油田开发后期剩余油潜力评价方法研究
- 格式:doc
- 大小:16.00 KB
- 文档页数:4
油藏剩余油分布模式及挖潜对策油田在开发过程中,随着开采和运输的进行,后期油田能源减少现象逐渐发生,为了提高油田开发利用效率,采取挖掘防效率措施是必然的,在具体实施过程中,粗暴地打水压压裂、堵水、酸化等技术,提高油井的产量,降低综合含水率,通过科学合理的方法创造更大的经济效益,帮助油田实现长期稳定的发展。
本文基于油藏剩余油分布模式及挖潜对策展开论述。
标签:油藏剩余油;分布模式;挖潜对策引言随着我国石油市场的快速发展,国有企业和民营企业已经进入了国外石油市场。
国内许多油田有单井日产量减少、水分增加、原油单井产量明显减少的趋势,但仍有水库内50%以上的可恢复储量,合理有效的剩余石油开采是各油田的工作重点。
1剩余油分布模式根据对韩·达·马里先生(1995年)和刘·凯·泰先生(2000年)水库剩余油形成和分布的研究,总结了总剩余油在水库内分布的情况。
油田堵水期间剩下的油主要用以下几种方法留在水库里[2-3]:砂体边缘区域:水库砂体都是不规则的大砂体,如有边缘且未被屏蔽分割的采石区域形成的油区。
浸水残留区域:由于水池的异质性,水库“用舌头”泛滥,形成残留区域,或有不这样的区域,这种区域一般是水性下降或表外膜。
井网缺失区:水库砂体井网分布控制有限,因断层而难以控制井网的部分形成了停滞区。
因为注射采矿系统的不完全或井之间的分流线部分也形成了停滞区域。
结构死角带:储层结构由断层和微结构起伏形成的高部位和叠层储层的上部砂体形成停滞区。
其他停滞地区:由于杨云律油层的上层物理特性大不相同,上层仍有原油。
层内及层间低渗透分离子宁的存在导致注入水未传播区。
2剩余油分布的主要特征剩余石油的分布以平面形式主要以窄带或孤岛形式分布,分布区域主要位于断层角区、大断层区、岩性变化区等。
另外,剩余油分布在低渗透层,低渗透层物理特性不好,给开发带来了困难。
剩余油分布特征一般可分为连续片状剩余油和分散剩余油两类。
常用的剩余油分布研究方法主要包括如下六类:
1、应用检查井密闭取心资料评价油层水淹状况技术;
2、常规测井水淹层评价技术;
3、生产测井法研究剩余油技术;
4、动态分析法研究剩余油技术;
即利用新井(老区内所钻的调整井或更新井)投产和老井卡堵水资料、含油带的宽窄、储层展布资料综合研究剩余油的技术。
5、油藏数值模拟技术;
通过流体力学方程应用计算机及计算数学的求解,结合油藏地质学、油藏工程学、热力学、化学来重现油田开发的全部实际过程,达到搞清油藏剩余油分布,进而通过由不同措施组成的多种方案进行优化来解决油藏有效挖掘剩余油的实际问题。
6、模糊综合评判和神经网络模式识别技术;
在对影响剩余油分布的各种地质及开发因素分析的基础上,通过对油田中高含水期及高含水期后期检查井各类油层水淹状况的解剖,分析研究了各类油层水淹程度与其各种影响因素(注采关系、砂体类型、连通状况及注水状况等)的关系,并利用模糊综合评判方法和神经网络模式识别技术,实现小层任意井点处水淹程度的自动判别,进而确定各小层的剩余油平面分布。
⑴、模糊综合评判法及神经网络模式识别法实现逐层逐井水淹程度的自动判别,特别是那些缺少监测资料的
井点;为高含水后期剩余油研究提供新思路。
⑵、由于剩余油分布的多样化及复杂性,目前剩余油描述的精度及量化程度还有待进一步提高。
⑶、神经网络模式识别法不受样品数限制,但样品越具有代表性,判别的精度越高。
