有理数培优与拔高(含规范标准答案)
- 格式:doc
- 大小:97.02 KB
- 文档页数:6
一、初一数学有理数解答题压轴题精选(难)1.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。
灰太狼计划为全家抓5只羊,综合考虑口感和生长周期等因素,决定所抓羊的年龄之和不超过112岁且高于34岁。
请问灰太狼有几种抓羊方案?【答案】(1)解:如图:点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.由题意可知,当点N移动到点A时,点M所对应的数为-40,当点M移动到点B时,点N 所对应的数为116.可求MN=52.所以点A所对应的数为12,点B所对应的数为64.即美羊羊今年12岁,村长爷爷今年64岁.(2)解:设抓小羊x只,则老羊为(5-x)只,依题意得:解得:,则x=4,或x=5,即抓四只小羊一只老羊或抓五只小羊【解析】【分析】(1)由数轴观察知三根木棒长是20-5=15(cm),则此木棒长为5cm;(2)在求村长爷爷年龄时,借助数轴,把美羊羊与村长爷爷的年龄差看做木棒MN,类似村长爷爷比美羊羊大时看做当N点移动到A点时,此时M点所对应的数为-40,美羊羊比村长爷爷大时看做当M点移动到B点时,此时N点所对应的数为116,所以可知爷爷比美羊羊大[116-(-40)]÷3=52,可知爷爷的年龄.(3)设抓小羊x只,则老羊为(5-x)只,根据“ 所抓羊的年龄之和不超过112岁且高于34岁”列不等式组,求解.2.阅读下面的材料:如图1,在数轴上A点表示的数为a,B点表示的数为b,则点A到点B的距离记为AB.线段AB的长可以用右边的数减去左边的数表示,即AB=b-a.请用上面的知识解答下面的问题:如图2,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向左移动1cm到达B 点,然后向右移动6cm到达C点,用1个单位长度表示1cm.(1)请你在数轴上表示出A、B、C三点的位置:(2)点C到点A的距离CA=________cm;若数轴上有一点D,且AD=4,则点D表示数________;(3)若将点A向右移动xcm,则移动后的点表示的数为________;(用代数式表示);(4)若点B以每秒3cm的速度向左移动,同时A、C点分别以每秒1cm、5cm的速度向右移动.设移动时间为t秒,试探索:CA-AB的值是否会与t的值有关?请说明理由.【答案】(1)解:点A表示-3,点B表示-4,点C表示2,如图所示,(2)5;1或-7(3)-3+x(4)解:CA-AB的值与t的值无关.理由如下:由题意得,点A所表示的数为-3+t,点B表示的数是-4-3t,点C表示的数是2+5t,∵点C的速度比点A的速度快,∴点C在点A的右侧,∴CA=(2+5t)-(-3+t)=5+4t,∵点B向左移动,点A向右移动,∴点A在点B的右侧,∴AB=(-3+t)-(-4-3t)=1+4t,∴CA-AB=(5+4t)-(1+4t)=4.【解析】【解答】(2)CA=2-(-3)=2+3=5;当点D在点A右侧时,点D表示的数是:4+(-3)=1;当点D在点A左侧时,点D表示的数是:-3-4=-7;故答案为5;1或-7.( 3 )点A表示的数为-3,则向右移动xcm,移动到(-3+x)处.【分析】(1)在数轴上进行演示可分别得出点A,点B,点C所表示的数;(2)由题中材料可知CA的距离可用右边的数减去左边的数,即CA=2-(-3);由AD=4,且点A,点D的位置不明确,则需分类讨论:当点D在点A右侧时,和当点D 在点A左侧时,两种情况;(3)向右移动x,在原数的基础上加“x”;(4)由字母t分别表示出点A,点B,点C的数,由它们的移动方向不难得出点C在点A 的右侧,点A在点B的右侧,依此计算出CA,AB的长度,计算CA-AB的值即可.3.已知 a、b、c 在数轴上的位置如图:(1)用“<”或“>”填空:a+1________0;c-b________0;b-1________0;(2)化简:;(3)若a+b+c=0,且b与-1的距离和c与-1的距离相等,求下列式子的值:2b -c - (a - 4c - b).【答案】(1)>;<;<(2)解:∵a+1>0,c-b<0,b-1<0,∴原式=a+1-(b-c)-(1-b)=a+1-b+c-1+b=a+c(3)解:由已知得:b+1=-1-c,即b+c=-2,∵a+b+c=0,即-2+a=0,∴a=2,则2b -c - (a - 4c - b).=2b -c - a + 4c + b=3(b+c)-2=【解析】【解答】解:(1)根据题意得:c<0<b<1<a∴a+1>0;c-b<0;b-1<0【分析】(1)根据数轴上点的位置进行计算比较大小即可;(2)利用数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果(3)根据题意列出关系式,求出a与b+c的值,原式去括号合并得到最简结果,将a与b+c的值代入计算即可求出值.4.对于有理数,定义一种新运算“ ”,观察下列各式:,,.(1)计算: ________, ________.(2)若,则 ________ (填入“ ”或“ ”).(3)若有理数,在数轴上的对应点如图所示且,求的值.【答案】(1)19;(2)(3)解:由数轴可得,,,则,,∵,∴,∴,∴,∴.【解析】【解答】(1),;(2)∵,,,∴,或综上可知,【分析】(1)根据定义计算即可;(2)分别根据定义计算a b和b a,判断是否相等;(3)由定义计算得到|a+b|=5,再根据数轴上点的位置关系判断a+b<0,再计算[(a+b)(a+b)][a+b]5.已知数轴上A,B两点对应的有理数分别是,15,两只电子蚂蚁甲,乙分别从A,B两点同时出发相向而行,甲的速度是3个单位/秒,乙的速度是6个单位/秒(1)当乙到达A处时,求甲所在位置对应的数;(2)当电子蚂蚁运行秒后,甲,乙所在位置对应的数分别是多少?(用含的式子表示)(3)当电子蚂蚁运行()秒后,甲,乙相距多少个单位?(用含的式子表示)【答案】(1)解:乙到达A处时所用的时间是(秒),此时甲移动了个单位,所以甲所在位置对应的数是(2)解:∵甲的速度是3个单位/秒,乙的速度是6个单位/秒,∴移动秒后,甲所在位置对应的数是:,乙所在位置对应的数是(3)解:由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时,,,所以,运行()秒后,甲,乙间的距离是:个单位【解析】【分析】(1)根据有理数的减法算出AB的长度,再根据路程除以速度等于时间算出乙到达A处时所用的时间,接着利用速度乘以时间算出甲移动的距离,用甲移动的距离减去其离开原点的距离即可算出其即可得出答案;(2)根据移动的方向,用甲移动的距离减去其距离原点的距离即可得出移动秒后,甲所在位置对应的数;用乙距离原点的距离减去其移动的距离即可得出移动秒后,乙所在位置对应的数;(3)由(2)知,运行秒后,甲,乙所在位置对应的数分别是,,当时甲已经移动到原点右边了,乙也移动到原点左边了,即,,根据两点间的距离公式即可算出它们之间的距离.6.快递员小王下午骑摩托车从总部出发,在一条东西走向的街道上来回收送包裹.他行驶的情况记录如下(向东记为“ ”,向西记为“ ”,单位:千米):,,,,,,(1)小王最后是否回到了总部?(2)小王离总部最远是多少米?在总部的什么方向?(3)如果小王每走米耗油毫升,那么小王下午骑摩托车一共耗油多少毫升?【答案】(1)解:+2-3.5+3-4-2+2.5+2=0,∴小王最后回到了总部(2)解:第一次离总部2=2千米;第二次:2-3.5=-1.5千米;第三次:-1.5+3=1.5千米;第四次:1.5-4=-2.5千米;第五次:-2.5-2=-4.5千米;第六次:-4.5+2.5=-2千米;第七次:-2+2=0千米.所以离总部最远是4.5千米,在总部的西方向(3)解:|+2|+|-3.5|+|+3|+|-4|+|-2|+|+2.5|+|+2|=2+3.5+3+4+2+2.5+2=19千米又∵摩托车每行驶1千米耗油30毫升,∴19×30=570(毫升)∴这一天下午共耗油570毫升.【解析】【分析】(1)根据有理数的加减法,再根据正负数即可;(2)根据有理数的加减法,再根据正负数即可;(3)根据绝对值的性质,再根据正负数即可;7.已知:b是最小的正整数,且a、b满足+=0,请回答问题:(1)请直接写出a、b、c的值;(2)数轴上a、b、c所对应的点分别为A、B、C,点M是A、B之间的一个动点,其对应的数为m,请化简(请写出化简过程);(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动.若点A以每秒1个单位长度的速度向左运动.同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动.假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【答案】(1)解:∵b是最小的正整数∴b=1∵+=0∴a = -1,c=5故答案为:-1;1;5;(2)解:由(1)知,a = -1,b=1,a、b在数轴上所对应的点分别为A、B,①当m<0时,|2m|=-2m;②当m≥0时,|2m|=2m;(3)解:BC-AB的值不随着时间t的变化而变化,其值是2,理由如下:∵点A以每秒一个单位的速度向左移动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右移动,∴BC=3t+4,AB=3t+2∴BC-AB=3t+4-(3t+2)=2【解析】【分析】(1)先根据b是最小的正整数,求出b,再根据+=0,即可求出a、c的值;(2)先得出点A、C之间(不包括A点)的数是负数或0,得出m≤0,在化简|2m|即可;(3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.8.甲、乙、丙三个教师承担本学期期末考试的第17题的网上阅卷任务,若由这三人中的某一人独立完成阅卷任务,则甲需要15小时,乙需要10小时,丙需要8小时。
