2019中考数学 专题三 图表信息问题
- 格式:docx
- 大小:306.98 KB
- 文档页数:4
图表信息型问题例1.今年我省干旱灾情严重,甲地急需要抗旱用水 15 万吨,乙地13 万吨.现有 A、B 两水库各调出 14 万吨水增援甲、乙两地抗旱.从 A 地到甲地 50 千米,到乙地 30 千米;从 B 地到甲地 60 千米,到乙地 45 千米.⑴设从 A 水库调往甲地的水量为x 万吨,达成下表 :⑵请设计一个调运方案,使水的调运量尽可能小.(调运量= 调运水的重量×调运的距离,单位 : 万吨 ?千米)例2. 为了保护水资源,某市拟订一套节水的管理举措,此中对居民生活用水收费作以下规定 :(1)若某用户六月份用水量为 18 吨,求其应缴纳的水费;(2)记该户六月份用水量为 x 吨,缴纳水费 y 元,试列出 y 对于 x 的函数式;(3)若该用户六月份用水量为 40 吨,缴纳花费 y 元的取值范围为 70≤y≤90,试求 m的取值范围 .例 3. 某绿色无公害蔬菜基地有甲、乙两栽种户,他们栽种了A、B 两类蔬菜,两栽种户栽种的两类蔬菜的栽种面积与总收入以下表 :说明 : 不一样栽种户栽种的同类蔬菜每亩均匀收入相等.⑴求 A、B两类蔬菜每亩均匀收入各是多少元?⑵某栽种户准备租20 亩地用来栽种 A、B两类蔬菜,为了使总收入不低于 63000 元,且栽种A类蔬菜的面积多于栽种B类蔬菜的面积(两类蔬菜的栽种面积均为整数),求该栽种户全部租地方案 .例 4. 如图,已知抛物线 P:y=ax 2 +bx+c(a ≠ 0) 与 x 轴交于 A、B两点 ( 点 A 在 x 轴的正半轴上 ) ,与 y 轴交于点 C,矩形 DEFG的一条边 DE在线段 AB上,极点 F、G分别在线段 BC、AC上,抛物线P 上部分点的横坐标对应的纵坐标以下 :(1)求 A、B、C三点的坐标;(2)若点 D 的坐标为 (m,0) ,矩形 DEFG的面积为 S,求 S 与m的函数关系,并指出 m的取值范围;(3)当矩形 DEFG的面积 S 取最大值时,连结 DF并延伸至点M,使 FM=k·DF,若点 M不在抛物线 P 上,求 k 的取值范围 .。
第十七章图表信息与方案设计专题课标要求1. 能看懂图表中给出的信息,通过建立合适的数学模型来解决问题.2. 会通过计算、分析等方法进行筛选,从而确定符合实际问题的方法.1. 图表信息一、选择题1. (2019·潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,则y与x之间的函数关系的图象大致是()第1题A BC D2. (2019·广元) 如图,P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D的路径匀速运动到点D.设△PAD的面积为y,点P的运动时间为x,则y关于x的函数图象大致为()第2题A BC D3. (2019·陇南)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿A→B→C→D运动.设点P运动的路程为x,△AOP的面积为y,y与x 的函数关系的图象如图②所示,则边AD的长是()第3题A. 3B. 4C. 5D. 6二、填空题4. (2019·黄石)根据下面的统计图,回答问题:第4题该超市十月份的水果类销售额________十一月份的水果类销售额(填“>”“<”或“=”).5. (2019·怀化)探索与发现:如图所示为用分数(数字表示面积)砌成的“分数墙”,则整面“分数墙”的总面积是________.第5题6. (2019·苏州) “七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.如图①是由边长为10 cm的正方形薄板分为7块制作成的“七巧板”,如图②是用该“七巧板”拼成的一个“家”的图形,则该“七巧板”中的正方形(涂色部分)的边长为________cm(结果保留根号).第6题三、解答题7. (2019·嘉兴)在推进嘉兴市城乡生活垃圾分类的行动中,某社区对居民掌握垃圾分类知识的情况进行了测试.其中A,B小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理,得到部分信息:【信息一】A小区50名居民成绩的频数分布直方图如图所示(每一组含前一个边界值,不含后一个边界值):【信息二】【信息三】A,B小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)根据以上信息,回答下列问题:(1) 求A小区50名居民成绩的中位数;(2) 请估计A小区500名居民成绩能超过平均数的人数;(3) 请尽量从多个角度,选择合适的统计量分析A,B小区参加测试的居民掌握垃圾分类知识的情况.第7题8. (2019·威海)在画二次函数y=ax2+bx+c(a≠0)的图象时,甲写错了一次项的系数,列表如下:乙写错了常数项,列表如下:(1) 求原二次函数y=ax2+bx+c(a≠0)的解析式.(2) 对于二次函数y=ax2+bx+c(a≠0),当x取何值时,y的值随x的值的增大而增大?(3) 若关于x的方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围.9. (2019·毕节)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋的成本为10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如下表:已知y是x的一次函数.(1) 求y与x的函数解析式.(2) 假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?10. (2019·武汉)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件))的三组对应值如下表:注:周销售利润=周销售量×(售价-进价).(1) ①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是________元/件;当售价是________元/件时,周销售利润最大,最大利润是________元.(2) 由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1 400元,求m的值.11. (2019·青岛)问题提出:如图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2×2方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8(种)不同的放置方法.探究三:把图①放置在a ×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a ×2的方格纸中,共可以找到________个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a ×2的方格纸中,使它恰好盖住其中的三个小正方形,共有________种不同的放置方法.探究四:把图①放置在a ×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a ×3的方格纸中,共可以找到________个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a ×3的方格纸中,使它恰好盖住其中的三个小正方形,共有________种不同的放置方法.……问题解决:把图①放置在a ×b 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法(仿照前面的探究方法,写出解答过程,不需画图)?问题拓展:如图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a ,b ,c(a ≥2,b ≥2,c ≥2,且a ,b ,c 是正整数)的长方体,被分成了a ×b ×c 个棱长为1的小立方体.在图⑧的不同位置共可以找到________个图⑦这样的几何体.