⑷、由于储层物性及开发条件迥异,判别油层水淹程度时,若资料充分应建立各自隶属关系图版及学习模型,
利于保证判别精度。
检查井资料不足时可用单层试油或测试资料。
油田高含水期剩余油精准挖潜技术分析我国大部分油田均是陆相沉积型油田,而且油田的平面、储层内和储层间的渗透率改变情况均比较大。
由于油田主要是采取注水方式进行开发,随着开发工作的不断推进,油田的开采也会逐步进入高含水期,而高含水期剩余油的分布也会变得越来越复杂,这样便会增加挖潜油田的难度。
为此,本文首先对油田高含水期剩余油的分布特征和影响因素进行了分析,接着对其挖潜对策进行了探讨,以期为提高油田的开采潜力及效率提供一些参考依据。
标签:高含水;剩余油;精准挖潜;技术分析1.油田高含水期剩余油分布特征及影响因素1.1油田高含水期剩余油分布特征(1)片状剩余油。
片状剩余油是指在注水的过程中,由于水没有驱入,造成剩余油残留于模型的边角位置,进而产生的剩余油。
片状剩余油主要包括两种,一是簇状剩余油;二是连片剩余油,所谓的簇状剩余油指的是四周环绕着较大孔道的小喉道中的剩余油,事实上簇状剩余油属于水淹区内的小范围剩余油块,是注水绕流于空隙中而产生的。
(2)分散型剩余油。
所谓的分散型剩余油,指孔隙占用较少的剩余油,其主要包括两种:一是孤岛状剩余油;二是柱状剩余油。
其中,孤岛状剩余油属于一种亲水孔隙结构的石油,其主要是通过水驱油而逐步形成的,注水顺着亲水岩壁表面的水膜进入,在没有彻底驱完之前,注水已蔓延至喉道,阻止了油的流动,随着孔隙中油滴的不断增多、孔隙不断增大,从而逐步形成了孤岛状剩余油。
而柱状剩余油主要分布在喉道位置,且喉道大部分是由孔隙相连而形成的,且较为细长。
1.2剩余油分布影响因素(1)地质因素。
砂岩的空间分布、碎屑岩的沉积韵律特点、储层的非均质性、沉积层理种类、薄夹层分布以及沉积微相展布等地质因素均取决于沉积条件。
其中,小断层、沉积微上以及储层的非均质性等是影响剩余油的主要原因。
同时,随着构造运动的不断进行,其所形成的裂缝、断层及不整合面也会在一定程度上影响油水的运动,进而对剩余油的分布产生影响。
①断层构造与油层微构造给剩余油分布造成的影响。
油田开发中后期剩余油挖潜方法摘要:目前我国多数油田都已进入开发后期,综合含水率为85%以上,一些老区块含水更是高达90%以上。
本文概括了目前国内外研究剩余油分布的几种常用的方法,为现场工作人员提供了理论帮助,并对剩余油分布的研究方向进行了探讨。
关键词:剩余油高含水挖潜方法前言目前我国绝大部分老油田都已经处于高含水期。
高含水期油田开发与调整的研究内容可以概括为一句话,即“认识剩余油,开采剩余油”,其难度比处于低、中含水期的油田要大得多。
重要难点之一就是确定剩余油分布及其饱和度变化规律,这是因为我国注水油田大多经历了几十年的开发与调整,地下油、气、水分布十分复杂,但这是一项必须解决的、有重大意义的问题。
一、国内外剩余油研究状况现在国内外对于剩余油的研究可分成3大项:宏观剩余油分布研究、微观剩余油分布研究和剩余油饱和度研究。
前两者是对剩余油分布的定性描述,而饱和度的研究是针对剩余油的定量表征。
1、剩余油宏观分布研究这一部分是在宏、大、小规模上研究剩余油的分布。
(1)驱油效率与波及系数的计算一般在油藏、油田、油区甚至在全国的范围内进行研究,求出驱油效率与波及系数的平均值,以提供剩余油的宏观分布特征,为挖潜方向的决策提供依据。
(2)三维地震方法在油田开发中主要有两方面的作用:①在高含水期油田或老油区中寻找有利的原油富集地区。