8-4GF E D C BA 人教版七年级上《第1章有理数》拔高题及易错题精选附答案(全卷总分150分) 姓名 得分一、选择题(每小题3分,共30分)1. 如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是( )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a 2. 假如b a ,互为相反数,那么下面结论中不一定正确的是( )A. 0=+b aB. 1-=b aC. 2a ab -=D. b a =3. 若│a│=│b│,则a 、b 的关系是( )A. a=bB. a=-bC. a+b=0或a -b=0D. a=0且b=04. 已知数轴上两点A 、B 到原点的距离是2和7,则A ,B 两点间的距离是 A. 5 B. 9 C. 5或9 D. 75. 若a<0,则下列各式不正确的是( )A. 22)(a a -=B. 22a a =C. 33)(a a -=D. )(33a a --= 6. -52表示( )A. 2个-5的积B. -5与2的积C. 2个-5的和D. 52的相反数 7. -42+ (-4) 2的值是( )A. –16B. 0C. –32D. 32 8. 已知a 为有理数时,1122++a a =( )A. 1B. -1C. 1±D. 不能确定9. 设n 是自然数, 则n n 1(1)(1)2+-+-的值为( )A. 0B. 1C. -1D. 1或-110. 已知|x|=5,|y|=3,且x>y ,则x +y 的值为( )A . 8B . 2C . -8或-2D . 8或211. 我国西部地区面积约为640万平方公里,640万用科学记数法表示为( )A. 464010⨯B. 56410⨯C. 66410⨯.D. 6410⨯7.12. 京九铁路的全长用四舍五入法得到近似数为2.5×106m ,则它精确到( ) A. 万位 B. 十万位 C. 百万位 D. 千位二、填空题(每小题3分,共48分) 1. 已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= .2. 数轴上点A 表示的数为-2,若点B 到点A 的距离为3个单位,则点B 表示的数为.3. 如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8.(1)点B 表示的有理数是 ;表示原点的是点 .(2)图中的数轴上另有点M 到点A ,点G 距离之和为13,则如此的点M 表示的有理数是 .4.-⎪⎪⎪⎪⎪⎪-23的相反数是 .5. 假如x 2=9,那么x 3= .6. 假如2-=-x ,则x = .7. 化简:|π-4|+|3-π|= .8. 绝对值小于2.5的所有非负整数的和为 ,积为 .9. 使25++-x x 值最小的所有符合条件的整数x 有 . 10. 若 a 、b 互为相反数,c 、d 互为倒数,则 (a +b )10 -(cd ) 10 = . 11. 若a 、b 互为相反数,c 、d 互为倒数,3=x ,则式子2(a +b )-(-cd )2021+x 的值为 .12. 已知()0422=-++y x ,求x y 的值为 .13. 近似数2.40×104精确到 位,它的有效数字是 .14. 观看下列算式发觉规律:71=7,72=49,73=343,74=2401,75=16807,76=117649,……,用你所发觉的规律写出:72021的个位数字是 .15. 观看等式:1+3=4=22,1+3+5=9=32 ,1+3+5+7=16=42 ,1+3+5+7+9=25=52 ,……猜想:(1)1+3+5+7…+99 = ;(2) 1+3+5+7+…+(2n -1)= .(结果用含n 的式子表示,其中n =1,2,3,……).16. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 个单位. 三、解答题(共82分)1. (12分)运算:(1))49()2115()375()25.4(37153)371012(+---+--++-(2)10.12512(16)(2)2-⨯⨯-⨯-(3)51)716(5)31112(5)31137(51)7111(⨯++÷++÷-+⨯-(4)+-+-+-31412131121 (999)110001-2. (5分)运算1-3+5-7+9-11+…+97-99.3. (5分)已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2,那么所有满足条件的点B 对应的数有哪些?4. (6分)“*”代表一种新运算,已知a ba b ab+*=,求x y *的值.其中x 和y 满足21()|13|02x y ++-=.5. (6分)已知()0212=-++b a ,求(a +b)2021+a 2021.0b ac6. (6分)已知a ,b 互为相反数,c 、d 互为倒数,x 的绝对值为5.试求下式的值:201720162)()()(cd b a cd b a x -+++++-.7. (6分)已知│a│=4,│b│=3,且a>b ,求a 、b 的值.8. (6分)已知│a│=2,│b│=5,且ab<0,求a +b 的值.9. (6分)探究规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 … …(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x ,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。
有理数培优题 基础训练题一、填空:1、在数轴上表示-2的点到原点的距离等于( )。
2、若∣a ∣=-a,则a ( )0.3、任何有理数的绝对值都是( )。
4、如果a+b=0,那么a 、b 一定是( )。
5、将0.1毫米的厚度的纸对折20次,列式表示厚度是( )。
6、已知||3,||2,||a b a b a b ==-=-,则a b +=( )7、|2||3|x x -++的最小值是( )。
8、在数轴上,点A 、B 分别表示2141,-,则线段AB 的中点所表示的数是( )。
9、若,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,则()20102a b mn p p++-=( )。
10、若abc ≠0,则||||||a b c a b c++的值是( ) . 11、下列有规律排列的一列数:1、43、32、85、53、…,其中从左到右第100个数是( )。
二、解答问题:1、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。
3、若2|45||13|4x x x +-+-+的值恒为常数,求x 满足的条件及此时常数的值。
4、若,,a b c 为整数,且20102010||||1a b c a -+-=,试求||||||c a a b b c -+-+-的值。
5、计算:-21 +65-127+209-3011+4213-5615+72176、应用拓展:将七只杯子放在桌上,使三只口朝上,四只口朝下。
现要求每次翻转其中任意四只,使它们杯口朝向相反,问能否经有限次翻转后,让所有杯子杯口朝下?能力培训题知识点一:数轴例1:已知有理数a 在数轴上原点的右方,有理数b 在原点的左方,那么( ) A .b ab < B .b ab > C .0>+b a D .0>-b a 拓广训练:1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有( )(“祖冲之杯”邀请赛试题)A .1B .2C .3D .43、把满足52≤<a 中的整数a 表示在数轴上,并用不等号连接。
2015年人教版数学七年级上册“单元精品卷”(含精析)第一章有理数(培优提高卷)题型选择题填空题解答题总分得「分一、选择题。
(本题有10个小题,每小题3分,共30分)1 •在实数0,—「3 , - , | 2中,最小的数是()3A .2B . 0C .3D . I 22•如图所示,有理数 a 、b 在数轴上的位置如下图,则下列说法错误的是( )b -2-1A 、b<aB 、a+b <0C 、ab<0D 、b- a>04 •已知有理数a ,b 所对应的点在数轴上如图所示,则有 ( )【0: 21 • 2. 1 •网】卜六进制 01 23•6 78 9 AC D E F十进制12] 3 4567910 11 12 13 1415)3 .观察下面一组数: -1,2-5,6, -7,….,将这组数排成如图的形式,按照如图规律排下去,则第10行中从左边数第9个数是()21*5y*3算一行 第二行 童三行 sra 行A 、-902-3 4■5 (5 ・7 8 /10 -11 12 43 14 15 16B 、90C 、-91D 、91 A . — a v 0v b B .— b v a v 0 C . a v 0v — bD . 0 v b v — a5 .计算机中常用的十六进制是逢16进I 的计数制,采用数字0〜9和字母A 〜F 共16个计6 .若a b,则下列各式一定成立的是(7.下列算式中,积为负数的是(法表示为()二、填空题。
(本题有6个小题,每小题4分,共24分)2 a+b11.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m -cd+ 的值是_m12 .北京的水资源非常匮乏,为促进市民节水,从阶梯水价,实施细则如下表:B. 6E .C. . 5FD. B0 .A. a b 0B. a b 0 C .ab D. ab 0A. 0 ( 5) 0.5) 10)C . ( 1.5) ( 2)D . ( 2)(11)(2)8.生物学家发现了一种病毒的长度约为0 . 00000432毫米.数据0 . 00000432用科学记数A 0 432 XI0-5B . 4 . 32 X 10-6C 4 32 X0-7D 43 2 X10-79.下列各组的两个数中,运算后的结果相等的是(A . 23和3233和( 3)3 C . 22和( 2)2 D . -和—3 310 . 一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式拼接.)张?1=1 1=1 1=^□ 1=1A . 15B . 16C . 21 D. 222014年5月1日起北京市居民用水实行)若用餐的人数有90人,则这样的餐桌需要(1=1 l=ZI1匕京市居民用水阶梯水价隼1单位:元,立方米分栏水嚣户年用水量(立万米)水价其中自来水费水资源费污水处理费第一阶梯0-1S0 (含》 1. 07第二阶梯181-260 ⑻7, 004・071・571・36第三阶梯260凯上P. (K) 6. 07某户居民从2015年1月1日至4月30日,累积用水190立方米,则这户居民4个月共需缴纳水费___________ 元.15•如果互为a,b相反数,x,y互为倒数,则2014 a b 2015x y的值是__________________________ 。
七年级数学有理数运算技巧提升(有理数及其运算)拔高练习试卷简介:全卷共两个大题,第一题是单选题,8小题,每题10分;第二题是解答题,5小题,每题8分;满分120分,测试时间100分钟。