第11题12. (2019·镇江)【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图①中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图②所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A 在如图①所示的⊙O 上,现在利用这个工具尺在点A 处测得α为31°,在点A 所在子午线往北的另一个观测点B ,用同样的工具尺测得α为67°.PQ 是⊙O 的直径,PQ ⊥ON.(1) 求∠POB 的度数;(2) 已知OP =6 400 km ,求这两个观测点之间的距离,即⊙O 上AB ︵的长(π取3.1).第12题1. 图表信息一、 1. D 2. A 3. B 二、 4. > 5. n -1 6.522三、 7. (1) 由题意,得中位数为75+752=75(分) (2) 估计能超过平均数的人数为2450×500=240 (3) 答案不唯一,如① 从平均数看,A ,B 小区居民掌握垃圾分类知识情况的平均水平相同;② 从方差看,B 小区居民掌握垃圾分类知识的情况比A 小区稳定;③ 从中位数看,B 小区至少有一半的居民掌握垃圾分类知识的情况在平均水平之上8. (1) 由题意,知c =3,而乙将c 错写成了-1,则将x =-1,y =-2;x =1,y =2代入y =ax 2+bx -1中,得⎩⎪⎨⎪⎧-2=a -b -1,2=a +b -1,解得⎩⎪⎨⎪⎧a =1,b =2.∴ 原二次函数的解析式为y =x 2+2x +3 (2) 易知二次函数的图象的对称轴为x =-1,∴ 当x ≥-1时,y 的值随x 的值的增大而增大 (3) 由题意,知x 2+2x +(3-k)=0有两个不相等的实数根,则令Δ=22-4(3-k)>0,解得k >29. (1) 由题意,可设y =kx +b ,则⎩⎪⎨⎪⎧25=15k +b ,20=20k +b ,解得⎩⎪⎨⎪⎧k =-1,b =40,∴ y 与x 之间的函数解析式为y =-x +40 (2) 设每日销售的利润为w 元,则w =(x -10)(-x +40)=-(x -25)2+225,∴ 当x =25时,w 取得最大值,最大值为225.答:要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元10. (1)① 由题意,可设y =kx +b ,则⎩⎪⎨⎪⎧100=50k +b ,80=60k +b ,解得⎩⎪⎨⎪⎧k =-2,b =200,∴ y 关于x 的函数解析式为y =-2x +200 ②4070 1 800 (2) 由题意,可知w =(x -40-m)(-2x +200)=-2x 2+(280+2m)x -(8 000+200m).易知二次函数图象的对称轴为x =-280+2m -2×2=70+m 2.∵ m >0,∴ 70+m2>65.当x 取65时,w 最大,即(65-40-m)(-2×65+200)=1 400,解得m =511. 探究三:(a -1) (4a -4) 探究四:(2a -2) (8a -8) 问题解决:在a ×b 的方格纸中,共可以找到(a -1)(b -1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a ×b 的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a -1)(b -1)种不同的放置方法 问题拓展:8(a -1)(b -1)(c -1)12. (1) 如图,设点B 的切线CB 交ON 的延长线于点E ,HD ⊥BC 于点D ,CH ⊥BH 交BC 于点C ,则∠DHC =67°.∵ ∠HBD +∠BHD =∠BHD +∠DHC =90°,∴ ∠HBD =∠DHC =67°.∵ ON ∥BH ,∴ ∠BEO =∠HBD =67°.∵ CB 是⊙O 的切线,∴ OB ⊥BE.∴ ∠OBE =90°.∴ ∠BOE =90°-67°=23°.∵ PQ ⊥ON ,∴ ∠POE =90°.∴ ∠POB =90°-23°=67° (2) 如图,连接AO ,同(1)可得∠POA =31°,∴ ∠AOB =∠POB -∠POA =67°-31°=36°.∴ AB ︵的长为36×π×6 400180≈3 968(km)第12题11。
中考数学热点练习3 图表信息问题2019年中考中这部分知识解答题的考察,主要包括统计图表完善或制作,计算相关统计量并用统计量分析数据状况,利用统计和概率的思想用样本估计总体,计算简单事件的概率等.解题的一般程序是:先从统计图表中获取相关信息,通过计算完善统计图表;再根据统计图表获取相关信息,通过计算得出样本的相关统计量或频率,运用统计和概率的思想判断并计算总体的有关问题;最后利用排列的方法计算简单随机事件的概率.考向1 图像信息题1.(2019·威海)为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是()A.条形统计图B.频数直方图C.折线统计图D.扇形统计图【答案】D【解析】依据每种统计图的特点选择,欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选D.2.(2019·嘉兴) 2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%【答案】C【解析】根据折线统计图观察可知,签约金额不是逐年增多,相对而言,增长量最多的是2016年,增长速度最快的也是2016年,2018年比2017年降低了%9.4,故选C.3.(2019·江西)根据《居民家庭亲子阅读消费调查报告)中的相关数据制成扇形统计图,由图可知,下列说法错误的是()A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°【答案】C【解析】∵每天阅读1小时以上的居民家庭孩子占20%+10%=30%,∴C错误.4.(2019·温州)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.【答案】90【解析】从频数直方图中读懂信息、提取信息、发现信息.知道成绩为“优良”(80分及以上)的在80~90、90~100两个小组中,其频数分别为60、30.因此,成绩为“优良”(80分及以上)的学生有90人.故填:90.5.(2019 · 柳州)据公开报道,2017年全国教育经费总投入为42557亿元,比上年增长9.43%,其中投入在各学段的经费占比(即所占比例)如图,根据图中提供的信息解答下列问题.(1)在2017年全国教育经费总投入中,义务教育段的经费总投入应该是多少亿元?(2)2016年全国教育经费总投入约为多少亿元?(精确到0.1)【答案】(1)42557×45%=19150.65亿元,答:义务教育段的经费总投入应该是19150.65亿元; (2)42557÷(1+9.43%)≈38.9亿元,答:2016年全国教育经费总投入约为38.8亿元. 6.(2019·新疆)甲、乙两人连续5次射击成绩如图所示,下列说法中正确的是( )A .甲的成绩更稳定B .乙的成绩更稳定C .甲、乙的成绩一样稳定D .无法判断谁的成绩更稳定【答案】B【解析】本题考查了方差的意义,510961085++++==甲x ,8979785++++==乙x ,222222581089868108 4.45-+-+-+-+-==甲()()()()()S ,22222288987898780.85-+-+-+-+-==乙()()()()()S ,∵22>甲乙S S ,∴乙的成绩更稳定.也可以直接根据折线图的波动情况,乙的波动较小,故乙的成绩更稳定,因此本题选B .7.(2019 · 柳州)阅读【资料】如图,这是根据公开资料整理绘制而成的2004—2018年中美两国国内生产总值(GDP )的直方图及发展趋势线(注:趋势线由Excel 系统根据数据自动生成,趋势线中的y 表示GDP ,x 表示年数)【资料】中所提供的信息,2016—2018年中国GDP 的平均值大约是( ) A .12.30 B .14.19C .19.57D .19.71【答案】A【解析】从条形统计图中获取2016—2018年中国GDP 的值,则这三年的平均值为11.1912.2413.4612.303++≈,故选A .【资料】中所提供的信息,可以推算出的GDP 要超过美国,至少要到( ) A .2052 B .2038C .2037D .2034【答案】B【解析】由统计图得:0.86x+0.468>0.53x+11.778,解得x >34,即到2038年GDP 超过美国,因此选B . 考向2 图表信息题1.(2019·金华)某地一周前四天每天的最高气温与最低气温如下表,则这四天中温差最大的是( ) A . 