利用三维地震等综合解释技术进行精细油藏描述,改善了开发效果的例子不胜枚举;②监测油田开发过程。
(3)油藏数值模拟方法利用油藏数值模拟研究油层饱和度,可以计算整个油层中饱和度在空间上随时间的变化,并可预测未来饱和度的变化,因此有很大的实用价值。
这一方法主要用于两个方面:利用动态拟合的方法确定实际油藏中的含油饱和度分布,直接指导生产,这已在国内外油田开发中普遍使用;进行不同地质条件、不同驱动方式油层内饱和度分布的机理研究。
(4)动态分析方法动态分析是利用油田生产的各种数据和测试资料来研究剩余油分布,是一种直接而方便的方法。
280油藏开发后期,油田通常处于高含水阶段,此时剩余油分布比较分散,常常认为剩余油分布规律性不强,而实际上是存在一定规律的。
A油田已处于高含水阶段,剩余油表现出总体分散,局部集中的特征,开展剩余油研究,对油田下步挖潜有重要作用。
1 A油田地质特征A油田主要为滨浅湖滩坝和三角洲前缘沉积。
总体表现为下部沉积时水体较深,物源充沛,呈现“砂包泥”的特征,为三角洲前缘沉积。
主要微相类型为水下分流河道、河口坝、远砂坝、前缘席状砂和水下分流间湾,其中水下分流河道砂和河口坝砂构成了最主要的储集体,砂层厚,储层物性好,砂体呈NW-SE向展布。
油层呈“油帽子”发育在顶部,油藏模式表现为块状底水油藏。
油藏储层物性主要受沉积微相控制,物性的空间展布规律与沉积相带的分布具有较好的相关性。
2 剩余油分布模式2.1 平面剩余油由于平面剩余油的分布主要受微构造、储层隔夹层、沉积相带以及开发方式、特征等影响,导致平面上呈现分布较分散、局部较集中的特征,一般在平面上主要分布在沉积相边缘相带区域、构造的上倾方向、砂体的尖灭线周围、井网较稀、控制较弱等区域。
2.1.1 边缘相带储层物性差砂体的展布规律对水侵方向有决定作用,储层物性对注水水线推进速度有重大影响。
一般情况下,水驱油时水线往物性好的区域优先推进(沿坝砂、水下分流河道砂等),而后往物性相对较差的其他部位扩展(滩砂、坝砂侧缘、水下分流河道砂边部等),因此,容易产生在低渗带边缘水驱程度偏低,剩余油集中分布。
2.1.2 平面相变导致死油区构造-岩性油藏在相变区容易形成剩余油富集。
但受渗流屏障和渗流差异的影响,该区域水线波及不到,为死油区,同时储层零散,物性较差,该区域的剩余油为“滞留型”剩余油,无法被动用。
2.1.3 构造上倾方向水淹程度低构造特征对油藏的控制作用明显,除控制油气生、运、聚、保等,也会对剩余油的分布、油藏水淹等产生影响。
剩余油主要分布在构造较高部位,特别是在水淹初期和中期更是如此。
断块油藏剩余油分布的地质研究尹洪凯摘㊀要:断块油藏的断裂系统复杂㊁含油层系多㊁油水关系复杂等地质特点决定了对其认识的逐步性㊂开发初期,由于油藏地质认识不完善,开发层系划分和开发井网部署可能存在一定的偏差,导致对储量的控制程度低或者漏失部分油层等,所以仍然有较大的剩余油潜力㊂因此即使到了开发后期,利用地质研究方法分析断块油藏剩余油分布仍是可行的㊂关键词:断块油藏;剩余油;地质一㊁引言断块油藏呈现出含油层系多,但断裂结构复杂的特点㊂为此,在断块油藏开发工作开展过程中,应做好油藏地质认知工作,即通过微构造分析等地质研究路径,全面掌控到断块油藏开发层系划分状况,就此掌控到开发层储量程度,规避储量控制作业较低等问题的凸显,诱发剩余油潜力浪费问题,达到最佳的油藏资源应用状态㊂二㊁油藏地质特征就当前的现状来看,油藏地质特征主要体现在以下几个方面㊂(一)构造复杂如从某油田554断块油藏分析作用发现,该断块油藏具备FI㊁FⅡ㊁FⅢ㊁YI四个砂层,另外FI具有16个沉积时间单元,2条二级断层㊁7条三级断层㊁4条边界断层㊂同时,断块油藏结构呈现环形,且以 