本套试卷立足有理数的运算法则的基础知识,考察了学生用有理数运算法则、顺序和技巧等的应用,侧重于考察学生对运算法则的理解,对有理数混合运算的综合运用能力。
题目设计高于课本中的基础知识,但是又来源于课本,学生在做题过程中可以回顾所学知识点,认清自己对知识的掌握及灵活运用程度。
学习建议:本讲主要内容是有理数混合运算专题突破之应用,是中考的常考题型,大家需要在熟练掌握这些知识的基础上,学会灵活运用。
题目设置灵活多变,但万变不离其宗,只要掌握了最基本的知识点,再多加练习,就能轻松掌握,灵活运用。
一、单选题(共8道,每道10分)1.下列哪一步计算错误解:原式=①= ②= ③=④A.①B.①②C.①②③D.②③答案:B解题思路:除以一个数等于乘以这个数的倒数,所以第一步应该是,故①错误;一个负数的奇次方应为负数,故②错误.易错点:有理数除法法则;乘方;运算跨步大试题难度:四颗星知识点:有理数的加减混合运算2.计算:-1+3-5+7-9+11-…-1997+1999=( )A.10B.100C.1000D.10000答案:C解题思路:解:原式=(-1+3)+(-5+7)+.........+(-1997+1999)=2+2+...........+(+2)因为(-1,3,-5,..........1999)共1000个数,所以共有500组,每组的结果为2,所以原式=500×2=1000易错点:找不出规律,对于如何组合数字没有概念,计算组数时出错试题难度:三颗星知识点:有理数的加减混合运算3.计算:4726342+4726352-472633×472635-472634×472636,下列计算结果正确的是()A.+1B.-1C.+2D.-2答案:C解题思路:解:4726342+4726352-472633×472635-472634×472636 =4726342+4726352-(472634-1)×(472634+1)-(472635-1)×(472635+1)=4726342+4726352-(4726342-1)-(4726352-1)=4726342+4726352-4726342+1-4726352+1 =2易错点:不能熟练运用括号进行简便计算的方法,对乘法公式没有熟练掌握,灵活运用试题难度:三颗星知识点:有理数的混合运算4.计算1+5+52+53+…+599+5100的值中下列那一步是错误的()解:S=1+5+52+53+…+599+5100 ① 5S=5+52+53+…+599+5101 ② 5S-S=1-5101③ S=1-5101④A.①,②B.②,③C.①,②,③D.③,④答案:D解题思路:S=1+5+52+53+…+599+51005S=5+52+53+…+599+51015S-S=5101-14S=5101-1易错点:想不到错位相减法,再减的过程中方程左右两边符号写反.试题难度:三颗星知识点:有理数的混合运算5.计算:37.9×0.0038+1.21×0.379+6.21×0.159的结果正确的是()A.3.79B.1.21C.1.59D.6.21答案:C解题思路:解:原式=37.9×0.0038+0.0121×37.9+6.21×0.159 =37.9×(0.0038+0.0121)+6.21×0.159 =37.9×0.0159+6.21×0.159 =0.159×(3.79+6.21)=0.159×10 =1.59易错点:能够仔细观察该题的特征,学会灵活运用乘法的结合律和分配律试题难度:三颗星知识点:有理数的加减混合运算6.=①=②=③=④ 下列步骤错误的是()A.①B.②C.③D.④答案:D解题思路:采用裂项相消的办法,先把每一项都分项,然后利用乘法分配率的逆运算计算出结果,注意计算的正确性易错点:看不出来使用裂项相消法,同时计算不小心又出现计算的错误试题难度:四颗星知识点:有理数的加法7.计算213-212-211-210-29-28-27的值中哪些步骤是正确的()解:S=213-212-211-210-29-28-27① 2S=214-213-212-211-210-29-28② 2S-S=214-28③ S=214-28④A.①,③B.①,②C.②,④D.③,④答案:B解题思路:解:S=213-212-211-210-29-28-27 S=214-213-212-211-210-29-28 2S-S=214-213-213+27 S=214-2×213+27 =214-2×213+27 =214-2×213+27 =128易错点:想不到错位相减法,两式相减的过程出错试题难度:四颗星知识点:有理数的混合运算8.=①=②=③ 下列步骤错误的是()A.①B.②C.③D.①、③答案:A解题思路:观察特征,可以发现是裂项相消,利用裂项相消办法可以进行计算易错点:观察不出裂项相消的特征,进而不能进行计算试题难度:三颗星知识点:有理数的混合运算二、计算题(共5道,每道8分)1.计算:答案:解:原式=====解题思路:观察最后一项,用同样的方法得到倒数第二项为,从中得到规律,每一项都为(每一项的项数-1)÷2,最后得到,求值得885.易错点:找不到题型特征试题难度:四颗星知识点:有理数的乘法2.答案:解:原式====解题思路:利用求和公式算出每项的通式,然后根据裂项相消的办法进行裂项,然后提取公因式,最后计算出答案易错点:不知道求和公式的通式进而看不出裂项的特征,不能进行正确的裂项试题难度:五颗星知识点:有理数的混合运算3. 计算:答案:===解题思路:按照有理数混合运算的顺序一步一步进行计算,熟练使用有理数运算法则易错点:不能熟练进行有理数混合运算,对有理数运算法则没有熟练掌握试题难度:三颗星知识点:有理数的混合运算4.计算:答案:解:原式解题思路:观察发现每一项都可以用1减去一个分子为1的数得到,进而通过计算知道每一项分母都是相隔两个奇数的乘积,通过进一步的错位相减即可得到.易错点:观察出各项的特征和各项之间的联系试题难度:五颗星知识点:有理数的乘法5.答案:解:令==-==解题思路:先设出原式的值,再把等式的两边都乘以,即可通过列项相消法求得.易错点:不会用列项相消法.试题难度:三颗星知识点:有理数的混合运算。
专训一:有理数的比较大小的方法 名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.)利用作差法比较大小1.比较1731和5293的大小.*利用作商法比较大小;2.比较-172 016和-344 071的大小.;利用找中间量法比较大小3.比较1 0072 016与1 0092 017的大小.[利用倒数法比较大小· 4.比较1111 111和1 11111 111的大小.)利用变形法比较大小5.比较-2 0142 015,-1415,-2 0152 016,-1516的大小.]6.比较-623,-417,-311,-1247的大小.}、利用数轴法比较大小7.已知a >0,b <0,且|b|<a ,试比较a ,-a ,b ,-b 的大小.%利用特殊值法比较大小8.已知a,b是有理数,且a,b异号,则|a+b|,|a-b|,|a|+|b|的大小关系为_______________________________________________.【利用分类讨论法比较大小9.比较a与a3的大小.专训二:有理数中6种易错类型-对有理数有关概念理解不清造成错误1.下列说法正确的是()A.最小的正整数是0B.-a是负数\C.符号不同的两个数互为相反数D.-a的相反数是a2.已知|a|=7,则a=W.误认为|a|=a,忽略对字母a分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是()·A.负数B.负数或零C.正数或零D.正数4.已知a=8,|a|=|b|,则b的值等于()B.-8D.±8对括号使用不当导致错误!5.计算:-7-5.[6.计算:2-⎝ ⎛⎭⎪⎫-15+14-12.}忽略或不清楚运算顺序[7.计算:-81÷94×49÷(-16).。
一、初一数学有理数解答题压轴题精选(难)1.如图,已知点A、B分别为数轴上的两点,点A对应的数是-20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.(1)与、两点相等的点所对应的数是________.(2)两动点、Q相遇时所用时间为________秒;此时两动点所对应的数是________.(3)动点P所对应的数是时,此时动点Q所对应的数是________.(4)当动点P运动秒钟时,动点P与动点Q之的距离是________单位长度.(5)经过________秒钟,两动点P、Q在数轴上相距个单位长度.【答案】(1)30(2)20;40(3)52(4)25(5)12或28【解析】【解答】(1)AB的中点C所对应的数为:;(2)设两动点相遇时间为t秒,(2+3)t=80-(-20) 解得:t=20(秒)80-2t=80-2×20=40,或-20+3×20=40∴此时两动点所对应的点为40;(3)22-(-20)=42, 80-42÷3×2=52∴动点所对应的数是时,此时Q所对应的数为52;(4)∵20秒相遇,∴(2+3) ×25-[80-(-20)]=25(5)P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40) ÷(3+2)=60÷5=12(秒)②相遇后,(100+40)÷(2+3)=140÷5 =28(秒)∴经过12或28秒钟,两动点、在数轴上相距个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用公式计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可;用80-2t即可求得此时两动点对应的数;(3)先求出动点P对应的点是22时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数;(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即: ①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.【答案】(1)5;0(2)解:若P、Q两点相遇前距离为3,则有t+2t+3=10-(-5),解得:t=4,此时P点对应的数为:-5+t=-5+4=-1;若P、Q两点相遇后距离为3,则有t+2t-3=10-(-5),解得:t=6,此时P点对应的数为:-5+t=-5+6=1;综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.