星期一B .星期二C .星期三D .星期四【答案】C .【解析】温差=最高气温-最低气温.故选C .2.(2019山东省德州市,20,10)《中学生体质健康标准》规定的等级标准为:90分及以上为优秀,80~89分为良好,60~79分为及格,59分及以下为不及格.某校为了解七、八年级学生的体质健康情况,现从两年级中各随机抽取10名同学进行体质健康检测,并对成绩进行分析.成绩如下:七年级 80 74 83 63 90 91 74 61 82 62 八年级74618391608546847482(1)根据上述数据,补充完成下列表格. 整理数据:优秀 良好及格不及格七年级 2 3 5 0 八年级141分析数据:年级 平均数 众数 中位数 七年级 76 74 77 八年级74(2)该校目前七年级有200人,八年级有300人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康情况更好,并说明理由. 【答案】(1)八年级及格的人数是4,平均数=,中位数=;故答案为:4;74;78;(2)计两个年级体质健康等级达到优秀的学生共有200×人;(3)根据以上数据可得:七年级学生的体质健康情况更好.3. (2019浙江省杭州市,18,8分)(本题满分8分)称量五筐水果的质量,若每筐以50 千克为基准,超过基准部分的千克数记为正数.不足基准部分的干克数记为负数.甲组为实际称量读数,乙组为记录数据.并把所得数据整理成如下统计表和未完成的统计图(单位:千克) 实际称量读数和记录数据统计表(1)补充完整乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x ̅甲,x ̅乙,写出x ̅甲与x ̅乙之间的等量关系.②甲,乙两组数据的方差分别为S 甲2, S 乙2,比较S 甲2与S 乙2的大小,并说明理由。
2019届中考数学总复习:图表信息型问题【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.【典型例题】类型一、图象信息题1.容积率t是指在房地产开发中建筑面积与用地面积之比,即MtS建筑面积用地面积,为充用地面积分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般容积率t不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M(m2)与容积率t的关系可近似地用如图(1)中的线段l来表示;1 m2建筑面积上的资金投入Q(万元)与容积率t的关系可近似地用如图(2)中的一段抛物线c来表示.(1)试求图(1)中线段l的函数关系式,并求出开发该小区的用地面积;(2)求出图(2)中抛物线段c的函数关系式.【思路点拨】(1)因为图象过点(2,28000)和(6,80000),所以易求l的表达式,注意t的取值范围,当t=1时,S用地面积=M建筑面积;(2)根据图象经过点(1,0.18)和(4,0.09)且(4,0.09)为顶点可求c的函数关系式.【答案与解析】解:(1)设M =kt+b ,由图象上两点的坐标(2,28000)、(6,80000),可求得是k =13000,b =2000.所以线段l 的函数关系式为: M =13000t+2000(1≤t ≤8).由M t S =建筑面积用地面积知,当t =1时,S M =用地面积建筑面积.把t =1代入M =13000t+2000中,可得 M =15000.即开发该小区的用地面积是15 000 m 2.(2)根据图象特征可设抛物线段c 的函数关系式为Q =a(t-4)2+0.09,把点(1,0.18)的坐标代入,可求得1100a =. 所以219(4)100100Q t =-+2121(18)100254t t t =-+≤≤. 【总结升华】图象信息题一般需要先由图象提供的条件确定出相应的函数关系式,然后再运用函数的性质解决问题,因而可以有效考查对函数思想和数形结合思想方法的掌握和应用情况.举一反三:【变式】甲、乙两人骑自行车前往A 地,他们距A 地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个). (3)在什么时间段内乙比甲离A 地更近? 【答案】 解:(1)50202.5v ==甲(km/h), 60302v ==乙(km/h).(2)5020s t =-甲或6030s t =-乙(答对一个即可); (3)1<t <2.5.2.(2016•长春模拟)甲、乙两名自行车运动员在同一条直线公路上进行骑自行车训练,他们同时同地同向出发,乙在行驶过程中改变了一次速度,甲、乙两人各自在公路上训练时行驶路程y (千米)与行驶时间x(时)(0≤x≤4)之间的函数图象如图所示.(1)求甲行驶的速度.(2)求直线AB所对应的函数表达式.(3)直接写出甲、乙相距5千米时x的值.【思路点拨】(1)由速度=路程÷时间,可得出甲行驶的速度;(2)设直线AB所对应的函数表达式为y=kx+b,将A、B点的坐标代入解析式可得出关于k、b的二元一次方程组,解出方程组即可得出结论;(3)找出各段线段所对应的函数表达式,根据图象做差可得出关于x的一元一次方程,解方程即可得出结论.【答案与解析】解:(1)120÷3=40(千米/时).∴甲行驶的速度为40千米/时.(2)设直线AB所对应的函数表达式为y=kx+b,把A(1,50)、B(3,120)代入,得,解得:.故直线AB所对应的函数表达式为y=35x+15(1≤x≤4).(3)设直线OA所对应的函数表达式为y=k1x,把A(1,50)代入,得50=k1,故直线OA所对应的函数表达式为y=50x(0≤x≤1),设直线OB所对应的函数表达式为y=k2x,把B(3,120)代入,得120=3k2,解得:k2=40.故直线OB所对应的函数表达式为y=40x(0≤x≤4).当0≤x≤4时,令50x﹣40x=5,解得x=0.5;当1<x≤3时,令35x+15﹣40x=5,解得x=2;当3<x≤4时,令40x﹣(35x+15)=5,解得x=4.综上可知:甲、乙相距5千米时x的值为0.5,2和4.故还需要0.2小时时间才能再次与小李相遇.【总结升华】本题考查了一次函数的应用、待定系数法求函数解析式以及解一元一次方程.举一反三:【变式】(讷河市校级期末)甲、乙两同学骑自行车从A地沿同一条路到B地,已知如图,甲做匀速运动,乙比甲先出发,他们离出发地距离s(km)和骑车行驶时间t(h)之间的函数关系如图,给出下列说法:(1)他们都骑车行驶了20km;(2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度.根据图象信息,以上说法错误的有()A.1个B.2个C.3个D.4个【答案】B;【解析】解:甲乙都是骑自行车从A地沿同一路线到离A地20千米的B地,所以(1)正确;乙出发0.5小时后停留了0.5小时,所以(2)正确;乙出发2.5小时到达目的地,而甲比乙早到0.5小时,所以(3)不正确;图象相交后甲的图象都在乙的上方,说明甲的速度比乙的要大,所以(4)不正确.故以上说法错误的有(3)、(4)2个.故选:B.类型二、图表信息题3.某市为了进一步改善居民的生活环境,园林处决定增加公园A和公园B的绿化面积.已知公园A、B分别有如图(1)(2)所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608 m2和1200 m2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:公园A 公园B路程(千米)运费单价(元)路程(千米)运费单价(元)甲地30 0.25 32 0.25乙地22 0.3 30 0.3(注:运费单价指将每平方米草皮运送1千米所需的人民币)(1)分别求出公园A 、B 需铺设草坪的面积;(结果精确到1m 2)(2)请设计出总运费最省的草皮运送方案,并说明理由.【思路点拨】(1)公园A 草坪的面积=大矩形的面积-两条小道的面积+两条小道重叠部分的面积.公园B 草坪的面积=大矩形的面积-两个扇形的面积-扇形所夹的两个三角形的面积.(2)本题可根据总运费=公园A 向甲,乙两地购买草坪所需的费用+公园B 向甲乙两地购买草坪所需的费用,如果设总运费为y 元,公园A 向甲地购买草皮xm 2,那么根据上面的等量关系可得出y 与x 的关系式,然后根据甲乙两地出售的草坪的面积和公园A ,B 所需的草坪面积得出x 的取值范围,再根据函数的性质得出花钱最少的方案. 