龟背壳 形式存在着,因而在一定程度上加大了断块油藏地质研究难度㊂(二)非均质性严重即部分地区断块油藏深度可达到2530m,而油层厚度可达到9.1m,孔隙度在6% 30%,同时渗透率为14580ˑ10-3μm2左右,且非均质性严重,为此,在断块油藏剩余油分布状况探究过程中,应结合地质非均质性展开作业行为,提升整体地质开发效果㊂(三)储量分布分散如554断块油藏中具有若干个小块区域,各区域油量分布较少㊂三㊁断块油藏剩余油分布的地质研究方法(一)微构造分析法储层的微构造对注水开发过程中的油水运动起着非常重要的控制作用㊂大量的生产实践资料证明,进入开发后期,油层微构造对剩余油分布有很大的影响,主要表现为:①油层的倾斜和起伏形成的高差会引起油水重新分异,正向微构造多为剩余油富集区,负向微构造多为高含水区;②油层微构造影响注入水的驱油方向,正向微构造中的微高点和微断鼻均为向上驱油,剩余油富集,而负向微构造均以向下驱油为主,剩余油难以聚集㊂长期以来,油田开发使用的标准层构造图是选定某一标准层,以该标准层的顶面为准,多用20 50m间距等高线作图,不能完全代表油层构造,也不能反映构造的微小变化㊂在油田开发中后期,井点增多,井距变小,地质资料的大量增加为深入研究储层的微构造提供了物质基础㊂在单砂层精细划分对比基础上,直接以油层的顶底面为准,绘制微构造图,指导油田开发㊂例如,554断块地质研究工作开展过程中,即将20m作为构造图绘制参数,反映断块油藏单斜状况㊂而后将2m作为高先绘制间距,反馈油层微构造情况,继而通过对油层构造图的分析,确定注水水沿存有剩余油,最终展开开发工作㊂再如,某断块地质研究工作开展过程中,亦强调了对微构造分析方法的应用,同时研究人员在实际工作开展过程中为了达到最佳的分析㊁研究状态,结合动态资料,绘制了断层微构造图,就此掌控到该断层含水率为1.3%㊁含有面积0.1km2等参数信息,满足了地质研究工作开展需求㊂(二)㊀测井二次解释法由于断块油藏呈现出井段长且油层丰富特点,因而在此基础上,为了全面掌控到剩余油分布状况,要求相关工作人员在断块油藏地质研究工作开展过程中应注重运用测井二次解释法,即首先针对干层㊁含油水层等进行油层解释㊂其次,结合地质资料,对测井资料进行二次细化阐述,从而在二次解释作业中,分析潜力油层分布状况,提升剩余油资源利用率㊂例如,某断块在地质研究工作开展过程中,为了开发剩余油潜力,即引入了测井二次解释法,基于初期地质资料的基础上,针对斜43井测井资料进行二次解释,就此判断潜力层包含了130个区域,为断块油藏开采工作的开展提供了良好的资料支撑,且针对开发行为作出了正确引导㊂(三)成藏规律预测法在断块油藏地质研究工作开展过程中,成藏规律预测法的应用亦有助于实现剩余油分布特点的判断,为此,在研究作业中应注重从以下几个层面入手㊂一是在成藏规律预测法应用过程中应遵从油藏构造-岩性-沉积微相研究原则,确定成藏条件,从而针对指定断块油藏含油状况做出正确判断㊂例如,在油田断块油藏地质研究工作开展过程中,即通过成藏规律路径获知该处油藏分流河道呈现聚集特征,且结合成藏条件,对东营断块油藏采储量展开了预测,满足了剩余油资源开采需求㊂二是在成藏规律预测法应用过程中需利用成藏规律对新断层油藏剩余油分布状况进行预测,且从分流河道油层㊁单井出产量㊁含水率等角