【解析】【解答】(1)解:由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;若P,Q两点相遇,则有-5+t=10-2t,解得:t=5,-5+t=-5+5=0,即相遇点所对应的数为0,故答案为5;相遇点所对应的数为0;【分析】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)分相遇前相距3个单位长度与相遇后相距3个单位长度两种情况分别求解即可得.3.如图:在数轴上点表示数,点表示数,点表示数,是最大的负整数,且、满足与互为相反数.(1) ________, ________, ________.(2)若将数轴折叠,使得点与点重合,则点与数________表示的点重合;(3)点、、开始在数轴上运动,若点以每秒2个单位长度的速度向左运动,同时,点和点分别以每秒1个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点与点之间的距离表示为,点与点之间的距离表示为 .①请问:的值是否随着时间变化而改变?若变化,说明理由;若不变,请求其值.②探究:在(3)的情况下,若点、向右运动,点向左运动,速度保持不变,值是否随着时间的变化而改变,若变化,请说明理由;若不变,请求其值.【答案】(1)解:-3;-1;5;(2)3;(2)3(3)解:① ,,.故的值不随着时间的变化而改变;② ,,.当时,原式,的值随着时间的变化而改变;当时,原式,的值不随着时间的变化而改变.【解析】【解答】(1)∵,∴,,解得,,∵是最大的负整数,∴ .故答案为:-3,-1,5.(2) ,对称点为, .故答案为:3.【分析】(1)由非负数的性质可求出a、c,最大的负整数是-1,故b=-1;(2)折叠后AC重合,A、C的中点即为对称点,再根据对称点求出跟B重合的数;(3)①用速度乘以时间表示出运动路程,可得到和的表达式,再判断的值是否与t相关即可;②同理求出和的表达式,再计算,分情况讨论得出结果.4.已知数轴上顺次有A、B、C三点分别表示数a、b、c,并且满足(a+12)2+|b+5|=0,b与c互为相反数。
浙教版七年级上册第二章有理数的运算培优一、选择题1.2024年4月25号,我国神舟十八号载人飞船发射取得圆满成功,在发射过程中,飞船的速度约为每小时29000千米,数据29000用科学记数法表示为()A.2.9×106B.2.9×105C.2.9×104D.29×1052.根据有理数加法法则,计算2+(﹣3)过程正确的是( )A.+(3+2)B.+(3﹣2)C.﹣(3+2)D.﹣(3﹣2)3.有一只蜗牛从数轴的原点出发,先向左(负方向)爬行9个单位长度,再向右爬行3个单位长度,用算式表示上述过程与结果,正确的是( )A.−9+3=−6B.−9−3=−12C.9−3=6D.9+3=124.实数a,b,c在数轴上的位置如图所示,下列结论正确的是( )A.b+c>3B.a﹣c<0C.|a|>|c|D.﹣2a<﹣2b5.若式子x−2+(y+3)2=0,则(x+y)2025等于( )A.−1B.1C.−32025D.320256.计算:(−517)2023×(−325)2024=( )A.−1B.1C.−517D.−1757.22023个位上的数字是( )A.2B.4C.8D.68.求1+2+22+23+⋯+22018的值,可令S=1+2+22+23+⋯+22018,则2S=2+22+23+⋯+ 22019,因此2S−S=22019−1,仿照以上推理,计算出1+5+52+53+⋯+52018的值为( )A.52018−1B.52019−1C.52019−14D.52018−149.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为( )A.(12)3米B.(12)5米C.(12)6米D.(12)12米10.方程(x2+x﹣1)x+3=1的所有整数解的个数是( )A.5个B.4个C.3个D.2个二、填空题11.用四舍五入法对0.618取近似数(精确到0.1)是 .12.小明在电脑中设置了一个有理数运算程序:输入数a,加*键,再输入数b,就可以得到运算a*b=3a+2b,请照此程序运算(−4)*3= .13.定义一种新的运算“(a,b)”,若a c=b,则(a,b)=c,如:(2,16)=4.已知(3,9)=x,(3,y)=4,则x−y= .14.已知|3a+b+5|+(2a−2b−2)2=0,那么2a2−3ab的值为 .15.“转化”是一种解决数学问题的常用方法,有时借助几何图形可以帮助我们找到转化的方法.例如,借助图(1)可以把算式1+3+5+7+9+11转化为62=36.这是将数字求和问题转化为面积求和问题,从而建立数与形的联系,使问题易于解决.利用这样的方法,请观察图(2)计算12+14+18+116+132+164= .16.《算法统宗》是我国明代数学著作,它记载了多位数相乘的方法,如图1给出了34×25=850的步骤:①将34,25分别写在方格的上边和右边;②把上述各数字乘积的十位(不足写0)与个位分别填入小方格中斜线两侧;③沿斜线方向将数字相加,记录在方格左边和下边;④将所得数字从左上到右下依次排列(满十进一).若图2中a,b,c,d均为正整数,且c,d都不大于8,则b的值为 ,该图表示的乘积结果为 .三、解答题17.(1)计算:(−34−59+712)÷(−136).(2)计算:−12022−|12−1|÷3×[2−(−3)2].18.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)19.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.20.用“※”定义一种新运算,规定a※b=b2−a,如1※3=32−1=8,(1)求1※2的值;(2)求(1※2)※(−5)的值.21.老师设计了一个有理数运算的游戏.规则如下:(1)若黑板上的有理数为“−4”,求应写在纸条上的有理数;(2)学习委员发现:若正确计算后写在纸条上的结果为正数,则老师在黑板上写的最大整数是多少?22.为了增强市民的节约用水意识,自来水公司实行阶梯收费,具体情况如表:每月用水量收费不超过10吨的部分水费1.6元/吨10吨以上至20吨的部分水费2元/吨20吨以上的部分水费2.4元/吨(1)若小刚家6月份用水15吨,则小刚家6月份应缴水费_____ 元.(直接写出结果)(2)若小刚家7月份的平均水费为1.75元/吨,则小刚家7月份的用水量为多少吨?(3)若小刚家8月、9月共用水40吨,9月底共缴水费79.6元,其中含2元滞金(水费为每月底缴纳.因8月份的水费未按时缴,所以收取了滞纳金),已知9月份用水比8月份少,求小明算8、9月各用多少吨水?四、综合题23.阅读理解:计算(1+12+13)(12+13+14)−(1+12+13+14)(12+13)时,若把分别(12+13)与(12+13+14)看作一个整体,再利用乘法分配律进行计算,可以大大简化难度,过程如下:解:令12+13=x,12+13+14=y,则原式=.(1+x)y−(1+y)x=y+xy−x−xy=y−x=1 4(1)上述过程使用了什么数学方法? ;体现了什么数学思想? ;(填一个即可)(2)用上述方法计算:①(1+12+13+14)(12+13+14+15)−(1+12+13+14+15)(12+13+14);②(1+12+13+…+1n−1)(12+13+14+…+1n)−(1+12+13+…+1n)(12+13+14…+1n−1);③计算:1×2×3+2×4×6+3×6×9+4×8×12+5×10×151×3×5+2×6×10+3×9×15+4×12×20+5×15×25.答案解析部分1.【答案】C2.【答案】D3.【答案】A4.【答案】B5.【答案】A6.【答案】D7.【答案】C8.【答案】C9.【答案】C10.【答案】B11.【答案】0.612.【答案】−613.【答案】−7914.【答案】−415.【答案】636416.【答案】3;72817.【答案】(1)26;(2)1618.【答案】图见解答,−3<3<−(−2)<|−3|<(−2)2219.【答案】(1)5,2(2)①8或−2;②9;③102313220.【答案】(1)3(2)2221.【答案】(1)4(2)322.【答案】(1)解:∵小刚家6月份用水15吨,∴小刚家6月份应缴水费为10×1.6+(15-10)×2=26(元),故答案为:26.(2)解:由题意知小刚家7月份的用水量超过10吨而不超过20吨,设小刚家7月份用水量为x吨,依题意得:1.6×10+2(x-10)=1.75x ,解得:x =16,答:小刚家7月份的用水量为16吨.(3)解:因小刚家8月、9月共用水40吨,9月份用水比8月份少,所以8月份的用水量超过了20吨.设小刚家9月份的用水量为x 吨,则8月份的用水量为(40-x )吨,①当x≤10时,依题意可得方程:1.6x+16+20+2.4(40-x-20)+2=79.6解得:x =8,②当10<x <20时,依题意得:16+2(x-10)+16+20+2.4(40-x-20)+2=79.6解得:x =6不符合题意,舍去.综上:小刚家8月份用水32吨,9月份用水8吨.23.【答案】(1)换元法;整体思想(转化思想)(2)解:①令12+13+14=a ,12+13+14+15=b ,∴b-a=15,∴原式=(1+a )b-(1+b )a=b+ab-a-ab=b-a=15;②令12+13+…+1n−1=m ,12+13+14+1n =t ,∴t-m=1n,∴原式=(1+m )t-(1+t )m=t+mt-m-mt=t-m=1n;③令1×2×3=x ,1×3×5=y ,∴x y =615=25∴原式=x +2x +3x +4x +5x y +2y +3y +4y +5y =15x 15y =x y =25.。