【答案与解析】解:(1)公园A 需铺设草坪的面积为S 1=62×32-62×2-32×2+2×2=1800(m 2).设图(4)中圆的半径为R ,易知,圆心到距形长边的距离为252,所以25cos302R =°,253R =.公园B 需铺设草坪的面积为22212025125256525221008(m )3602233S π⎛⎫=⨯-⨯⨯-⨯⨯⨯ ⎪⎝⎭≈. (2)设总运费为y 元,公园A 向甲地购买草皮x m 2,向乙地购买草皮(1800-x)m 2. 由于园林处需要购买的草皮面积总数为1800+1008=2808(m 2),甲、乙两地出售的草皮面积总数为:1608+1200=2808(m 2),所以,公园B 向甲地购买草皮(1608-x)m 2,向乙地购买草皮1200-(1800-x)=(x-600)m 2.则01608,018001200,x x ≤≤⎧⎨≤-≤⎩ 求得600≤x ≤1608.由题意,得y =30×0.25x+22×0.3×(1800-x)+32×0.25×(1608-x)+30×0.3×(x-600)=1.9x+19344.因为k =1.9>0,所以y 随x 的增大而增大, 所以,当x =600时,y1.9×600+19344=20484(元).最小值即公园A在甲地购买600 m2,在乙地购买1800-600=1200(m2);公园B在甲地购买1608-600=1008(m2),运送草皮的总运费最省.【总结升华】本题是一个图表信息类的实际应用题,将代数知识、几何知识巧妙地融为一体,通过解答,可以有效考查圆的有关计算、一元一次不等组、一次函数等知识的综合运用,难度不大但涉及知识点丰富、技巧性强,是不可多得的一道好题.举一反三:【高清课堂:图表信息型问题例1】【变式】今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A、B两水库各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.⑴设从A水库调往甲地的水量为x万吨,完成下表:⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x ;15-x ;x-1 .⑵ y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275解不等式1≤x≤14所以x=1时y取得最小值y=5+1275=1280∴调运方案为A往甲调1吨,往乙调13吨;B往甲调14吨,不往乙调.4.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大?(2)补全图中的条形统计图.(3)写出A品牌粽子在图(2)中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.【思路点拨】(1)从扇形统计图中得出C品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400个,B品牌的销售量=2400-1200-400=800个,补全图形即可;(3)A品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)由于C品牌的销售量最大,所以建议多进C种.【答案与解析】解:(1)从扇形统计图中得出C品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400个,B品牌的销售量=2400-1200-400=800个,(3)A品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;(4)建议:多进一些C品牌的粽子.【总结升华】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.类型三、信息综合题5.如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O-C-D-O 路线作匀速运动,设运动时间为x (s ),∠APB=y (°),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为( )A.2B.2π C. 12π+ D. 无法确定 【思路点拨】通过图象得到函数是随自变量的增大,知道函数值是增大还是减小. 【答案与解析】解:根据题意,可知点P 从圆心O 出发,运动到点C 时,∠APB 的度数由90°减小到45°,C 点的横坐标为1,CD 弧的长度为12π. 点M 是∠APB 由稳定在45°,保持不变到增大的转折点; 另点O 的运动有周期性;结合图象,可得答案为C . 故选C 【总结升华】正确理解函数图象横纵坐标表示的意义,理解问题的过程.【巩固练习】一、选择题1. (2016春•和平区期末)已知一次函数y=kx+b的图象如图所示,当x<2时,y的取值范围是()A.y<﹣4 B.﹣4<y<0 C.y<2 D.y<02.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如图所示的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其他类同).这个时间段内顾客等待时间不少于6分钟的人数为( )A.5 B.7 C.6 D.333. 如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是()A.轮船的速度为20千米/小时 B.快艇的速度为40千米/小时C.轮船比快艇先出发2小时 D.快艇不能赶上轮船二、填空题4.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款________元.5.某校抽查了50名九年级学生对艾滋病三种主要传播途径的知晓情况,结果如下表:估计该校九年级550学生中,三种传播途径都知道的大概有________人.6.(2015•藤县一模)如图①,在矩形ABCD中,动点P从点C出发,沿C→D→A→B的方向运动至点B处停止.设点P运动的路程为x,△BCP的面积为y,如果y关于x的函数图象如图②所示,则当x=9时,点P应运动到点处.三、解答题7. (2016秋•灵石县期中)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/吨)甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,用含x的式子填写下表:港口运费(元/吨)甲库乙库A港xB港(2)求总费用y(元)与x(箱)之间的函数关系式,并写出x的取值范围;(3)求出最低费用,并说明费用最低时的调配方案.8.贵阳市是我国西部的一个多民族城市,总人口数为370万(2000年普查统计).图(1)、图(2)是2000年该市各民族人口统计图.请你根据图(1)、图(2)提供的信息回答下列问题:(1)2000年贵阳市少数民族总人口数是多少?(2)2000年贵阳市总人口中苗族占的百分比是多少?(3)2002年贵阳市参加中考的少数民族学生人数?9.某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度哪一个月的产量最高? ________月.(2)该厂一月份产量占第一季度总产量的________%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格产品?(写出解答过程)10.某仓库有甲、乙、丙三辆运货车,每辆车只负责进货或出货,丙车每小时的运输量最多,乙车每小时的运输量最少,乙车每小时运6吨,下图是甲、乙、丙三辆运输车开始工作后,仓库的库存量y (吨)与工作时间x (小时)之间的函数图象,其中OA 段只有甲、丙两车参与运输,AB 段只有乙、丙两车参与运输,BC 段只有甲、乙两车参与运输.(1)甲、乙、丙三辆车中,谁是进货车?(图1)85%15%少数民族汉族 (图2)少数民族其他布依族侗族苗族百分比(%)51015202530354045500(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨?【答案与解析】一、选择题1.【答案】D;【解析】将(2,0)、(0,﹣4)代入y=kx+b中,得:,解得:,∴一次函数解析式为y=2x﹣4.∵k=2>0,∴该函数y值随x值增加而增加,∴y<2×2﹣4=0.2.【答案】B;【解析】由频数直方图可以看出:顾客等待时间不少于6分钟的人数即最后两组的人数为5+2=7人.