知识点《热工基础与应用(第3版)》
- 格式:doc
- 大小:328.76 KB
- 文档页数:25
热工基础与应用第三版课后题答案热工基础与应用第三版课后题答案:第一章热力学基础1. 什么是热力学系统?热力学系统的分类?答:热力学系统是指一定空间范围内的物质,它可以与外界进行能量、物质和动量的交换。
热力学系统分为开放系统、闭合系统和孤立系统。
2. 热力学第一定律及其公式表达?答:热力学第一定律是指能量守恒原理,即一定量的能量在各种形式间的转换中,总能量量保持不变。
它的公式表达为: $\Delta U = Q -W$,其中$\Delta U$表示系统内能的变化,$Q$ 表示系统所吸收的热量,$W$表示系统所做的功。
第二章理想气体1. 什么是理想气体?理想气体的特点有哪些?答:理想气体是指在一定温度和压力下,以分子作为粗略模型,遵守物理气体状态方程,没有相互作用力的气体。
理想气体的特点是分子间没有相互作用力,分子大小可忽略不计,分子数很大,分子与容器壁之间的碰撞是完全弹性碰撞。
2. 理想气体状态方程及其公式表达?答:理想气体状态方程是描述理想气体状态的基本方程,公式表达为$pV=nRT$,其中$p$表示压力,$V$表示体积,$n$表示物质的定量,$R$为气体常数,$T$表示气体的绝对温度。
第三章湿空气1. 什么是湿空气?湿空气的组成及其特点?答:湿空气是指空气中含有一定量的水蒸气的气体体系。
湿空气主要由氧气、氮气和水蒸气等气体组成。
湿空气的特点是其含水量随着温度和压力的变化而发生变化,同时湿空气的性质也会随着水蒸气的增加发生改变。
2. 湿空气状态的计算方法?答:湿空气的状态可用气体混合物的状态方程描述,即Dalton分压定律。
同时,根据水蒸气分压度和空气分压度的表格,可以通过查表法来计算湿空气的状态。
第四章热功学性质1. 热功学性质的三种基本类型是什么?答:热功学性质的三种基本类型是热力学势、热容和熵。
2. 熵的基本概念及其计算?答:熵是指物理系统内部不可逆过程的度量。
根据定义,熵的计算公式为$\Delta S = Q/T$,其中$\Delta S$表示熵的变化量,$Q$表示系统吸收的热量,$T$表示系统的温度。
习题参考答案第一章1-1解:状态量:压力,温度,动能,位能,密度;过程量: 热能,热量,功量。
1-2解:强度量:比体积,高度,压力,温度。
1-3解:根据压力单位换算得:22b H O Hg b H O Hg 735133.32297.992 kPa 2009.80665 1.961 kPa 800133.322106.658 kPa97.992 1.961106.658206.61 kPa p p p p p p p =⨯==⨯==⨯==++=++=1-4解:由分析知:设所求烟气的绝对为p ,压力计中煤油段压力为p v ,所以有:b v p p p =+,其中sin v p gL ρα=,所以784.8Pa v p =,由此得(0.10.000784)0.099216 MPa v b p p p =-=-= 1-5解:设左气缸压力为p 1,右气缸压力为p 2,则有1b C 21B A2b 97kPa 110kPa 207 kPa 207kPa 45kPa 252 kPa 252kPa 97kPa 155 kPap p p p p p P p p =+=+=⎧⎪=+=+=⎨⎪=-=-=⎩ p A 即为所求,155kPa.1-6 解:(1)选择水为系统,则外界向系统传热,但是无功量的交换; (2)选择电阻丝,容器,水为系统,则外界向系统做电功;(3)选取图中的虚线框为系统,则该系统为孤立系统,与外界无能量交换。