人教版七年级数学上册 第一章 有理数 单元培优、拔高检测卷及答案(时间:90分钟 满分:100分)说明:试卷总成绩等级对照表:等级转换说明:一、选择题:(每小题3%,共30%)1.在数轴上1-与4-之间的有理数有( ) A.无数个 B.3个 C.2个 D.1个2.下列等式中,正确的是( )A.()()3223-=-⨯B.6886= C.()3322-=- D.()2244-=-3.若a 、b 互为相反数,则①0a b +=;②a b =-;③a b =;④2ab b =-中必定成立的有( )A.1个B.2个C.3个D.4个4.无论x 为何有理数,22x -+的值总是( )A.不大于2B.小于2C.不小于2D.大于2 5.一个数比它的相反数小,则这个数一定是( )A.正数B.负数C.0D.负数或0 6.若a 是有理数,下列式子一定大于0的是( )A 2a B.1a + C.31a + D.21a +7.在有理数3-、3-、()()()232333333-----、-、、、中,负数的个数是( ) A.2 B.3 C.4 D.5 8.3.14159……取精确到百分位的近似值是( )A.3.1B.3.14C.3.142D.3.1416 9.绝对值小于3.5的整数的个数是( )A.8B.7C.6D.5 10.如果一个数的平方等于它的倒数,那么这个数一定是( ) A.0 B.1 C.-1 D.1或-1二、填空题:(每题3%, 共24%)11.114的倒数是 .12.珠穆朗玛峰高出海平面8848米,记为+8848米;吐鲁番盆地低于海平面154米,记为 米.13.室内温度是10o C, 室外温度是-4o C, 室内温比室外温度高 . 14.在横线上填上合适的运算符号,使等式成立6 6 6 6=1. 15.数轴上表示-3和7的两点之间的距离是 . 16.平方是16的数是 .17.某水泥厂去年生产水泥a 吨,若今年生产的水泥比去年增长10%,那么今年生产水泥 吨.18.绝对值不大于10的所有有理数的和等于 . 三、解答题:(共46%)19.⑴(3%)175265782275-+--+ ⑵(3%)计算:212123⎛⎫÷- ⎪⎝⎭20.(5%)()()3323322224⎛⎫÷-+-⨯-- ⎪⎝⎭21.(5%)1111632535234747⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--+-+-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦22.(6%)已知有理数a、b在数轴上的对应点如图所示,化简:a b b++=.23.(6%)在数轴上有三个点A、B、C分别表示有理数-3、0、2,如图所示. 按要求回答问题:①将点A向右移动6个单位后,三个点表示的数谁最大?②怎样移动A、B、C中的两个点,才能使三个点表示的数相同,写出所有可能的情况.24.(6%)将-4,-3,-2,-1,0,1,2,3,4这9个数分别填入下图方阵(幻方)的9个空格中,使横、竖、斜对角的三个数相加得0.-3∙∙∙∙∙∙∙-2 -1 0 1 2 3xA BC∙∙∙a0b25.(6%)水库管理人员为了掌握水库的蓄水情况,需要观测水库的水位变化,下表是某水库一周内水位高低的变化情况(用正数记水位比前一日的上升数,用负数记水位比前一日的下降数)请分析这个星期从星期一到星期日水位的升降变化?26.(6%)三个正方体粘合成如图所示的模型,它们的棱长分别为1米、2米、3米,要在模型上喷涂油漆,如果除去粘合部分不涂外,求模型的喷涂油漆的面积.附加题:(10分)设标有A、B、C、D、E、F、G记号的7盏灯顺次排成一行,每盏灯安装一个开关。
有理数计算拔高题(含答案)1.足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:O ,蓝队胜红队1:0,则红队、黄队、蓝队的净胜球数分别为〖 〗 A .2,-2,0 B .4,2,1 C .3,-2,0 D .4,-2,12.两个有理数的和的绝对值与它们的绝对值的和相等,则正确的是〖 〗A .这两个有理数都是正数B .这两个有理数都是负数C .这两个有理数同号D .这两个有理数同号或至少有一个为零3.下列说法中错误的是〖 〗A .减去一个负数等于加上这个数的相反数B .两个负数相减,差仍是负数C .负数减去正数,差为负数D .正数减去负数,差为正数4. x <0, y >0时,则x, x+y, x -y ,y 中最小的数是 ( ) A x B x -y C x+y D y5. 1x - + 3y + = 0, 则y -x -12的值是 ( ) A -412 B -212 C -112 D 1126.若0>a ,且b a >,则b a -是〖 〗 A .正数 B .正数或负数 C .负数 D .07.下列说法正确的是( )A .两个有理数的和一定大于每一个加数B .两个有理数的差一定小于被减数C .若两数的和为O ,则这两个数都为OD .若两个数的和为正数,则这两个数中至少有一个为正数8.下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京时间早的时数).(1)如果现在的北京时间是中午12:00,那么东京时间是多少?(2)如果小颖给远在纽约的舅舅打电话,她在北京时间下午14:00打电话,你认为合适吗?9.若0<b ,则b a -,a ,b a +的大小关系是( )10.新中考题(2004·山东淄博)观察下列数表1 2 3 4 …第一行2 3 4 5 …第二行3 4 5 6 …第三行4 5 6 7 …第四行第 第 第 第一 二 三 四列 列 列 列根反映的规律,第n 行第n 列交叉点上的数应为( )A .2n-1B .2n+1C .n 2-1D .n 211、蜗牛在井里距井口1米外,它每天向上爬行30厘米,夜晚每天又下滑20厘米,则蜗牛爬出 井口需要的天数是( )A、11 B、10 C、9 D、812、已知x 、y 为有理数,如果规定一种新运算※,定义x ※y=xy+1.•根据运算符号的意义完成下列各题.(1)求2※4 (2)求1※4※013、计算:(1)()25.0878********.0-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++; (2)()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++++-+⎪⎭⎫ ⎝⎛+171436.736.3173; (3)()331530.75414828⎛⎫⎛⎫⎛⎫⎛⎫-+++++-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (4)(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100).(5).(-2)+4+(-6)+8+…+(-98)+100= .(6).2003120041415131412131-++-+-+- . (7). ⎪⎭⎫ ⎝⎛+--⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛----437214325346553 (8).–99 + 100–97 + 98–95 + 96–……+2 (9).…+. (10).⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--991100141513141213121 (11).(–11)×52+(–11)×953 (12). ⎪⎭⎫ ⎝⎛--⨯-65432112 (13)()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛---614131211; (14)⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛------32143421313. (15)1-2+3-4+5…+2003-2004 (16) -34×(8-43-1415) (17)191819×(-19) (18)1 ―3 +5―7 +9―11+…+97―99 (19)11516⨯(—3 2 ) (20)(-34-56+178)⨯(-24) (21)()()----⨯-221410222 (22)20052313(1)()(24)2468⎡⎤----⨯-÷-⎢⎥⎣⎦ 14、判断题:(“对”的填入1,“错”的填入2).(1) 两个数的和的绝对值一定等于这两个数绝对值的和.( )(2)两个数的和为负,那么这两个加数中至少有一个是负数.( )(3) 两个数之和必大于任何一个加数.( )(4)两个有理数的和比其中任何一个加数都大,那么这两个数都是正数.( )(5)两个有理数的和可能等于其中一个加数.( )15.已知│x │=4,│y │=5,则│x+y │的值为 ( ) A .1 B .9 C .9或1 D .±9或±116、 的倒数等于本身, 的相反数等于本身, 的绝对值等于本身,•一个数除以 等于本身,一个数除以 等于这个数的相反数.17.已知有理数a 、b 、c 在数轴上的对应点如图所示,且b a >,则(1)____=-b a ;(2) ____=+b a ;(3) ____=+c a ;(4) _____=-c b .A .b a a b a +<<-B .b a b a a +<-<C .a b a b a <-<+D .b a a b a -<<+111112233445++++⨯⨯⨯⨯189⨯18.出租车司机小李某天下午营运全是在东西走向的人民大道上行驶的.如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米): +-3 +14 -11 +l0 -12 +4 -15 +16 -18(一名乘客送到目的地时,小李下午距出车地点的距离为多少千米?(车耗油量为a 公升/千米,这天下午汽车共耗油多少公升?19、某产粮专业户出售余粮20袋,每袋重量如下:(单位千克): 199、201、197、203、200、195、197、199、202、196、203、198、201、200、197、196、204、199、201、198.用简便方法计算出售的余粮总共多少千克?20、两个小朋友玩跳棋游戏,游戏的规则是:先画一根数轴,棋子落在数轴上0K 点,第一步从0K 点向左跳1个单位到1k ,第二步从1k 向右跳2个单位到2k ,第三步从2k 向左跳3个单位到3k ,第四步从3k 向 右跳4个单位到4k ,…,如此跳20步,棋子落在数轴的20k 点,若20k 表示的数是18,问0K 的值为多少?21、若│a │=5,│b │=7,且│a+b │=-(a+b ),求a-b 的值.22、若a>0,b<0,试比较-a ,-b ,-(a+b ),-(a-b )的大小关系.23、你能在-5和35之间插入三个数,使这5•个数中相邻两个数之间的距离相等吗?24、2,1,a b ==则_________.a b +=25、0,0,a b <>且,a b <则____0.a b + 0,0,a b ><且,a b <则____0.a b + 26、2,1,a b ==且a b <,则_________.a b += 27、33,x += 求x28、在如图1-4-1所示的运算流程中,若输出的数y=3,则输入的数x=_________.29、已知a 、b 、c 在数轴上的位置如图所示:(1)求||a ab +1||b -2||bc bc (2)比较a+b ,b+c ,c-b 的大小,并用“〈”将它们连接起来. 30、 5.89⨯106还原后的原数中零的个有________个.31、若规定a *b =4ab ,如2*5=4⨯2⨯5=40. (1)求3*6 ; (2)求5*(-7); (3)求(-7)*(-2.5).32、已知()21-y x +与|x +2|互为相反数,且a ,b 互为倒数,试求x y+ab 的值.d 33 表示运算x +y +z 表示运算a-b+c-d, ⨯ = ?