故选B.3.【答案】D;【解析】由图象可以知道快艇用时4个小时路程160千米,速度每小时40千米,同样可以得到轮船速度每小时20千米,快艇比轮船晚出发2小时,早到2小时,中间在4小时的时候追上轮船.二、填空题4.【答案】31.2;【解析】捐5元的人数=50×8%=4人;捐20元的人数=50×44%=22人;捐50元的人数=50×16%=8人;捐100元的人数=50×12%=6人;捐10元的人数=50-4-22-8-6=10人;平均每人捐款数=(5×4+20×22+50×8+100×6+10×10)÷50=31.2元.5.【答案】275;【解析】由表可知:三种传播途径都知道的人数为25,占样本总人数50人的2550=50%.所以550名学生中三种传播途径都知道的人数即可解答.550×2550=275(名).6.【答案】A.【解析】当P在CD上运动时,△BCP的面积不断增大;当P在AD运动时,BC一定,高为BA不变,此时面积不变;当P在AB上运动时,面积不断减小.故当x=9时,点P应运动到高不变的结束,即点A处.三、解答题7.【答案与解析】解:(1)港口运费(元/吨)甲库乙库A港x 100﹣xB港80﹣x x﹣30(2)y=14x+10(80﹣x)+20(100﹣x)+8(x﹣30)=﹣8x+2560,由题意得:,∴不等式的解集为:30≤x≤80,∴总费用y(元)与x(箱)之间的函数关系式为:y=﹣8x+2560(30≤x≤80);(3)∵﹣8<0,∴y随x的增大而减小,∴当x=80时,y有最小值,y=﹣8×80+2560=1920,答:最低费用为1920元,此时的调配方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨到A港口,乙仓库余下的50吨全部分运往B港口.8.【答案与解析】(1)∵15%×370=55.5(万人),∴2000年贵阳市少数民族总人口是55.5万人.(2) 55.5×40%=22.2(万人),又∵22.2÷370=0.06=6%(或15%×40%=6%),∴2000年贵阳市人口中苗族占的百分比是6%.(3) 40000×15%=6000(人),∴2000年贵阳市参加中考的少数民族学生人数为6000人.9.【答案与解析】解:(1)三;(2)30;(3)(1900÷38%)×98%=4900;答:该厂第一季度大约生产了4900件合格的产品.10.【答案与解析】解:(1)由OA段可知,每小时的进库量为4÷2=2吨,因为只有甲丙工作,故甲丙中有一辆进库,有一辆出库,并且每小时进库量-每小时出库量=2吨又由“每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨”可知:丙车运输量>甲车运输量>乙车运输量=6吨故丙车是进货车,甲车是出货车,并且丙车运输量-甲车运输量=2吨又由AB段只有乙丙工作,且进库量大于6吨;BC段只有甲乙工作,(8-3)小时的出库量较小,故乙车是进货车;故进货车是乙车和丙车,甲车是出货车(2)根据(1)丙车运输量-甲车运输量=2吨设甲车运输量为x吨,则丙车运输量为(x+2)吨设B对应的库存量为y吨对于AB段:y-4=(x+2)+6对于BC段:y-10=5(x-6)∴ x=8即:甲车运输量为8吨,则丙车运输量为10吨故如甲乙丙三车一起工作,一天工作8小时,仓库的库存量为(10+6-8)×8=64吨.。
初中数学中考试题研究 《图表信息综合试题》图表信息题是近几年中考热点内容之一,也是今后中考的出题方向。
这类题常以实际生活为背景,将相关的数学知识信息巧无声息的隐含在创设的图象、图表中,我们只有通过对图象、图表等相关信息的分析、观察、猜想、抽象、概括,从中获取图表中隐含的解题信息和思路、方法,然后再进行推理、探究、发现和计算的一种题型。
图表信息的内容大多取材于现实生活,主要包括生活图景、表格信息、图象信息、统计图表、几何图形等各种类型。
类型一 从生活情景中体验与获取例1:(2009江西)某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体育馆.下图中线段AB 、OB 分别表示父、子俩送票、取票过程中,离体育馆的.....路程..S (米)与所用时间t (分钟)之间的函数关系,结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变): (1)求点B 的坐标和AB 所在直线的函数关系式; (2)小明能否在比赛开始前到达体育馆?解析:(1)设小明步行的速度为x 米/分,则小明父亲骑车的速度为3x 米/分,依题意得:15x+45x =3600.解得:x =60.所以两人相遇处离体育馆的距离为60×15=900米.所以点B 的坐标为(15,900).设直线AB 的函数关系式为s =kt+b (k ≠0).由题意,直线AB 经过点A (0,3600)、B (15,900)得:360015900b k b =⎧⎨+=⎩,解之,得1803600k b =-⎧⎨=⎩,. ∴直线AB 的函数关系式为:1803600S t =-+(2)在1803600S t =-+中,令S =0,得01803600t =-+.解得:t =20.即小明的父亲从出发到体育馆花费的时间为20分钟,因而小明取票的时间也为20分钟. ∵20<25,∴小明能在比赛开始前到达体育馆.同步测试:如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式; (2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少? 解析:(1)设y kx b =+.由图可知:当4x =时,10.5y =;当7x =时,15y =.把它们分别代入上式,得 10.54,157.k b k b =+⎧⎨=+⎩ ,解得 1.5k =, 4.5b =.∴ 一次函数的解析式是 1.5 4.5y x =+. (2)当4711x =+=时, 1.511 4.521y =⨯+=. 即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm .类型二 从统计图中体验与获取例2:(2009年衢州)2009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示.(1) 在5月17日至5月21日这5天中,日本新增甲型H1N1流感病例最多的是哪一天?该天增加了多少人?(2) 在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人?(3) 甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天..传染后共有9人患了甲型H1N1流感,每天..传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?解析:(1) 18日新增甲型H1N1流感病例最多,增加了75人; (2) 平均每天新增加267452.65-=人,继续按这个平均数增加,到5月26日可达52.6×5+267=530人;(3) 设每天传染中平均一个人传染了x 个人,则1(1)9x x x +++=,2(1)9x +=,解得2=x (x = -4舍去).再经过5天的传染后,这个地区患甲型H1N1流感的人数为(1+2)7=2187(或1+2+6+18+54+162+486+1458=2187),一共将会有2 187人患甲型H1N1流感.累计确诊病例人数 新增病例人数 0 421 96 16319326717756730 74161718 192021 日本2009年5月16日至5月21日甲型H1N1流感疫情数据统计图 人数(人) 0 50100 150 200 250 300 日期同步测试:(2008年浙江)衢州市总面积8837平方千米,总人口247万人(截目2006年底),辖区有6个县(市、区),各县(市、区)的行政区域面积及平均每万人拥有面积统计如图1、图2所示(1)行政区域面积最大的是哪个县(市、区)?这个县(市、区)约有多少面积(精确到1平方千米)?(2)衢州市的人均拥有面积是多少(精确到1平方米)?6个县(市、区)中有几个县(市、区)的人均拥有面积超过衢州市人均拥有面积? (3)江山市约有多少人(精确到1万人)?解析:(1)行政区域面积最大的是开化县, 面积约为8837)(2224%17.25平方千米≈⨯ (2)衢州市的人均拥有面积是)/(3578)/(78.352478837人平方米万人平方千米=≈÷衢江区和开化县2个县(市、区)的人均拥有面积超过衢州市人均拥有面积。