度出发,对地质勘探结果进行分析,达到最佳的剩余油分布研究状态,为当代地质研究工作的开展提供动态研究数据,提升整体剩余油资源利用率㊂断层分析法㊁微构造分析法㊁测井二次解释法㊁成藏规律预测法等地质研究方法丰富了剩余油分布研究的方法和手段㊂地质研究方法研究剩余油分布的基础是对油藏构造㊁储层分布等进行精细研究,同时结合动态生产资料分析以及油藏数值模拟等综合方法,可以进一步提高剩余油分布研究的准确性㊂断块油藏进入开发后期,地质研究方法是重要的研究剩余油分布的方法㊂四㊁结论综上可知,在断块油藏中存有若干个油藏层系,因而在基础上,为了开发剩余油资源,要求相关工作人员在实际工作开展过程中应做好剩余油分布判断工作,且从地质研究工作角度出发,应用成藏规律预测法㊁测井二次解释法㊁微构造分析法等地质研究方法,应对传统地质研究工作中呈现出的偏差等问题,达到精准剩余油分布判断状态,满足油藏开发作业需求,并就此提高断块油藏研究结果精准性㊂参考文献:[1]张戈,王端平,孙国,等.复杂断块油藏人工边水驱影响因素敏感性[J].油气地质与采收率,2015,22(2):103-106,111.作者简介:尹洪凯,曙光采油厂地质研究所㊂881。
油田开发后期剩余油潜力评价方法研究
作者:李延松姜晓峰高卫东矫云波
来源:《中国科技博览》2013年第28期
[摘要]针对特高含水期开发阶段,对剩余油潜力通常采用的采出程度等几项指标具有一定局限性的问题,提出通过与油藏数值模拟相结合,以模型的网格节点为基本统计分析对象,以储层渗流理论为基础,围绕能更具现实意义的剩余可动油描述,根据含油饱和度变化与采出程度的理论关系,建立网格节点的剩余可动油数值的求解方法;其次,针对相同含油饱和度是不同物性储层的流体含油率存在差别的情况,应用分流相理论确定网格节点流体含油率的求解办法,并将其与剩余可动油量相关联,量化描述储量潜力的品质;进一步应用数理统计学的基本方法,以每个沉积单元为分析对象,综合油层平面发育程度,以沉积单元方差值量化表征网格节点平面分布状况。
从而精细分析水驱剩余油潜力,更有利于指导特高含水期油田开发调整挖潜。
[关键词] 剩余油可动油分流相分布
中图分类号:TE7637.1 文献标识码:TE 文章编号:1009―914X(2013)28―0559―01
1引言
特高含水期开发阶段,油田开发调整需要对剩余油潜力的认识与评价落实到沉积单元的同时,还应进一步对剩余油最大可采出量、水淹状况以及分布的非均匀程度进行系统地量化表征,而通常采用的采出程度等几项指标以及常规的含油饱和度等描述无法满足要求,因此,可以通过与油藏数值模拟相结合,以模型的网格节点为基本统计分析对象,以储层渗流理论为基础,围绕剩余可动油就其规模、质量和分布描述,才能对储量潜力评价更具现实作用。
2 测算剩余可动油量数量,确定剩余油潜力规模
根据储层渗流理论,依据孔渗饱参数得到原生地质储量由于微观孔隙中的残余油无法采出,因此剩余地质储量在水驱条件下不能完全采出;依据水驱特征曲线法等测算得到的可采储量直接受井网部署等开发因素影响,当实施井网加密等开发调整措施时,可采储量会发生明显变化。
因此,剩余地质储量和剩余可采储量用于储量潜力规模的确定都有一定局限性。
通常,数值模拟软件都能给出不同时间的网格节点的储量场数据,但描述的储量为地质储量,因此不能直接应用。
按照油水两相条件下考虑,忽略油水体积压缩系数的差异后,剩余可动油量可由以下公式确定:
(1)
由于:
(2)
(3)
因此,(4)