-3是否偶数否 加1输出y 除以2是输入x c b a 034、拓展探索:有若干个数,第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,若a 1= —12,从第二个数起,每个数都等于1与它前面那个数的差的倒数.(1)试计算:a 2 = , a 3= , a 4= .(2)根据以上计算结果,猜测出:a 1998= ,a 2000= .35、下列由四舍五入得到的近似数各精确到哪一位?各有几位有效数字?(1)1.35×104; (2)0.45万; (7)2.004;36、 若a 为大于1的有理数,则 a , a 1, a 2三者按照从小到大的顺序列为_______________.37、代数式( a + 2 )2+ 5取得最小值时的 a 的值为___________.38、如果有理数a ,b 满足︱a -b ︱=b -a ,︱a ︱=2,︱b ︱=1,则( a + b )3 =__________.39、一杯饮料,第一次倒去一半,第二次倒去剩下的一半,……如此倒下去,第八次后剩下的饮料是原来的几分之几?40、观察下列排列顺序的式子: 9×0+1=1 9×1+2=11 9×2+3=21 9×3+4=31 9×4+5=41… 猜想:第n 个等式(n 为正整数)应为 ;41、(1)通过计算,探索规律:225152=可写成100×1(1+1)+25 ()25122100625252++⨯=可写成()235122510033125=⨯++可写成…… 可写成5625752= ; 可写成7225852= ;(2)从(1)的结果,归纳猜想得()25n 10+= ;(3)根据上面的归纳猜想,请计算:21995= ;42、观察下列等式:2311= 233321=+ 23336321=++ 23333104321=+++……根据你观察得到的规律写出=+++++333331004321 ,并比较它与25000的大小;43、已知A=a+2a+3a+…+2004a ,若a=1,则A 等于多少?若a 等于-1,则A 等于多少?44、求出适合3<x <6的所有整数; 45、试求方程x =5,x 2 = 6的解;46、试求x <3的解47、若||3x =,则x 的值为 ; 若||3x =-,则x 的值 。
一、初一数学有理数解答题压轴题精选(难)1.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d(d≥0)个单位长度.(1)当t=1时,d=________;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.【答案】(1)3(2)解:线段AB的中点表示的数是:=1.①如果P点恰好运动到线段AB的中点,那么AP=AB=3,t==3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=AB=3,t=,AP=1× =,则d=PQ=AB﹣AP﹣BQ=6﹣﹣3=.故d的值为3或(3)解:当点P运动到线段AB的3等分点时,分两种情况:①如果AP=AB=2,那么t==2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=AB=4,那么t==4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4(4)解:当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为或5.【解析】【分析】(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=AB;②AP=AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.2.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.3.同学们都知道,|3-(-1)∣表示3与-1的差的绝对值,其结果为4,实际上也可以理解为3与-1两数在数轴上所对应的两点之间的距离,其距离同样是4;同理,∣x-5|也可以理解为x与5两数在数轴上所应的两点之间的距离,试利用数轴探索:(1)试用“| |”符号表示:4与-2在数轴上对应的两点之间的距离,并求出其结果;(2)若|x-2|=4,求x的值;(3)同理,|x-3|+|x+2|表示数轴上有理数x所对应的点到3和-2所对应的两点距离之和,请你直接写出所有符合条件的整数x,使得|x-3|+|x+2|=5;试求代数式|x-3|+|x+2|的最小值.【答案】(1)解:|4-(-2)|=6(2)解:x与2的距离是4,在数轴上可以找到x=-2或6(3)解:当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5,∴符合条件的整数x=-2,-1,0,1,2,3;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,∴|x-3|+|x+2|的最小值是5【解析】【分析】(1)根据已知列式求解即可;(2)按照已知去绝对值符号即可求解.(3)当-2≤x≤3时,x所对应的点到3和-2所对应的两点距离之和是5;当x<-2或x>3时,x所对应的点到3和-2所对应的两点距离之和大于5,由此即可得出结论.4.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是________;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是________;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值. 【答案】(1)-4(2)0(3)解:① 当点O是线段AB的中点时,OB=OA4-3t=2+tt=0.5② 当点B是线段OA的中点时, OA = 2 OB2+t=2(3t-4)t=2③ 当点A是线段OB的中点时, OB = 2 OA3t--4=2(2+t)t=8综上所述,符合条件的t的值是0.5,2或8.【解析】【解答】(1)点B表示的数是-4;(2)2秒后点B表示的数是 0 ;【分析】(1)根据数轴上所表示的数的特点即可直接得出答案;(2)用点B开始所表示的数+点B运动的路程=经过t秒后点B表示的数,即可得出结论;(3)找出t秒后点A、B表示的数,分①点O为线段AB的中点,②当点B是线段OA的中点,③点A是线段OB的中点,根据线段中点的数学语言列出方程,求解即可求出此时的t值,综上即可得出结论。
一、简答题1、已知:与互为相反数,解关于的方程2、在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。
3、图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数,,,,求图4中所有圆圈中各数的绝对值之和.4、32-12=8×152-32=8×272-52=8×392-72=8×4……观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律,并用这个规律计算20012-19992的值.5、有理数在数轴上的位置如图3所示,且(1)求与的值;(2)化简6、已知有理数a、b、c在数轴上的位置如图所示,且化简二、选择题7、将正偶数按图排成5列:根据上面的排列规律,则 2 008应在()A.第250行,第1列B.第250行,第5列C.第251行,第1列D.第251行,第5列三、计算题8、用简便方法计算:9、如果有理数a,b满足ab-2+(1-b)2=0,试求+…+的值。
10、我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?四、填空题11、按如图所示的程序计算,若开始输入的的值为48,我们发现第一次得到的结果为24,第 2 次得到的结果为12,……,请你探索第2009次得到的结果为。
12、我们知道,,,,,……那么:=___________.利用上面规律解答下面问题:算一算:=___________.13、根据如图所示的程序计算,若输入x的值为1,则输出y的值为。
第2讲 有理数(2)培优训练1.(2013,菏泽)如果a 的倒数是-1,那么a 2013等于( ). A .1 B .-1 C .2013 D .-20132.(2013,安顺)计算31--+结果正确的是( ).A .4B .2C .-2D .-4 3.(2011,台湾)如图,O 是原点,A ,B ,C 三点所表示的数分别为a ,b ,c .根据图中各点的位置,下列各数的绝对值的比较正确的是( ).A .b c <B .b c >C .a b <D .a c >4.有理数a ,b 在数轴上的对应点位置如图所示,则a ,-a ,b ,b 的大小关系为( ).A .b <-a <a <bB .-a <a <b <bC .-a <b <b <aD .b <-a <b <a5.已知1a =,b =2,c =3,且a >b >c ,那么a +b -c 的值是( ). A .2B .-4C .2或-4D .2或06.(2013,武汉二中,六中,七一联考)已知:1x +=4,(y +2)2=4,若x +y ≥-5,求x +y 的值.7.当a <0时,下列四个结论:①a 2>0;②a 2=(-a )2;②-a 3=3a ;②22a a -=-.其中一定正正确的有( ). A .1个 B .2个 C .3个 D .4个8.(1)若3x -=1,则x =____;(2)若a =a ,则a ___0; 若a =-a ,则a ____0; 若a -=-a ,则a ____0; 9.(1)若5a =,则b =-2,且ab >0,则a +b =___; (2)若m n n m -=-,且4m =,3n =,则m +n =____.10.若2x -与7y +互为相反数,则x =___,y =___.第3题图CA O B第4题图a11.若()22324120a b b -+-=,则a =___,b =___.12.已知21(1)ma =+-(m 为整数),且a ,b 互为相反数,b ,c 互为负倒数.请在数轴上表示出a ,b ,c ,并求2010()m ab b b c +-+的值. 13.若a ,b 互为相反数,b ,c 互为倒数,并且m 的立方等于它的本身. (1)求222a bac m +++的值; (2)若a >1,且m <0,12322S a b b m b =----+,求4(2a -S )+2(2a -S )-(2a -S )的值.