b x 的两条渐近线互相垂直,那么该双曲线的离心率是( ) A.2 B.3 C.2 D.2
3 3.椭圆13
122
2=+y x 的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的( )
A.7倍
B.5倍
C.4倍
D.3倍
4.已知双曲线中心在原点且一个焦点为F 1(5-,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则双曲线的方程是( )
A .1422=-y x
B .1422=-y x
C .13222=-y x
D .12
32
2=-y x 5.若椭圆)0(12
2
>>=+b a b y a x 和双曲线)0,(12
2
>=-n m n y m x 有相同的焦点F 1、F 2,P 是两曲线的交点,则21PF PF ⋅的值是( )
A .n b -
B .
m a - C . n b - D . m a - 6.方程22)1()1(-+-=+y x y x 所表示的曲线是( )
A .双曲线
B .直线
C .椭圆
D .不能确定
7.如果椭圆19
362
2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y B 042=-+y x C 0123=-+y x D 082=-+y
8.椭圆122222=+n y m x 与双曲线1222
22=-n
y m x 有公共焦点,则椭圆的离心率是( )
A B C D
9.共轭双曲线的离心率分别为e 1和e 2,则e 1和e 2关系为
A .e 1=e 2
B .e 1 e 2=1
C .11121=+e e
D .11122
21=+e e 10.过双曲线02222=--y x 的右焦点作直线l 交双曲线于A 、B 两点.若4||=AB ,则这样的直线存在( )
A .0条
B .1条
C .2条
D .3条
11.已知双曲线中心在原点,且一个焦点为F(0,7)直线y=x -1与其相交于M 、N 两点,MN 中点的横坐标为3
2-,则此双曲线方程是( ) A 、14322=-y x B 、18422=-y x C 、12522=-y x D 、15
22
2=-y x 12.焦点为F 1(-2,0)和F 2(6,0),离心率为2的双曲线的方程是_________.
13.与双曲线14
y 16x 2
2=-有公共焦点,且过点(23,2)的双曲线的方程为_______________________
14.已知双曲线)2(122
22>=-a y a
x 的两条渐近线的夹角为3π,则双曲线的离心率为___________
15.设椭圆122
22=+b
y a x (a >b >0)得右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦长等于点F 1到l 1的距离,则椭圆的离心率为______________
16.如图,F 1,F 2分别为椭圆12222=+b
y a x 的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2
的值是 .
17.已知双曲线116
92
2=-y x 的右焦点为F ,定点A (6,2),点P 在双曲线上移动,要使PF PA 53+有最小值,则P 点的坐标是______________
18.双曲线x
y 1=的焦点坐标为_____________和____________ 参考答案:
1.C 2.C 3.A 4.B 5.D 6.A
7.D 8.D 9.D 10.D 11.D
12.1124
)2(22=+-y x 13.18122
2=-y x 14.2 15.21 16.32 17.⎪⎪⎭⎫ ⎝⎛2,253 18.()2,2,()2,2--。