1-7解:汽轮机进口处的绝对压力:113.4020.09813.5 MPa g b p p p =+=+= 冷凝器内蒸汽的绝对压力:2706133.322Pa 0.0941 MPa, 0.0980.09410.0039 MPa v b v p p p p =⨯==-=-=图1-9习题1-3图1-8解:容器内的绝对压力60.098550133.322100.0247MPa b v p p p -=-=-⨯⨯=,真空表读数:''0.1020.02470.0773MPa 579.799mmHg v bp p p =-=-==。
热工基础的原理及应用1. 热工基础的概念热工基础是热力学和热传导学的基础,是研究能量转化、能量传递和能量转换的科学。
它主要涉及热力学、热传导、热辐射等内容,可以应用于各个领域,如工业、航空航天、能源等。
热工基础对于理解和应用能量转化、传递和转换非常重要。
2. 热工基础的原理2.1 热力学的原理热力学是热工基础的重要组成部分,它研究的是热力学系统中能量的转化和传递规律。
热力学的基本原理包括以下几个方面:•热力学第一定律:能量守恒,能量可以从一种形式转化为另一种形式,但总能量不会减少或增加。
•热力学第二定律:熵增原理,自然界的熵总是增加的,热量不能自发地从低温物体传递到高温物体。
•热力学第三定律:绝对零度原理,当温度接近绝对零度时,物体的熵趋于零。
2.2 热传导的原理热传导是热工基础中的重要内容,研究的是物体内部的热量传递规律。
热传导的原理可以用以下几个概念和公式来描述:•热导率:热导率是物质传导热量的能力,它的单位是瓦特/米·开尔文(W / m · K)。
•热传导方程:热传导方程描述了物体内部的温度变化与热流量之间的关系,可以用下面的公式表示: $Q = -k \\cdot A \\cdot \\frac{{dT}}{{dx}}$ •热阻和热导:热阻是物体传输热量的阻力,它的大小取决于物体的热导率和几何形状。
2.3 热辐射的原理热辐射是热工基础中的另一个重要内容,研究的是物体通过辐射传递热量的规律。
热辐射的原理可以用以下几个概念和公式来描述:•黑体辐射:黑体是理想的辐射体,它能完全吸收所有进入它表面的辐射能,并能以最大的效率辐射出去。
•斯特藩-玻尔兹曼定律:斯特藩-玻尔兹曼定律描述了黑体辐射的功率密度与温度的关系,可以用下面的公式表示: $P = \\sigma \\cdot A \\cdot T^4$•辐射传热:物体的辐射传热是指物体通过辐射的方式将热量传递给其它物体,其传热速率与物体的温度差和表面特性有关。
《热工基础及应用》第3版知识点第一章 热能转换的基本概念本章要求:1.掌握研究热能转换所涉及的基本概念和术语;2.掌握状态参数及可逆过程的体积变化功和热量的计算;3.掌握循环的分类与不同循环的热力学指标。
知识点:1.热力系统:根据研究问题的需要和某种研究目的,人为划定的一定范围内的研究对象称为热力系统,简称热力系或系统。
热力系可以按热力系与外界的物质和能量交换情况进行分类。
2.工质:用来实现能量相互转换的媒介物质称为工质。
3.热力状态:热力系在某瞬时所呈现的宏观物理状态称为热力状态。
对于热力学而言,有意义的是平衡状态。
其实现条件是:0,0,0p T μ∆=∆=∆=。
4. 状态参数和基本状态参数:描述系统状态的宏观物理量称为热力状态参数,简称状态参数。
状态参数可按与系统所含工质多少有关与否分为广延量(尺度量)参数和强度量状态参数;按是否可直接测量可分为基本和非基本状态参数。
5. 准平衡(准静态)过程和可逆过程:准平衡过程是基于对热力过程的描述而提出的。
