热工基础(1.1.4)--基本概念
- 格式:pdf
- 大小:168.92 KB
- 文档页数:2
904热工基础【最新版】目录一、热工基础的概念与重要性二、热工基础的基本原理三、热工基础的应用领域四、热工基础的发展趋势正文一、热工基础的概念与重要性热工基础,全称为热能工程基础,是一门研究热能的生成、转换、传输及利用的学科。
它主要研究热力学、传热学、燃烧学等基础理论,以及热力设备、热力系统等实际应用。
在我国能源领域,热工基础占据着重要地位,对于能源的开发、利用和节约具有重要意义。
二、热工基础的基本原理热工基础主要包括以下几个方面的基本原理:1.热力学原理:研究热能与其它能量之间的转换关系,如热力学第一定律和第二定律。
2.传热学原理:研究热能在不同介质中的传输规律,如导热、对流和辐射传热。
3.燃烧学原理:研究燃料与氧气在特定条件下的化学反应过程,如燃烧反应动力学和燃烧过程的控制。
三、热工基础的应用领域热工基础在多个领域具有广泛的应用,如:1.能源工程:包括火力发电、核能发电、太阳能发电等,热工基础为这些领域提供理论基础和设计依据。
2.化工过程:石油化工、煤化工、天然气化工等,热工基础为化工过程提供热能转换和利用的技术支持。
3.冶金工业:钢铁、有色金属等,热工基础为冶金工业提供高温熔炼、热处理等关键技术。
4.航空航天:火箭推进、发动机燃烧等,热工基础为航空航天领域提供高性能热力系统的设计与优化。
四、热工基础的发展趋势随着全球能源需求的增长以及环境污染问题的加剧,热工基础在未来发展中将面临诸多挑战和机遇。
具体表现在以下几个方面:1.高效清洁能源技术的研究:热工基础将更加注重高效、清洁、可再生能源技术的研究,以降低能源消耗和减少环境污染。
2.节能减排技术的发展:热工基础将加大对节能减排技术的研发力度,提高能源利用效率,降低碳排放。
3.热工系统智能化:随着信息技术的发展,热工基础将引入大数据、云计算等技术,实现热工系统的智能化和优化运行。
总之,热工基础作为能源领域的重要学科,对于我国能源事业的发展和环境保护具有重要意义。
一、热工基础知识(一)、热力学基础1、温度温度是衡量物体冷热程度的尺度,是物质分子热运动平均动能的度量。
摄氏温标:1个标准大气压下纯水的冰点定为0℃,沸点定为100℃,在这个区域内划分100等分,每1等分为1度,单位为℃。
用t表示。
华氏温标:1个标准大气压下纯水的冰点定为320F,沸点定为2120F,在这个区域t1=1.8t+32 (0F)内划分180等分,每1等分为1度,单位为0F。
用t1表示。
绝对温标:又称热力学温标,每一度大小与摄氏温标相等,起点为物质内分子热T=t+273.15(K)运动完全停止时-273.15℃),单位为K。
用T表示。
2、压力1 bar 巴 =100000 pa 帕斯卡=0.1MPa1 psi 磅/平方英寸=0.0703 kgf/cm21 kgf/cm2 千克力/平方厘米 =98000 pa 帕1 mm aq. 毫米水柱=9.8 pa 帕1 mm hg 毫米汞柱=133.28 pa 帕1 m H2O 米水柱=9800 pa 帕=0.1 kgf/cm2 千克力/平方厘米工程上常将1大气压(B)看成1个工程大气压或0.1MPa,即B=1kgf/cm2,或B=0.1MPa 表压:通过压力表读出的压力,为绝对压力减当地大气压。
真空度:压力比大气压低的程度。
真空度=B-绝对压力3、热能:分子热运动强度的度量,是依靠温差传递的能量。
用Q表示1kcal=4.1868kJ1 kcal/h 大卡/时=1.163 W 瓦1 kW千瓦=860 kcal/h 大卡/时1 btu/h 英制热量单位/时=0.293 W瓦4、比热:单位质量的物质温度每升高或降低1K所需要加入或放出的热量。
定压比热Cp:气体在加热或冷却时,如果保持压力不变,则其比热称为定压比热。