(3)若m ≠0,试讨论:x 为有理数时,x m x m +--是否存在最大值,若存在,求出这个最大值;若不存在,请说明理由.参考答案 第2讲 有理数(2)1.B2.C3.A4.A5.D6.②1x +=4,②x =3或-5.②()2y +2=4,②y =0或-4.又②x +y ≥-5,②当x =3时,y =0或-4,②x +y =3或-1. 当x =-5,即y =0,x +y =-5.故x +y =3或-1或-5. 7.C8.(1)2或4.(2)≥;≤;≤.9.(1)-7;(2)-1或-7.[提示:m =-4,n =3或m =-4,n =-3.]10.2,-7. 11.2,3.12.∵21(1)ma =+-,当m 为奇数时,a 无意义,②m 为偶数,故a =1.②a +b =0,bc =-1,②b =-1,c =1,故原式=1×(-1)+(-1)m -02010=-1+1-0=0.13.(1)由已知有a +b =0,bc =1,则ac =-1,所以2212a bac m ++=-+.(2)因为a >1,所以b <-1,2a -3b >0,12b +<0.因为m 的立方等于它本身,且m <0,所以m =-1,b -m =b +1<0,所以S =2a -3b +2b +2+b 12+=2a 52+.所以2a -S =52-.所以(2a -S )+2(2a -S )-(2a -S )=5(2a -S )=5×52⎛⎫- ⎪⎝⎭=252-.(3)存在最大值2.14.(1)±1;(2)±2或0;(3)当x 1,x 2,x 3全为正则y 3=1+1+1=3;当x 1,x 2,x 3为二正一负,则y 3=1;当x 1,x 2,x 3为一正两负时,y 3=-1;当x 1,x 2,x 3全为负时,y 3=-3;②y 3=±1或±3. (4)2013,4024,0.15.(1)a =-10,b =-8,c =16,d =20. (2)t 秒后,A ,B ,C ,D 对应的数分别为-10+6t ,-8+6t ,16-2t ,20-2t .若A ,C 重合,则-10+6t =16-2t ,得t =134;若B ,D 重合,则-8+6t =20-2t ,得t =72.②当13742t <<时,A ,B 两点都在线段CD 上.(3)当B 在D 的右侧时,t >72.②BC =4AD ,②-8+6t -(16-2t )=4202(106)t t ---+,化简得t -3=154t -.由154t -=0得t =154.当71524t <<时,t -3=15-4t ,t =185;当t >154时,t -3=4t -15,t =4.故当t =185或4时,BC =4AD . 16.(1)②a ,b ,c 均为非0实数,又②a +a =0,②a <0. ∵ab ab =,∴ab >0.∴b <0.∵0c c -=,∴c >0. ∴b a b c b a c b a b c b c a b -+--+-=-++-++-=. (2)∵19a =,97b =,∴a =±19,b =±97.∵a b +≠a +b ,∴a +b <0.当a=19,b=-97时,a-b=19-(-97)=78.故选B.(3)-5≤x≤2.(4)∵a+b+c=0,∴b+c=-a,c+a=-b,a+b=-c.∴原式=a b ca b c---++.∵abc>0,∴a,b,c同正或二负一正.又∵a+b+c=0,则a,b,c只能为二负一正,②原式=1.(5)②a+b+c=0,∴x=a b c a b cb c c a a b a b c++=+++++---,且a,b,c必为二正一负或二负一正.∴x=1.②x2-99x+2006=12-99×1+2006=1908.。
1.数轴上,点A的初始位置表示的数为2,现点A做如下移动:第1次点A向左移动1个单位长度至点A1,第2次从点A1向右移动2个单位长度至点A2,第3次从点A2向左移动3个单位长度至点A3,按照这种移动方式进行下去,点A2019表示的数是_______.2.如图,数轴上,点A的初始位置表示的数为1,现点A做如下移动:第1次点A向左移动3个单位长度至点A1,第2次从点A1向右移动6个单位长度至点A2,第3次从点A2向左移动9个单位长度至点A3,…,按照这种移动方式进行下去,如果点An与原点的距离不小于26,那么n的最小值是________.3.在一条可以折叠的数轴上,A,B表示的数分别是﹣9,4,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是.4.数轴上的点A、B、C、O、D、E分别表示3,﹣1.5,﹣3,﹣4,0,2.5,(1)在图所示的数轴上画出点A、B、C、O、D、E;(2)比较这六点所表示的数的大小,用“<”号连接起来;_____ <_____ < ______ <______<_________ <______(3)有同学说:“这六个点中,其中有两个点之间的距离恰好与另外两个点之间的距离相等”,你觉得这位同学的说法正确吗?请你作出判断,并说明理由.5.【阅读理解】如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为MN=m﹣n(m>n)或MN=n﹣m(n>m)或|m﹣n|.利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B 表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为____,点B表示的数为_______.(2)用含t的代数式表示P到点A和点C的距离:PA=_______,PC=________.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.6.【阅读理解】点A、B、C为数轴上三点,如果点C在A、B之间且到A的距离是点C到B的距离3倍,那么我们就称点C是{A,B}的奇点.例如,如图1,点A表示的数为﹣3,点B表示的数为1.表示0的点C到点A的距离是3,到点B的距离是1,那么点C是{A,B}的奇点;又如,表示﹣2的点D到点A的距离是1,到点B的距离是3,那么点D就不是{A,B}的奇点,但点D是{B,A}的奇点.【知识运用】如图2,M、N为数轴上两点,点M所表示的数为﹣3,点N所表示的数为5.(1)数______所表示的点是{M,N}的奇点;数_______所表示的点是{N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,到达点A停止.P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?7.阅读下面材料在数轴上4与﹣1所对的两点之间的距离:|4﹣(﹣1)|=5在数轴上﹣2与3所对的两点之间的距离|(﹣2)﹣3|=5;在数轴上﹣7与﹣5所对的两点之间的距离:|(﹣7)﹣(﹣5)|=2在数轴上点A、B 分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|依据材料知识解答下列问题(1)数轴上表示﹣3和﹣5的两点之间的距离是_______,数轴上表示数x和3的两点之间的距离表示为_________;(2)七年级研究性学习小组进行如下探究:①请你在草稿纸上面出数轴当表示数x的点在﹣3与2之间移动时,|x+3|+|x﹣2|的值总是一个固定的值为:________,式子|x+3|+|x+2|的最小值是.②请你在草稿纸上画出数轴,当x等于_________时,|x﹣4|+|x+3|+|x﹣2|的值最小,且最小值是__________.8.研究下列算式,你会发现什么规律?1×3+1=4=222×4+1=9=323×5+1=16=424×6+1=25=52…(1)请你找出规律井计算7×9+1=_____=(_______)2(2)用含有n的式子表示上面的规律:______.9.如图,数轴上每相邻两刻度线间的距离为1个单位长度,请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C表示的数是多少?图中5个点表示的数的乘积是多少?(3)求|x+1.5|+|x﹣0.5|+|x﹣4.5|的最小值10.我们知道数轴上两点间的距离等于这两点所对应的数的差的绝对值,例:点A、B 在数轴上分别对应的数为a、b,则A、B两点间的距离表示为AB=|a﹣b|根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为__________;②若两点之间的距离为2,那么x值为________;(2)在(1)的条件下,是否存在点P,使得点P到点A的距离等于点P到点B的距离的三倍.。
最新北师大版七年级上册数学有理数(培优篇)(Word版含解析)一、初一数学有理数解答题压轴题精选(难)1.阅读下面的材料:在数轴上,点A表示的数为a,点B表示的数为b,则点A到点B的距离记为AB,线段AB的长度可以用右边的数减去左边的数表示,即AB=b-a。
请根据这些知识回答以下问题:如图2,一个点从数轴上的原点开始,先向左移动1cm到达A点,再向左移动2cm到达B点,然后向右移动7cm到达C点,用1个单位长度表示1cm。
1)请在数轴上标出A、B、C三点的位置。
2)点C到点A的距离CA=________cm;如果数轴上有一点D,且AD=4,则点D表示的数为________;3)如果将点A向右移动xcm,则移动后的点表示的数为________;(请用代数式表示)4)如果点B以每秒2cm的速度向左移动,同时A、C点分别以每秒1cm、4cm的速度向右移动。
设移动时间为t秒,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由。
答案】1)解:如图所示:2)5;-5或33)-1+x4)解:CA-AB的值不会随着t的变化而变化,理由如下:根据题意得:CA=(4+4t)-(-1+t)=5+3t,AB=(-1+t)-(-3-2t)=2+3t。
CA-AB=(5+3t)-(2+3t)=3。
CA-AB的值不会随着t的变化而变化。
解析】【解答】2)CA=4-(-1)=4+1=5(cm);设D表示的数为a。
AD=4。
1)-a|=4。
解得:a=-5或3。
___表示的数为-5或3;故答案为5,-5或3;3)将点A向右移动xcm,则移动后的点表示的数为-1+x;故答案为-1+x;分析】1)根据题意容易画出图形;2)由题意容易得出CA的长度;设D表示的数为a,由绝对值的意义容易得出结果;3)将点A向右移动xcm,则移动后的点表示的数为-1+x;4)表示出CA和AB,再相减即可得出结论。
2.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段。