实现准平衡过程的条件是推动过程进行的不平衡势差要无限小,即0p ∆→,0T ∆→(0μ∆→)。
6、热力循环:为了实现连续的能量转换,就必须实施热力循环,即封闭的热力过程。
热力循环按照不同的方法可以分为:可逆循环和不可逆循环;动力循环(正循环)和制冷(热)循环(逆循环)等。
动力循环的能量利用率的热力指标是热效率:0=t H W Q η;制冷循环能量利用率的热力学指标是制冷系数:L 0=Q W ε。
第二章 热力学第一定律本章要求:1. 深入理解热力学第一定律的实质;2. 熟练掌握热力学第一定律的闭口系统和稳定流动系统的能量方程。
知识点:1. 热力学第一定律:是能量转换与守恒定律在涉及热现象的能量转换过程中的应用。
热力学第一定律揭示了能量在传递和转换过程中数量守恒这一实质。
2. 闭口系统的热力学第一定律表达式,即热力学第一定律基本表达式:Q U W =∆+。
热工基础考试题参考答案(闭卷部分)课 程 热工基础一、填空题(每题3分,共45分)1.p 、v 、T (或压力、比体积、温度),Pa ,m 3/kg, K 。
2.热平衡、力平衡; 准平衡态过程加无耗散效应。
3.q u w =∆+,q w δδ=⎰⎰或net net q w =, q 0=w 0 4.212sh q h c g z w =∆+∆+∆+, q h =∆, sh w h =-∆。
5. p 2< p 1 ,T 2 = T 1,s 2 > s 1。
6.最佳压比=opt π4。
7. t d < t w < t 。
8.212c T T T ε=-, '112c T T T ε=- 9. T q n nλ∂=-∂,负号表示热流密度方向与温度梯度方向相反。
10. Bi ≤0.1; 或导热体内部导热热阻远小于外部对流换热热阻。
11. 自然对流和强制对流。
12.核态沸腾区。
13. λα=常数 14. 44121112()A T T εσΦ=-。
15. 11h ,δλ,21h 二、简答题(10分)1.(5分)如有图所示,当v <v c 时,得到未饱和水,当v >v c 时得到过热蒸气。
2. (5分)因为发生膜状凝结时,凝结壁面始终被凝结液膜覆盖,热阻较大,而珠状凝结时,部分凝结壁面不被液珠覆盖,可以与蒸汽直接接触,热阻较小。
热工基础考试题答案(开卷部分)三、计算题(45分)1. (15分)90273.150.6 4.186ln0.2166 kJ/K 60273.15S +∆=⨯⨯=+热水 (4分) 15273.150.4 4.186ln 0.3645 kJ/K 60273.15S +∆=⨯⨯=-+冷水 (4分) =0.1479 kJ/K<0S S S ∆=∆+∆-孤立热水冷水 (5分)不能实现。
(2分)2. (15分)(1)如右图(3分)(2) (6分)11.412 1.421112(27273.15)610.5 K k p T T p κ--⎛⎫==⨯+= ⎪⎝⎭1 1.412 1.434112(500273.15)1572.6 K k p T T p κ--⎛⎫==⨯+= ⎪⎝⎭32() 1.004(1572.6610.5)965.95 kJ/kg H p q c T T =-=⨯-=41() 1.004(773.15300.15)474.9 kJ/kg L p q c T T =-=⨯-=0491.05 kJ/kg H L w q q =-=(3) (3分)0491.0550.8 %965.95t H w q η=== (4) (3分)在回热的基础,采取多级压缩级间冷却,多级膨胀中间再热。