物体的吸(放)热量:Q=mCp(t2-t1)定容比热Cv :气体在加热或冷却时,如果保持体积不变,则其比热称为定压比热。
Cp>Cv绝热指数k:气体的定压比热与定容比热之比为气体的绝热压缩指数,k=Cp/Cv5、理想气体状态方程:pV=mRTR:气体常数,8314/气体分子量,空气为287J/(kg.K)p:Pa,帕V:m3m:kgT:K等温过程,等压过程,等容过程绝热过程:气体状态发生变化时,与外界不发生热量交换的过程称为绝热过程。
814热工基础
814热工基础是热工技术的基础课程,主要介绍了热力学和传热学的基本概念、基本原理和应用。
以下是814热工基础的主要内容:
1. 热力学基本概念:介绍热力学的基本概念,如温度、压力、热量、功等,以及热力平衡、热力过程和热力循环等基本规律。
2. 热力学第一定律:介绍能量守恒原理和热力学第一定律,以及各种能量形式之间的转换关系,如热能转换为机械能等。
3. 热力学第二定律:介绍热力学第二定律,包括熵的概念和各种热力学过程的方向性,以及各种热力设备的工作原理和应用。
4. 传热学基本概念:介绍传热的基本方式,如导热、对流和辐射等,以及传热过程的基本规律。
5. 导热过程分析:介绍导热的基本原理和应用,包括导热系数、傅里叶定律和导热微分方程等。
6. 对流换热分析:介绍对流换热的基本原理和应用,包括牛顿冷却公式、流动阻力和流体动力方程等。
7. 辐射换热分析:介绍辐射换热的基本原理和应用,包括黑体辐射、辐射角系数和辐射换热方程等。
8. 传热过程分析和计算:介绍传热过程的分析和计算方法,包括总传热系数、传热面积和传热效率等。
通过学习814热工基础,学生可以掌握热工技术的基本原理和应用,为进一步学习其他专业课程和从事相关领域的工作打下基础。
《热工基础知识综合性概述》一、引言热工基础知识在现代科学技术和工程领域中占据着至关重要的地位。
从日常生活中的供暖、制冷到工业生产中的能源转换、动力系统,热工知识无处不在。
它不仅涉及到热力学、传热学等基础理论,还与材料科学、机械工程、电气工程等多个学科领域密切相关。
本文将对热工基础知识进行全面的阐述与分析,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。
二、基本概念1. 温度温度是表示物体冷热程度的物理量。
在热工领域中,常用的温度单位有摄氏度(℃)、华氏度(°F)和开尔文(K)。
其中,开尔文是国际单位制中的基本温度单位,它与摄氏度的换算关系为 T (K)=T(℃)+273.15。
2. 热量热量是指由于温度差而传递的能量。
热量的单位通常为焦耳(J)或千卡(kcal)。
在热传递过程中,热量总是从高温物体流向低温物体。
3. 热容量热容量是指物体温度升高(或降低)1 摄氏度所吸收(或放出)的热量。
热容量的大小与物体的质量、物质种类以及温度变化范围有关。
4. 热导率热导率是衡量物质导热能力的物理量。
热导率越大,物质的导热能力越强。
热导率的单位为瓦/(米·开尔文)(W/(m·K))。
三、核心理论1. 热力学第一定律热力学第一定律也称为能量守恒定律,它指出在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
在热工领域中,热力学第一定律可以用来计算系统在热传递和做功过程中的能量变化。
2. 热力学第二定律热力学第二定律有多种表述方式,其中最著名的是克劳修斯表述和开尔文表述。
克劳修斯表述为:热量不能自发地从低温物体传递到高温物体。
开尔文表述为:不可能从单一热源吸取热量,使之完全变为有用功而不产生其他影响。
热力学第二定律揭示了热过程的方向性和不可逆性。
3. 传热学基本理论传热学主要研究热量传递的规律和方法。
传热的方式主要有三种:热传导、热对流和热辐射。
(1)热传导:是指热量通过物质的分子、原子或电子的运动而传递的过程。
热工基础培训教程第一点:热工基础概念解析热工基础是研究热力系统的工作原理和性能的学科,涉及的能量转换主要包括热能和机械能的转换。