七年级有理数培优题(有答案) 有理数培优题基础训练题一、填空:1、在数轴上表示-2的点到原点的距离等于2.2、若|a|=-a,则a<0.3、任何有理数的绝对值都是非负数。
4、如果a+b=0,那么a、b一定是互为相反数。
5、将0.1毫米的厚度的纸对折20次,列式表示厚度是0.1*2^20毫米。
6、已知|a|=3,|b|=2,|a-b|=a-b,则a+b=5.7、|x-2|+|x+3|的最小值是1.8、在数轴上,点A、B分别表示-4/11、4/2,则线段AB 的中点所表示的数是0.9、若a,b互为相反数,则ab<0.10、若abc≠0,且P的绝对值为3,则(a+b+c)/(abc)+mn-p^2=3253.11、下列有规律排列的一列数:1、3、6、10、15、…,其中从左到右第100个数是5050.二、解答问题:1、已知x+3=0,|y+5|+4的值是4,z对应的点到-2对应的点的距离是7,求x、y、z这三个数两两之积的和。
解:由x+3=0得x=-3,|y+5|+4=4,解得|y+5|=0,y=-5,z到-2的距离为7,即|z-(-2)|=7,解得z=-9或5.两两之积的和为:x*y+x*z+y*z=(-3)*(-5)+(-3)*(-9)+(-5)*(-9)=72.3、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x满足的条件及此时常数的值。
解:当4-5x>=0,1-3x>=0时,2x+|4-5x|+|1-3x|+4=2x+(4-5x)+(1-3x)+4=-4x+9;当4-5x=0时,2x+|4-5x|+|1-3x|+4=2x-(4-5x)+(1-3x)+4=-x+9;当4-5x>=0,1-3x=1/3时,2x+|4-5x|+|1-3x|+4的值为9;当1/34/5时,2x+|4-5x|+|1-3x|+4的值为-2x+7.4、若a,b,c为整数,且|a-b|^(2010)+|c-a|^(2010)=1,试求|c-a|+|a-b|+|b-c|的值。
第1讲 有理数(1)培优训练1.(2012,武汉市江汉区)下列一组数:-1,-3,2,0,其中正数有( ).A .1个B .2个C .3个D .4个2.(2012,武汉市武昌区)在-43,1,0,- 34这四个数中,最小的数是( ). A .- 43 B .1 C .0 D .- 343.(2012,武汉市江汉区)数轴上表示-5和6两点间的距离是( ).A .1B .5C .6D .114.(2011,浙江)如图,在数轴上点A 表示的数可能是( ).A .1.5B .-1.5C .-2.6D .2.65.(2011,成都)已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断中正确的是( ).A .m >0B .n <0C .mn <0D .m -n >06.(2011,宜昌)如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论中正确的是( ).A .a <bB .a =bC .a >bD .ab >07.画出数轴,把下列各数:0,3,-4,-12,+2在数轴上表示出来,并用“<”号把这些数连接起来.8.已知数轴上的4个点A ,B ,C ,D 对应的数分别为a ,b ,c ,d ,且b 比d 小7,c 比a 大5,b 比c 小3,已知d =5,请画出数轴,标出点A ,B ,C ,D 所在的位置,并求出(a-b )-(c-d )的值.第4题图第5题图B第6题图A9.一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位,以此类推.(1)写出第一次移动后这个点在数轴上表示的数为 .(2)写出第二次移动后这个点在数轴上表示的数为 .(3)写出第五次移动后这个点在数轴上表示的数为 .(4)写出第n 次移动后这个点在数轴上表示的数为 .(5)写出第m 次移动后这个点在数轴上表示的数为56,求m 的值.竞赛训练10.已知点A 和B 在同一数轴上,点A 表示数-3,点B 和点A 相距4个单位长度,则点B 表示的数是( ).A .1B .-7C .-1D .1或-711.如图,数轴A ,B 上两点分别对应实数A ,B ,则下列结论中正确的是( ).A .0a b +>B .0ab >C .110a b -< D .110a b+>12.如图,A ,B 两点在数轴上表示的数分别为a ,b ,下列结论:①0a b ->;②0a b +<;③()()110b a -+>;④101b a ->-.其中结论正确的是( ). A .①② B .③④ C .①③ D .①②④13.(“希望杯”培训)如图,在数轴上有若干个点,每相邻两个点之间的距离是1个单位长度,有理数a ,b ,c ,d 所表示的点是这些点中的4个,且在数轴上的位置如图所示,如果3a =4b-3,那么c+2d = .14.(1)已知在数轴上表示3的点和表示8的点之间的距离为5个单位长度,有这样的关系5=8-3,那么在数轴上表示数4的点和表示数-3的点之间的距离是 个单位长度.(2)已知在数轴上到表示-3的点和到表示5的点距离相等的点为1,即有这样的关系1=12(-3+5),那么在数轴上到表示数a 的点和到表示数b 的点之间的距离相等的点表示的数是 .(3)已知在数轴上表示x 的点到表示-2的点的距离是到表示6的点的距离的2倍,求数x .第11题图A B第12题图AB 第13题图d15.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,4秒后,两点相距20个单位长度.已知动点A,B的速度比为2:3(速度单位:单位长度/秒).(1)求出两个动点运动的速度,并在数轴上标出A,B两点从原点出发运动4秒时的位置;-20-16-12-8-404第15题图(2)若A,B两点从(1)中标出的位置同时出发,按原速度向数轴负方向运动,求几秒钟后原点恰好在两个动点的正中间;(3)当A,B两点从(1)中标出的位置出发向数轴负方向运动时,另一动点C也同时从原点的位置出发向A运动,当遇到A后立即返回向B点运动,遇到B后又立即返回向A运动,如此往返,直到B追上A 时,C立即停止运动.若点C一直以10单位长度/秒的速度匀速运动,求点C一共运动了多少个单位长度.参考答案与提示第一讲有理数(1)1.A 2.A 3.D 4.C 5.C 6.C7.如图,-4<-12<0<+2<3.8.图略.∵a =-4,b =-2,c =1,d =5,∴(a-b )-(c-d )=2.9.(1)3;(2)4;(3)7;(4)n +2;(5)54.10.D11.D [提示:可设a =12,b =-2等具体的数去判断.] 12.B [提示:可用排除法,①②错.]13.-2.[提示:将b =a+2代入3a =4b-3得3a =4(a+2)-3,故a =-5.于是b =-3,c =-2,d =0 ,所以c+2d =-2.] 14.(1)7. (2)12(a+b ). (3)∵()226x x --=-.∴2212x x +=-.∴x +2=2x -12或x +2+2x -12=0,即x=14或x=103. 15.(1)A ,B 两点的速度分别为2个单位每秒,3个单位每秒,其位置如图所示.(2)如图,设t 秒钟后原点恰好在两个动点的正中间.此时,A ,B 对应的数分别为-8-2t ,12-3t .∴-8-2t+12-3t =0,t =45. (3)[12-(-8)]÷(3-2)×10=200(单位长度).-12第7题图3+20B A第15题图-8-404。
一、简答题
1、已知:与互为相反数,解关于的方程
2、在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。
3、图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为
.
如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数,,,,求图4中所有圆圈中各数的绝对值之和.
4、32-12=8×1
52-32=8×2
72-52=8×3
92-72=8×4
……
观察上面的一系列等式,你能发现什么规律?用代数式表示这个规律,并用这个规律计算20012-19992的值.
5、有理数在数轴上的位置如图3所示,且
(1)求与的值;
(2)化简
6、已知有理数a、b、c在数轴上的位置如图所示,且化简
二、选择题
7、将正偶数按图排成5列:
根据上面的排列规律,则2 008应在()
A.第250行,第1列
B.第250行,第5列
C.第251行,第1列
D.第251行,第5列
三、计算题
8、用简便方法计算:
9、如果有理数a,b满足ab-2+(1-b)2=0,试求+…+的值。
10、我们常用的数是十进制数,如,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中
等于十进制的数6,等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?
四、填空题
11、按如图所示的程序计算,若开始输入的的值为48,我们发现第一次得到的结果为24,第2 次得到的结果为12,……,请你探索第2009次得到的结果为。
12、我们知道,,,,,……那么:=___________.
利用上面规律解答下面问题:
算一算:=___________.
13、根据如图所示的程序计算,若输入x的值为1,则输出y的值为。
参考答案
一、简答题
1、答案:由知,得
得
将代入方程,有(4分
… 5分
6分
2、1;
-1+2+3-4-5+6+7-8-9+10+11-12-13+14+15-16-17
+18+19-20-21+22+23-24-25+26+27-28-29+30+31-32-33
+34+35-36-37+38+39-40-41+42+43-44-45+46+47-48-49+50
=-1+2+(3-4-5+6)+(7-8-9+10)+(11-12-13+14)+(15-16-17+18)+(19-20-21+22)
+(23-24-25+26)+(27-28-29+30)+(31-32-33+34)+(35-36-37+38)+(39-40-41+42)
+(43-44-45+46)+(47-48-49+50)
=-1+2
=1
3、解:(1)67.
(2)图4中所有圆圈中共有个数,
其中23个负数,1个0,54个正数,
图4中所有圆圈中各数的绝对值之和
.
4、,8000.
5、(1)0,-1 (2)
6、=a-0+c-a+b-c-ac+2b=3b-ac
二、选择题
7、D
三、计算题
8、原式=;
9、
10、解:
四、填空题
11、12、 ; 13、4
1/2/4/11为有理数的乘除法3、8、12、13为有理数的乘方5、6、7为有理数的加减法9.、10为有理数。