工程热力学第三版第二章热力学第一定律热力学第一定律 ( 能量守恒与转换定律) :自然界中的一切物质都具有能量 ,能量不可能被创造,也不可能被消灭;但能量可以从一种形态转变为另一种形态 , 且在能量的转化过程中能量的总量保持不变。
它确定了热力过程中热力系与外界进行能量交换时 , 各种形态能量数量上的守恒关系。
能量是物质运动的度量。
分子运动学说阐明了热能是组成物质的分子、原子等微粒的杂乱运动———热运动的能量。
根据气体分子运动学说, 热力学能是热力状态的单值函数。
在一定的热力状态下 , 分子有一定的均方根速度和平均距离 , 就有一定的热力学能 , 而与达到这一热力状态的路径无关 ,因而热力学能是状态参数。
由于气体的热力状态可由两个独立状态参数决定 , 所以热力学能一定是两个独立状态参数的函数, 如: u = f( T, v)或u =f( T, p) ; u = f( p, v)能量传递方式 : 作功和传热。
作功来传递能量总是和物体的宏观位移有关。
功的形式除了膨胀功或压缩功这类与系统的界面移动有关的功外 ,还有因工质在开口系统中流动而传递的功 ,这种功叫做推动功。
对开口系统进行功的计算时需要考虑这种功。
开口系统和外界之间功的交换。
取燃气轮机为一开口系统 , 当 1 kg 工质从截面 1 - 1流入该热力系时,工质带入系统的推动功为 p 1 v 1 ,工质在系统中进行膨胀,由状态1膨胀到状态2,作膨胀功 w,然后从截面 2 - 2流出,带出系统的推动功为p 2 v 2。
推动功差( pv) = p 2 v 2 -p 1 v 1是系统为维持工质流动所需的功, 称为流动功(系统为维持工质流动所需的功)。
在不考虑工质的动能及位能变化时, 开口系与外界交换的功量是膨胀功与流动功之差w -( p 2 v 2- p 1 v 1 );若计及工质的动能及位能变化, 则还应计入动能差及位能差。
热能和机械能的可逆转换总是与工质的膨胀和压缩联系在一起的。
《热工基础及应用》第3版知识点
第一章 热能转换的基本概念
本章要求:1.掌握研究热能转换所涉及的基本概念和术语;
2.掌握状态参数及可逆过程的体积变化功和热量的计算;
3.掌握循环的分类与不同循环的热力学指标。
知识点:
1.热力系统:根据研究问题的需要和某种研究目的,人为划定的一定范围内的研究对象称为热力系统,简称热力系或系统。
热力系可以按热力系与外界的物质和能量交换情况进行分类。
2.工质:用来实现能量相互转换的媒介物质称为工质。
3.热力状态:热力系在某瞬时所呈现的宏观物理状态称为热力状态。
对于热力学而言,有意义的是平衡状态。
其实现条件是:0,0,0p T μ∆=∆=∆=。
4. 状态参数和基本状态参数:描述系统状态的宏观物理量称为热力状态参数,简称状态参数。
状态参数可按与系统所含工质多少有关与否分为广延量(尺度量)参数和强度量状态参数;按是否可直接测量可分为基本和非基本状态参数。
5. 准平衡(准静态)过程和可逆过程:准平衡过程是基于对热力过程的描述而提出的。
实现准平衡过程的条件是推动过程进行的不平衡势差要无限小,即0p ∆→,0T ∆→(0μ∆→)。
6、热力循环:为了实现连续的能量转换,就必须实施热力
循环,即封闭的热力过程。
热力循环按照不同的方法可以分为:可逆循环和不可逆循环;动力循环(正循环)和制冷(热)循环(逆循环)等。
动力循环的能量利用率的热力指标是热效率:0
=t H W Q η;制冷循环能量利用率的热力学指标是制冷系数:L 0=Q W ε。
第二章 热力学第一定律
本章要求:1. 深入理解热力学第一定律的实质;2. 熟练掌握热力学第一定律的闭口系统和稳定流动系统的能量方程。