在热工基础中,我们关注的是热力学、流体力学、传热学等方面的基本理论。
首先,我们要了解热力学基本概念。
热力学主要研究的是热能的转换和传递规律,其中包括了温度、压力、比容、比热等基本参数。
热力学系统的基本状态参数有压力、温度和比容。
压力是单位面积上作用在物体表面的力,温度是表示物体冷热程度的物理量,比容是单位质量的物体所具有的体积。
其次,我们需要掌握热力学的基本定律。
其中最主要的两个定律是能量守恒定律和热力学第一定律。
能量守恒定律指出,在一个封闭系统中,能量不会凭空产生也不会凭空消失,只会在各种形式间转换。
热力学第一定律则是指出,在一个封闭系统中,热能可以和机械能相互转换,且系统内能的增加等于外界对系统做的功加上系统吸收的热量。
再次,我们需要了解流体力学的基本概念。
流体力学主要研究的是流体的运动规律和压力、速度、温度等参数的分布。
流体可以分为液体和气体两种,它们的运动规律有所不同。
在研究流体力学时,我们通常会用到流体力学方程,如纳维-斯托克斯方程等。
最后,我们需要掌握传热学的基本理论。
传热学主要研究的是热量在物体内部的传递规律。
传热方式主要有三种:导热、对流和辐射。
导热是指热量通过物体内部的分子振动传递,对流是指热量通过流体的运动传递,辐射是指热量通过电磁波的形式传递。
第二点:热工基础在工程应用中的实践热工基础在工程应用中具有重要意义,涉及到众多行业,如能源、化工、环保等。
下面我们以能源行业为例,简要介绍热工基础在工程应用中的实践。
首先,热工基础在火力发电厂中的应用。
火力发电厂是利用燃料燃烧产生的热量,将水加热成蒸汽,驱动发电机旋转发电。
这其中,热力学、流体力学和传热学等基础知识起到了关键作用。
例如,在锅炉设计中,需要根据燃料的热值、燃烧效率等参数,计算出锅炉的热负荷,从而确定锅炉的尺寸和功率。
904热工基础(实用版)目录一、热工基础概述二、热力学基本概念1.能量与功2.热力学循环三、热力学第一定律1.能量守恒2.内能与热量四、热力学第二定律1.热量传递的方向性2.熵与熵增加原理五、热力学应用领域1.工程热力学2.物理化学正文一、热工基础概述热工基础是研究热力学系统在热力学循环过程中的宏观性质和规律的学科,它主要研究热力学系统的状态变化、能量转换以及热力学循环的效率等问题。
热工基础是能源科学与工程领域的基础知识,广泛应用于电力、化工、冶金等工程领域。
二、热力学基本概念热力学是研究热力学系统在热力学循环过程中的宏观性质和规律的学科。
热力学系统是由一组相互作用的物质和外部环境组成的,其状态变量包括压力、体积、温度等。
热力学系统在热力学循环过程中,会发生能量的转换和传递,从而实现功的输出。
1.能量与功能量是热力学系统状态变化的度量,可以表现为热力学系统的内能、热量和功。
功是热力学系统在力的作用下发生的位移所对应的能量,是能量转换的一种形式。
2.热力学循环热力学循环是指热力学系统在固定的过程路径上进行的一系列状态变化,包括吸热、膨胀、放热和压缩等过程。
热力学循环的效率是指热力学系统在循环过程中实际输出的功与输入的热量之比。
三、热力学第一定律热力学第一定律,又称能量守恒定律,是指热力学系统在状态变化过程中,其内能的变化量等于吸收的热量和对外做的功之和。
即ΔU = Q - W,其中ΔU 表示内能变化,Q 表示吸收的热量,W 表示对外做的功。
1.能量守恒能量守恒定律是自然界最普遍、最重要的基本定律之一,它表明在任何物理过程中,能量的总量保持不变。
2.内能与热量内能是热力学系统分子无规则运动的能量总和,是热力学系统的一种状态变量。
热量是在热力学系统间由高温部分传递到低温部分的能量,也是热力学系统的一种状态变量。
四、热力学第二定律热力学第二定律是指在热力学循环过程中,热量不可能自发地从低温物体传递到高温物体,即热量传递具有方向性。
习 题
1 指出下列各物理量中哪些是状态量?哪些是过程量?