式中:N为网格原始储量,m3;Nsk为网格剩余可动油量,m3;Nk为网格可动油量,
m3;Swc为束缚水饱和度,无量纲;Soc为残余油饱和度,无量纲;Sw为含水饱和度,无量纲;Sok为原始可动油饱和度,无量纲;
由上式可以看出,网格内的剩余可动油量与当前的含水(含油)饱和度有关,也与储层的束缚水饱和度和残余油饱和度有关,即受储层渗流特性影响。
由于不同油层的束缚水饱和度不同,相对于物性差的油层,物性好的油层在含水饱和度低于0.3时可动油已开始动用;各线的斜率也反映出,在开采过程中,含水饱和度下降相同值,物性好的油层可动油阶段采出程度低于物性差的油层;相同含水饱和度或含油饱和度时,不同物性条件储层的可动油采出程度是不同的,物性好的油层可动油阶段采出程度高;可动油全部采出时的,受残余油饱和度差异影响,物性好的油层含水饱和度低于物性差的油层;从可动油全部采出整个过程看,物性好的油层含水饱和度变化大于于物性差的油层。
有学者研究认为,对于化学驱可以进一步降低残余油饱和度,因此,可动油的比例按化学驱考虑能够进一步增加。
3 求解储层内各流体的分流相,描述剩余油潜力品质
特高含水期开发阶段,水驱注水已大范围波及,因此,针对补孔、布新井等挖潜措施,分析不同位置储量挖潜初期的产液含水。
根据莱弗里特提出的分流量的概念,结合达西定律,在忽略了毛管压力和重力影响时,流经储层某点的流束中,油的分流量(即产液的含油率)为:
(4)
式中:为油的分流相;为水的分流相;uo为油的粘度;uw为水的粘度;Kro为水的相对渗透率;Krw为水的相对渗透率;
由以上公式可以看出,对于储层中某一确定的位置,在随开采含油饱和度降低时,油的分流量不断降低;对于储层中物性条件不同的位置,由于油水两相各自的相对渗透率不同,在相同含油饱和度时,油的分流量也会不同。
油的分流量越高,储量潜力质量越好,初期挖潜效果越有保障。
4 量化沉积单元平面剩余油差异程度,表征潜力分布均匀状况
受储层发育等地质条件以及井网分布等开发因素影响,剩余油分布零散,沉积单元平面潜力的分布极不均匀,并且各沉积单元对比,潜力的分布不均匀程度也有所差别。
因此应用数理统计方法,以各沉积单元的油的分流相平均值等描述参数为目标值:
(5)
式中:S为沉积单元均方差,x为油的分流相平均值,n为节点统计数量;
各沉积单元均方差S越大,则含油率的平面分布越不均匀,在局部区域存在潜力;类似,也可采用该方法表征可动油丰度等其它参数的平面分布。
5认识与结论
1.相对于物性差的油层,物性好的油层可动油开始动用时在含水饱和度低;相同含水饱和度时,可动油采出程度水平高;含水饱和度下降相同值,可动油阶段采出程度低;可动油全部采出时的,含水饱和度低于物性差的油层;并且从可动油全部采出整个过程看,含水饱和度变化幅度大。
2.水的分流相初期均呈快速攀升,90%以后攀升速度趋缓,相同含水饱和度时,物性好的油层水的分流相值高于物性差的油层,随着含水饱和度及水的分流相值的上升,差值在缩小。
3.可动油采出程度与水的分流相关系略呈“半S”形,可动油采出程度相同时,物性好的油层水的分流相值高于物性差的油层,随着采出程度饱和度及水的分流相值的上升,差值在缩小。
4.实际评价表明,进一步对储量最大可采出量、水淹状况以及分布的非均匀程度进行系统地量化表征,对储量潜力评价具实际意义。
参考文献
[1] 金毓荪,巢华庆,赵世远等,[M]采油地质工程,北京:石油工业出版社,2003
[2] 彭大鹏,田广武,王家胜等,[M]应用概率统计,天津:天津大学出版社,1995。