知识点:
1. 热力学第一定律:是能量转换与守恒定律在涉及热现象的能量转换过程中的应用。
热力学第一定律揭示了能量在传递和转换过程中数量守恒这一实质。
2. 闭口系统的热力学第一定律表达式,即热力学第一定律基本表达式:Q U W =∆+。
3. 稳定流动系统的能量方程:2sh 12Q H m c mg z W =∆+
∆+∆+。
4. 技术功:
2t sh 12W m c mg z W =∆+∆+,在可逆条件下
2t 1d W V p =-⎰。
第三章 热力学第二定律
本章要求:1. 深刻理解热力学第二定律的实质,掌握卡诺循环、卡诺定理及其意义;2. 掌握熵参数,了解克劳修斯不等式意义;3.利用熵增原理进行不可逆过程和循环的分析与计算。
知识点:
1. 热力学第二定律:能量不仅有“量”的多少问题,而且有“品质”的高低问题。
热力学第二定律揭示了能量在传递和转换过程中品质高低的问题,其表现形式是热力过程的方向性和不可逆性。
热力学第二定律典型的说法是克劳修斯说法和开尔文的说法。
虽然不同说法表述上不同,但实质是相同的,因此具有等效性。
2. 卡诺循环和卡诺定理:是热力学第二定律的重要内容之一,它不但指出了具有两个热源热机的最高热效率,而且奠定了热力学第二定律的基础。
3. 卡诺循环热效率:当热源温度为T H ,冷源温度为T L 时,卡诺循环的热效率为C 1L
H T T η=-。
4.卡诺定理:如果用r η表示两恒温热源的可逆循环的热效率,
用t η表示同温限下的其它循环热效率,则卡诺定理可以表示为
r t ηη≥。
5. 熵:利用卡诺循环和卡诺定理可以导出或证明状态参数熵,re
d Q S T δ=。
6. 克劳修斯不等式:Q 0T δ≤⎰。
通过克劳修斯不等式可以判断循环是否可行,是否可逆,因此克克劳修斯不等式是热力学第二定律的数学表达式之一。
利用克劳修斯不等式可以导出关系式
d Q
S T δ≥,此式可以用来判断热力过程的可行与否(是否可以发生),可逆与否,因此它亦是热力学第二定律的数学表达式之一。
7. 熵产:熵产是不可逆因素引起的,恒大于等于零,因此熵产是揭示不可逆过程大小的重要判据。
熵产可以通过孤立系的熵增原理求得。
8. 孤立系的熵增原理:孤立系的熵只能增加,不能减少,极限的情况保持不变。
即:iso g d d 0S S =≥ 或 iso g 0S S ∆=∆≥。
孤立系的熵增原理的数学表达式也是热力学第二定律的数学表达式
之一。
熵增原理也适用于控制质量的绝热系,即:
ad g d d 0S S =≥ 或 ad g 0S S ∆=∆≥。
第四章 理想气体的热力性质和热力过程
本章要求:1. 掌握理想气体各种热力过程的过程方程和基本状态参数间关系;2. 进行各种热力过程的功量和热量的计算分析,并在p -v 图和 T -s 图对热力过程进行定性分析;3. 掌握理想气体的状态方程;4. 掌握理想气体的比热容,正确运用比热容计算理想气体的热力学能、焓和熵。
知识点:
1. 理想气体的状态方程:g pv R T = 或
m pV RT =。
针对整个系统状态方程可以写为:g pV
mR T =或pV nRT =。
气体常数与摩尔气体常数有关系式:g R
R M =。
2. 理想气体的比热力学能:仅与温度有关,21d V u c T ∆=⎰ 或
V u c T ∆=∆。
3. 理想气体的比焓:仅与温度有关,21d p h c T ∆=⎰ 或 p h c T ∆=∆。
4. 理想气体的比熵:不但与温度有关,而且与压力或体积有关。
如: 22