分九年级数学专题复习三——图表信息一、题型特点图象信息题是指由图形、图象〔表〕及易懂的文字说明来提供问题情景的一类问题,它是近几年所展示的一种新的题型。
这类问题题型多样,取材广泛,形式灵活,突出对考生收集、整理和加工信息能力的考查.是近几年中考的热点.解图象信息题的关键是“识图〞和“用图〞.解这类题的一般步骤是:〔1〕观察图象,获取有效信息;〔2〕对已获信息进行加工、整理,理清各变量之间的关系;〔3〕选择适当的数学工具,通过建模解决问题. 二、典型例题例1:2010年5月1日,举世瞩目的世界博览会在上海隆重开园,开幕式前,某旅行社组织甲、乙两个公司的部门主管赴上海观摩开幕式的盛况,其中预订的一类门票,二类门票的数量和所花费用如下表:根据上表给出的信息,分别求出一类门票和二类门票的单价.例2:因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援以下图是两水库的蓄水量y 〔万米3〕与时间x 〔天〕之间的函数图象.在时间内,甲水库的放水量与乙水库的进水量相同〔水在排放、接收以及输送过程中的损耗不计〕.通过分析图象答复以下问题: 〔1〕甲水库每天的放水量是多少万立方米?〔2〕在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米? 〔3〕求直线AD 的解析式.例3:一辆经营长途运输的货车在高速公路的A 处加满油后,以每小时80千米的速度匀速行驶,前往与A 处相距636千米的B 地,下表记录的是货车一次加满油后油箱内余油量y 〔升〕与行驶时间x 〔时〕之间的关系:〔1〕请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y 与x 之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;〔不要求写出自变量的取值范围〕〔2〕按照〔1〕中的变化规律,货车从A C 处,求此时油箱内余油多少升?〔3〕在〔2〕的前提下,C 处前方18千米的D 处有一加油站,根据实际经验此货车在行驶中油箱内至少保证有10升油,如果货车的速度和每小时的耗油量不变,那么在D 处至少加多少升油,才能使货车到达B 地.〔货车在D 处加油过程中的时间和路程忽略不计〕例4:s (千米)和小王从县城出发后所用的时间t (分)之间的函数关系如图,假设二人之间交流的时间忽略不计,求:〔1〕小王和李明第一次相遇时,距县城多少千米?请直接写出答案. 〔2〕小王从县城出发到返回县城所用的时间. 〔3〕李明从A 村到县城共用多长时间?随堂演练:1.某人从某处出发,匀速地前进一段时间后,由于有急事,接着更快地、匀速地沿原路返回原处,这一情境中,速度V 与时间t 的函数图象〔不考虑图象端点情况〕大致为( )2..在一次自行车越野赛中,甲乙两名选手行驶的路程y 〔千米〕 随时间x 〔分〕变化的图象〔全程〕如图,根据图象判定以下结 论不正确的选项是.......( ) A .甲先到达终点 B .前30分钟,甲在乙的前面 C .第48分钟时,两人第一次相遇 D .这次比赛的全程是28千米 3.某移动通讯公司提供了A 、B 两种方案的通讯费用y(元)与通话 时间x(分)之间的关系,如下图,那么以下说法错误的选项是......〔 〕 A.假设通话时间少于120分,那么A 方案比B 方案廉价20元 B.假设通话时间超过200分,那么B 方案比A 方案廉价C.假设通讯费用为了60元,那么方案比A 方案的通话时间多D.假设两种方案通讯费用相差10元,那么通话时间是145分或185分4. 某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图是甲、乙两车间的距离y 〔千米〕与乙车出发x 〔时〕的函数的局部图像〔1〕A 、B 两地的距离是 千米,甲车出发 小时到达C 地;〔2〕求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图中补全函数图像;〔3〕乙车出发多长时间,两车相距150千米5.某企业在生产甲、乙两种节能产品时需用A 、B 两种原料,生产每吨节能产品所需原料的数量如下表所示:销售甲、乙两种产品的利润m 〔万元〕与销售量n (吨)之间的函数关系如下图.该企业生产了甲种产品x 吨 和乙种产品y 吨,共用去A 原料200吨. 〔1〕写出x 与y 满足的关系式;〔2〕为保证生产的这批甲种、乙种产品售后的总利润不少于220万元,那么至少要用B 原料多少吨?6.国家决定对购置彩电的农户实行政府补贴.规定每购置一台彩电,政府补贴假设干元,经调查某商场销售彩电台数y 〔台〕与补贴款额x 〔元〕之间大致满足如图①所示的一次函数关系.随着补贴款额x 的不断增大,销售量也不断增加,但每台彩电的收益Z 〔元〕会相应降低且Z 与x 之间也大致满足如图②所示的一次函数关系.〔1〕在政府未出台补贴措施前,该商场 销售彩电的总收益额为多少元? 〔2〕在政府补贴政策实施后,分别求出该商场 销售彩电台数y 和每台家电的收益Z 与政府补 贴款额x 之间的函数关系式;〔3〕要使该商场销售彩电的总收益w 〔元〕最大, 政府应将每台补贴款额x 定为多少?并求出总收益 w 的最大值.〔第2题图〕 乙 甲 )图②。
中考冲刺:图表信息型问题【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在解决图表信息题的时候要注意以下几点:1、细读图表:(1)注重整体阅读.先对材料或图表资料等有一个整体的了解,把握大体方向.要通过整体阅读,搜索有效信息;(2)重视数据变化.数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节.图表中一些细节不能忽视,它往往起提示作用,如图表下的“注”“数字单位”等.2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢.题目要求包往往括字数句数限制、比较对象、变化情况等.3、准确表达解答图表题需要用简明的语言进行概括.解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论.在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制.【典型例题】类型一、图象信息题例1.如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B. C.D.例2.甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)求甲距A地的路程S与行驶时间t的函数关系式.(3)直接写出在什么时间段内乙比甲距离A地更近?(用不等式表示)举一反三:【变式】如图,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:(1) 求A、B、C三点的坐标;(2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围;(3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P 上,求k的取值范围.类型二、图表信息题例3.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:请你根据以上信息解答下列问题:(1)补全图,“限塑令”实施前,如果每天约有2000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.例4.在某次人才交流会上,应聘人数和招聘人数分别居前5位的行业列表如下:如果用同一行业应聘人数与招聘人数比值的大小来衡量该行业的就业情况,那么根据表中数据,对上述行业的就业情况判断正确的是( )A .计算机行业好于其他行业B .贸易行业好于化工行业C .机械行业好于营销行业D .建筑行业好于物流行业举一反三:【变式】下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如下图.依据上列图、表,回答下列问题:(1)其中观看男篮比赛的门票有 张;观看乒乓球比赛的门票占全部门票的 %; (2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到男篮门票的概率是 ;(3)若购买乒乓球门票的总款数占全部门票总款数的81,试求每张乒乓球门票的价格.