压力,温度,动能,位能,热能,热量,功量,密度。
2 指出下列各物理量中哪些是强度量:
体积,速度,比体积,动能,位能,高度,
压力,温度,重量。
3 用水银差压计测量容器中气体的压力,为防止有毒的
水银蒸气产生,在水银柱上加一段水。
若水柱高
200mm ,水银柱高800mm ,如图1-9所示。
已知大气压
力为735mmHg (lmmHg=133.322Pa),试求容器中气体
的绝对压力为多少kPa?
4 锅炉烟道中的烟气常用上部开口的斜管测量,如图1-10所示。
若已知斜管倾角α= 30°,压力计中使用
ρ=0.8g/cm 3的煤油,斜管液体长度L = 200mm ,当地大气压力p b =0. lMPa 。
求烟气的绝对压力(用MPa 表示)。
5 一容器被刚性壁分成两部分,并在各部装有测压表计,如图1-11所示。
其中C 为压力表,读数为110kPa ,B 为真空表,读数为45kPa 。
若当地大气压p b =97kPa ,求压力表A 的读数(用kPa 表示)。
6 如图1-12所示,一刚性绝热容器内盛有水,电流通过容器底
部的电阻丝加热水。
按下列三种方式取系统时,试述系统与外
界交换的能量形式是什么?
(1) 取水为系统;
(2) 取电阻丝、容器和水为系统;
(3) 取如图中虚线内空间为系统。
7 某电厂汽轮机进口处蒸汽压力用压力表测量,其读数为
13.402MPa ;冷凝器内蒸汽压力用真空表测量,其读数为706mmHg 。
若大气压力为0.098MPa ,试求汽轮机进口处和冷
凝器内蒸汽的绝对压力(用MPa 表示)。
8 测得容器的真空度p v =550mmHg ,大气压力p b =0.098MPa ,求容程器内的绝对压力。
若大气压力变为p b =0.102MPa 。
求此时真空表上读数为多少mmHg?
9 如果气压计压力为83kPa ,试完成以下计算:
(1) 绝对压力为0.15MPa 时的表压力;
图1-9 习题1-3
图图1-10 习题1-4图
图1-11 习题1-5图
图1-12 电加热水过程
(2 ) 真空计上读数为70kPa 时气体的绝对压力;
(3) 绝对压力为50kPa 时的相应真空度(kPa);
(4) 表压力为0.25MPa 时的绝对压力(kPa)。
10 旧摄氏温标取水在标准大气压下的冰点和沸点分别为O℃和100℃,而华氏温标则相应地取为32°F 和212°F 。
试导出华氏温度和摄氏温度之间的换算关系,并求出绝对零度(0K 或-273.15℃)所对应的华氏温度。
11 气体进行可逆过程,满足pV =C ,C 为常数。
试导出该气体从状态1变化到状态2时膨胀功的表达式,并在p-V 图上定性地画出过程线,并示出膨胀功。
12 若某种气体的状态方程为T R pv g =,试导出:
(1) 定温下气体p 、v 之间的关系;
(2) 定压下气体v 、T 之间的关系;
(3) 定容下气体p 、T 之间的关系。
13 一蒸汽动力厂,锅炉的蒸汽产量q m =180t/h ,输出功率P =55000kW ,全厂耗煤h /t 5.19c m,=q ,煤的发热量kg /kJ 10303⨯=c q ,一公斤蒸汽在锅炉中吸热量q =2680kJ/kg 。
试求:
(1) 该动力厂的热效率t η;
(2) 锅炉的效率B η(蒸汽总吸热量/煤的总发热量)。