g 11d ln p p T s c R T p ∆=-⎰ 或 22g 11ln ln p T p s c R T p ∆=-
5. 理想气体的混合物:为研究理想气体混合物而引入的两模型是分压力模型与分体积模型,从而有道尔顿分压力定律和亚美格分体积定律。
利用理想气体混合物的成分可以求解折合的摩尔结果、气体常数、比热力学能、比焓和比熵。
6. 理想气体的多变过程:定值=n pv 。
第五章 蒸气的热力性质和热力过程
本章要求:1.掌握蒸气的热力性质特点,能正确熟练利用蒸气热力性质图、表进行蒸气热力性质的计算;2.掌握蒸气热力过程分析计算的步骤,能正确使用蒸气热力性质图、表进行蒸气热力过程的分析计算。
知识点:
1. 蒸气的热力性质:可以归纳为一点、二线、三区、五状态。
一点:临界状态点,仅随工质而异;二线:饱和蒸气线(上界线)和饱和液线(下界线);三区:未饱和液区、湿蒸气区和过热蒸气区;五状态:未饱和液、饱和液、湿蒸气、饱和蒸气和过热蒸气。
2. 蒸气热力性质图表:根据蒸气五种状态的计算特点,蒸
气热力性质表分为饱和液和饱和蒸气表,未饱和液和过热蒸气表。
用于定性分析的蒸气热力性质图是p-v和T-s图,用于定量计算的水蒸气热力性质图是h-s图。
3. 蒸气热力过程分析:借助蒸气热力性质图表分析蒸气的热力过程,利用第一定律的能量方程和第二定律的熵增原理进行能量传递与转换的分析计算和过程的不可逆性的分析计算。
第六章湿空气
本章要求:1.掌握湿空气的状态参数;2.湿空气的基本热力过程分析计算。
知识点:
1. 湿空气的热力性质:湿空气是干空气和水蒸气的混合物,湿空气的状态参数有露点温度、相对湿度、含湿量(比湿度)和比焓。
湿空气的状态参数可以用解析法求取,也可以用焓-湿图求取。
2. 湿空气的热力过程:湿空气热力过程多为几种基本热力过程的组合,湿空气的基本热力过程有:加热与冷却过程、冷却去湿过程和绝热加湿过程。
湿空气的热力过程的求解,无论是基本热力过程,还是其他热力过程,依据的基本定律就是质量守恒定律和热力学第一定律。
第七章热量传递的三种基本方式简介
本章要求:1.掌握热量传递三种基本方式的概念、特点与基本计算式;2.掌握热导率、表面传热系数与发射率的概念;3.了解复合传热与传热过程的概念。
知识点:
1. 传热定义及基本传递方式:传热是由于温差引起的热量转移过程,它有三种不同的基本传递方式:热传导、热对流与热辐射。
2. 热传导、热对流与热辐射的基本概念及其传热量的基本计算公式:当物体内有温度差或两个不同温度的物体直接接触时,在物体各部分之间不发生相对位移的情况下,依靠物质微粒(分子、原子或自由电子等)的热运动而产生的热量传递现象称为热传导,简称导热,导热传热量用傅立叶导热定律进行计算;流体中,温度不同的各部分之间发生相对位移时所引起的热量传递现象叫热对流,简称对流。
工程上特别感兴趣的是流体流过固体壁面时发生的对流和导热联合作用的热量传递过程,称为对流传热,对流传热量用牛顿冷却公式计算。
物体通过电磁波来传递能量的方式称为辐射,物体因为热的原因而发出辐射能的现象称为热辐射。
3. 复合传热基本概念:对流与辐射同时存在的传热过程称为复合传热。
4. 辐射传热表面传热系数:r r Φh A t =∆。
5. 传热过程基本概念:热量由固体壁一侧的热流体通过固
体壁传递给另一侧冷流体的过程,叫做传热过程。
第八章导热的基本定律及稳态导热
本章要求:1. 掌握傅里叶导热定律;2. 掌握三维直角坐标导热微分方程;3. 掌握温度场的求解,通过平壁和圆筒壁的稳态导热计算公式;4. 掌握热阻概念及其应用;5. 掌握肋片导热特点与套管式温度计测量误差分析。