类型三、从表格、数字中寻求规律例5.我市某工艺厂为配合北京奥运,设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,得到如下数据:(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y 与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得利润最大?最大利润多少?(利润=销售总价-成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得利润最大?举一反三:【变式】某绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.【巩固练习】一、选择题1.如图,平行四边形ABCD的边长AD为8,面积为32,四个全等的小平行四边形对称中心分别在平行四边形ABCD的顶点上,它们的各边与平行四边形ABCD的各边分别平行,且与平行四边形ABCD相似.若平行四边形的一边长为x,且0<x≤8,阴影部分的面积和为y,则y与x之间的函数关系的大致图象是().A.B.C.D.2.物理知识告诉我们,一个物体所受到的压强P与所受压力F及受力面积S之间的计算公式为FPS .当一个物体所受压力为定值时,那么该物所受压强P与受力面积S之间的关系用图象表示大致为( ).3.某蓄水池的横断面示意图如图1所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h和放水时间t之间的关系的是 ( ).二、填空题4.将一个三角形纸板按如图所示的方式放置一个破损的量角器上,使点C落在半圆上,若点A、B处的读数分别为65°、20°,则∠ACB的大小为°.第4题第5题5.如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是 .6.如图1反映的过程是:矩形ABCD中,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,S△ABP=y.则矩形ABCD的周长是.三、解答题7. 小亮家最近购买了一套住房.准备在装修时用木质地板铺设居室,用瓷砖铺设客厅.经市场调查得知:用这两种材料铺设地面的工钱不一样.小亮根据地面的面积,对铺设居室和客厅的费用(购买材料费和工钱)分别做了预算,通过列表,并用x(m2)表示铺设地面的面积,用y(元)表示铺设费用,制成如图.请你根据图中所提供的信息,解答下列问题:(1)预算中铺设居室的费用为元/ m2,铺设客厅的费用为元/ m2.(2)表示铺设居室的费用y(元)与面积 x(m2)之间的函数关系式为,表示铺设客厅的费用y(元)与面积x(m2)之间的函数关系式为 .(3)已知在小亮的预算中,铺设1 m2的瓷砖比铺设1m2的木质地板的工钱多5元;购买1m2的瓷砖是购买1m2木质地板费用的34.那么,铺设每平方米木质地板、瓷砖的工钱各是多少元?购买每平方米的木质地板、瓷砖的费用各是多少元?8. 如图所示,A,B两地相距50千米,甲于某日下午1时骑自行车从A地出发驶往B地,乙也于同日下午骑摩托车按同路从A地出发驶往B地,如图所示,图中的折线OPQ和线段MN分别表示甲、乙所行驶的路程S与该日下午时间t之间的关系.根据图象回答下列问题:(1)甲和乙出发的时间相差小时?(2)(填写“甲”或“乙”)更早到达B城?(3)乙出发大约小时就追上甲?(4)描述一下甲的运动情况;(5)请你根据图象上的数据,求出甲骑自行车在全程的平均速度.9.行驶中的汽车,在刹车后由于惯性的作用,还要继续向前滑行一段距离才停止,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能(车速不超过140km/h),对这种汽车进行测试,测得数据如下表:刹车时车速(km/h) 0 10 20 30 40 50 60 刹车距离(m) 0 0.3 1.0 2.1 3.6 5.5 7.8(1)以车速为x轴,以车距离为y轴,在坐标系中描出这些数据所表示的点,并用平滑的曲线连结这些点,得到函数的大致图象;(2)观察图象,估计函数的类型,并确定一个满足这些数据的函数解析式;(3)该型号汽车在国道上发生了一次交通事故,现场测得刹车距离为46.5m,请推测刹车时的速度是多少?请问在事故发生时,汽车是超速行驶还是正常行驶?10.某果品公司急需将一批不易存放的水果从A市运到B市销售.现有三家运输公司可供选择,这三家运输公司提供的信息如下:运输单位运输速度(千米/小时)运输费用(元/千米)包装与装卸时间(小时)包装与装卸费用(元)甲公司60 6 4 1500乙公司50 8 2 1000丙公司100 10 3 700解答下列问题:(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A、B两市的距离(精确到个位);(2)如果A、B两市的距离为S千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/小时,那么要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运输公司?。
2019部分地区中考数学图表信息试题(附) 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢以下是中国()为您推荐的xxxx部分地区中考数学图表信息试题,希望本篇对您学习有所帮助。
xxxx部分地区中考数学图表信息试题22.某奶品生产企业,xxxx年对铁锌牛奶、酸牛奶、纯牛奶三个品种的生产情况进行了统计,绘制了图1、2的统计图,请根据图中信息解答下列问题:酸牛奶生产了多少万吨?把图1补充完整;酸牛奶在图2所对应的圆心角是多少度?由于市场不断需求,据统计,xxxx 年的生产量比xxxx年增长20%,按照这样的增长速度,请你估算2019年酸牛奶的生产量是多少万吨?分析:根据纯牛奶所占百分率和纯牛奶的产量,求出牛奶的总产量,用总产量减铁锌牛奶和纯牛奶的产量即为酸牛奶的产量;酸牛奶产量除以总产量乘以360°即为酸牛奶在图2所对应的圆心角的度数;根据平均增长率公式直接解答即可.解:牛奶总产量=120÷50%=240吨,酸牛奶产量=240-40-120=80吨,酸牛奶在图2所对应的圆心角度数为×360°=120°.2019年酸牛奶的生产量为80×2=吨.答:2019年酸牛奶的生产量是万吨.点评:本题考查了条形统计图和扇形统计图,将二者结合起来是解题的关键.16.某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y与货车行驶时间x之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为;④快递车从乙地返回时的速度为90千米/时.以上4个结论中正确的是____________【解析】设快递车出发的速度为x 千米/时,则由图像得3=120,解得x=100,①正确;而甲、乙两地之间的距离大于120千米,②错误;点B的横坐标是快递车返回的时间:3+=,而纵坐标是此时货车距乙地的距离120-×60=75,∴点B的坐标为,③正确;设快递车出发的速度为m千米/时,则=75,解得m=90,④正确.【答案】①③④【点评】根据图像信息解决行程问题,关键是要能读懂题意并能看懂图像所反映的时间、速度、行程三者之间的关系.难度较大.24.学生的学习兴趣如何是每位教师非常关注的问题.为此,某校教师对该校部分学生的学习兴趣进行了一次抽样调查,并将调查结果绘制成了图①和图②的统计图.请你根据图中提供的信息,解答下列问题:⑴此次抽样调查中,共调查了名学生;⑵将图①、图②补充完整;⑶求图②中c层次所在扇形的圆心角的度数;⑷根据抽样调查结果,请你估算该校1200名学生中大约有多少名学生对学习感兴趣.【解析】解:此次抽样调查中,共调查了50÷25%=200;故答案为:层次的人数为:200-120-50=30;所占的百分比是:30200×100%=15%;B层次的人数所占的百分比是1-25%-15%=60%;c层次所在扇形的圆心角的度数是:360×15%=54°;根据题意得:×1200=1020答:估计该校1200名学生中大约有1020名学生对学习感兴趣..【答案】⑴200;⑵如图所示;⑶540;⑷1020.【点评】本题主要考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.难度中等.专项九图表信息14.某果园有苹果树100棵,为了估计该果园的苹果总产量,小王先按长势把苹果树分成了A、B、c三个级别,其中A级30棵,B级60棵,c级10棵,然后从A、B、c三个级别的苹果树中分别随机抽取了3棵、6棵、1棵,测出其产量,制成了如下的统计表.小李看了这个统计表后马上正确估计出了该果园的苹果总产量,那么小李的估计值是千克.苹果树长势A级B级c级随机抽取棵数所抽取果树的平均产量【解析】由表格中各种等级果树的平均产量可估算果园的总产量为:80×30+75×60+70×10=7600【答案】7600【点评】本题主要考查了由样本估计总体的估算,解决本题的关键是分清样本、总体具体所表示的意义.难度较小.20.为进一步加强中学生近视眼的防控工作,市教育局近期下发了有关文件,将学生视力保护工作纳入学校和教师的考核内容.为此,某县教育局主管部门对今年初中毕业生的视力进行了一次抽样调查,并根据调查结果绘制了如下频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:求表中a、b的值,并补充完频数分布直方图;若视力在以上均为正常,估计该县5600名初中毕业生视力正常的有多少人?解析:要求a的值,只需用其中一组已知视力范围的频数与频率关系求出频数总数;再结合根据该栏的频率、数据总次数求出 a.找出以上的频率和,进行估计总体.解:由15÷=300,所以a=300×=75..b=60÷300=因为视力在以上的频率为+=所以5600×=2520答:估计该县5600名初中毕业生视力正常的约有2520人.点评:灵活运用频率=,会对该公式变形运用.用样本统计量估计总统指标是统计的重要思想.如本问题问,用样本频率估计总体中视力正常情况.22.第三十届夏季奥林匹克运动会将于2019年7月27日至8月12日在英国伦敦举行,目前正在进行火炬传递活动.某校学生会为了确定近期宣传专刊的主题,想知道学生对伦敦奥运火炬传递路线的了解程度,决定随机抽取部分学生进行一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图。
2019中考数学专题三图表信息问题1.(2018·郴州)甲、乙两超市在1月至8月期间的赢利情况统计图如图所示,下列结论不正确的是(D)
A.甲超市的利润逐月减少
B.乙超市的利润在1月至4月间逐月增加
C.8月份两家超市利润相同
D.乙超市在9月份的利润必超过甲超市
2.(原创题)甲、乙两人在一条长为600 m的笔直马路上进行跑步,速度分别为4 m/s和6 m/s,起跑前乙在起点,甲在乙前面50 m处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是(C)
A B C D
3.(原创题)为了准备毕业联欢会,工作人员的工作台上到处可见各种各样的函数图象.明明学过抛物线,便信口开河道:图1可能是y=-x2+4x;图2可能是y=(x-2)2-1;图3可能是y=-3x2-4x+1;图4可能是y=-x2-4x+1,你认为其中必定不正确的有(B)
A.4个B.3个
C.2个D.1个
4.下面是某市2014~2017年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是__2017__年,私人汽车拥有量增长率最大的是__2016__年.
5.(2018·重庆)A ,B 两地相距的路程为240 km ,甲、乙两车沿同一线路从A 地出发到B 地,分别以一定的速度匀速行驶.甲车先出发40 min 后,乙车才出发.途中乙车发生故障,修车耗时20 min ,随后,乙车车速比发生故障前减少了10 km/h(仍保持匀速前行),甲、乙两车同时到达B 地.甲、乙两车相离的路程y (km)与甲车行驶时间x (h)之间的函数关系如图所示,求乙车修好时,甲车距B 地还有__90__千米.
6.(原创题)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE -ED -DC 运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1 cm/s.设P ,Q 同时出发t 秒时,△BPQ 的面积为y cm 2.已知y 与t 的函数关系、图象如图(2)(曲线OM 为抛物线的一部分).则下列结论:
①AD =BE =5 cm ;②cos ∠ABE =35;③当0<t ≤5时,y =25t 2;④当t =29
4秒时,△ABE
∽△QBP .其中正确的有__①③④__(填序号)
7.(2018·襄阳)“品中华诗词,寻文化基因”.某校举办了第二届“中华诗词大赛”,将该校八年级参加竞赛的学生成绩统计后,绘制了如下不完整的频数分布统计表与频数分布直方图.
频数分布统计表
(1)表中a =__12____40__(2)补全频数分布直方图;
(3)D 组的4名学生中,有1名男生和3名女生.现从中随机抽取2名学生参加市级竞赛,则抽取的2名学生恰好是一名男生和一名女生的概率为__1
2
__.
解:(1)a =12,m =40,理由如下:∵总人数为8
20%=40(人),∴C 组人数为40×30%=
12(人).∵B 组百分比为1-20%-30%-10%=40%,∴m =40;
(2)补全条形图如下:
(3)列表如下:
∵1名男生和1名女生的概率为612=1
2
.
8.(2018·锦州)某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元,经调查发现,每天的销售量y (个)与每个商品的售价x (元)满足一次函数关系,其部分数据如下所示.
(1)求y (2)设商场每天获得的总利润为w (元),求w 与x 之间的函数表达式;
(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?
解:(1)设y 与x 之间的函数解析式为y =kx +b ,则⎩⎪⎨⎪⎧ 40k +b =80,50k +b =60,解得⎩
⎪⎨⎪⎧
k =-2,b =160.即y
与x 之间的函数表达式是y =-2x +160;
(2)由题意可得w =(x -20)(-2x +160)=-2x 2+200x -3 200,即w 与x 之间的函数表达式是w =-2x 2+200x -3 200;
(3)∵w =-2x 2+200x -3 200=-2(x -50)2+1 800,20≤x ≤60,∴当20≤x ≤50时,w 随x 的增大而增大;当50≤x ≤60时,w 随x 的增大而减小;当x =50时,w 取得最大值,此时w =1 800.即当商品的售价为50元时,商场每天获得的总利润最大,最大利润是1 800.
9.(改编题)如图,甲、丙两地相距500 km ,一列快车从甲地驶往丙地,且途中经过乙地;一列慢车从乙地驶往丙地,两车同时出发同向而行,设慢车行驶的时间为x (h),两车之间的距离为y (km),图中的折线表示y 与x 之间的函数关系.根据图象进行以下探究.
(1)求甲、乙两地之间的距离; (2)求慢车和快车的速度;
(3)求线段CD 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; (4)若这列快车从甲地驶往丙地,慢车从丙地驶往甲地,两车同时出发相向而行,且两车的车速各自不变.设慢车行驶的时间为x (h),两车之间的距离为y (km),则下列四个图象中,哪一图象中的折线能表示此时y (km)和时间x (h)之间的函数关系,请写出你认为可能合理的代号,并直接写出折线中拐点A ,B ,C 或A ,B ,C ,D 的坐标.
解:(1)∵点A (0,150),∴甲乙两地之间的距离为150 km ;
(2)慢车速度:(500-150)÷3.5=100(km /h );快车速度:150+100=250(km/h ); (3)500÷250=2(h ),350-100×2=150(km ),∴点C 坐标为(2,150),设y CD =kx +b ,把
点C (2,150),D (3.5,0)代入得⎩⎪⎨
⎪⎧
2k +b =150,3.5k +b =0,
解得⎩⎪⎨
⎪⎧
k =-100,
b =350,
∴y CD =-100x +
350(2≤x ≤3.5);
(4)由分析可知,图象(c )中的折线能表示此时y (km )和时间x (h )之间的函数关系,A (0,500),B ⎝⎛⎭⎫
107,0,C (2,150),D (5,500).。