函数专题_一次函数的图像和性质
- 格式:docx
- 大小:88.76 KB
- 文档页数:30
教学过程一、课程导入画出y=-x与y=-x+2的图象,找出它们的相同点和不同点小结:直线y=kx+b可以看作由直线y=kx平移___|b|__个单位而得到,当b>0时,向___上__平移,当b<0时,向___下__平移。
即k值相同时,直线一定平行。
二、 复习预习①如图〔l 〕所示,当k >0,b >0时,直线经过第一、二、三象限〔直线不经过第四象限〕;②如图〔2〕所示,当k >0,b ﹥O 时,直线经过第一、三、四象限〔直线不经过第二象限〕;③如图〔3〕所示,当k ﹤O ,b >0时,直线经过第一、二、四象限〔直线不经过第三象限〕;④如图〔4〕所示,当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限〔直线不经过第一象限〕.k >0时,y 的值随x 值的增大而增大;当k<0时, y 的值随x 值的增大而减小;一次函数y =kx +b 的图象为 一条直线,与坐标轴的交点分别为)0.(k b ,(0,b).它的倾斜程度由k 决定,b 决定该直线与y 轴交点的位置.三、知识讲解考点1 一次函数图象上点的坐标特征1、一次函数y =kx +b 的图象为一条直线,与坐标轴的交点分别为)0.(kb ,(0,b).它的倾斜程度由k 决定,b 决定该直线与y 轴交点的位置.2、正比例函数图象上的点的坐标特征,经过函数的某点一定在函数的图象上,一定满足函数的解析式.根据正比例函数的定义,知xy 是定值. 3、经过函数的某点一定在函数的图象上.在这条直线上的各点的坐标一定适合这条直线的解析式.考点2 一次函数图像的平移上加下减〔b〕,左加右减〔x〕直线y=kx+b可以看作由直线y=kx平移___|b|__个单位而得到,当b>0时,向___上__平移,当b<0时,向___下__平移。
即k值相同时,直线一定平行。
考点3 待定系数法求一次函数关系式先设待求函数关系式〔其中含有未知的常数系数〕,再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。
课题 一次函数的图像与性质1、一次函数的图像的画法(1)画函数图像的三步:列表-描点-连线. (2)一次函数的图象是一条直线。
一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线。
一次函数y=kx+b 也称为直线y=kx+b ,这时,我们把一次函数的解析式y=kx+b 称为这一直线的表达式。
(3)因为一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象是一条直线,根据“两点确定一条直线”的基本性质,画一次函数的图象时只需描出图象上的两个点,再作过这两点的直线即可。
2、一次函数的图像的性质(1)一次函数与x 轴交点的纵坐标为0,与y 轴交点的横坐标为0.(2)一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像平行时,则12k k =。
反之,当12k k =时,两直线平行,且当12k k =,12b b =时,两直线重合。
(3)当一次函数111(y k x b k =+、110b k ≠为常数,)与222(y k x b k =+、220b k ≠为常数,)的图像的截距相同且不平行时,则12b b =,12k k ≠。
(4)一次函数y=kx+b (k 、b 是常数,且k ≠0)当k>0时函数值随着x 的增大而增大、减小而减小,即该函数为增函数;当k<0时函数值随着x 的增大而减小、减小而增大。
即该函数为减函数。
3、一次函数图像的平移一次函数y=kx+b (k 、b 是常数,且k ≠0)的图象向上平移h 个单位后的函数解析式为y=kx+b+h;向下平移h 个单位后的函数解析式为y=kx+b-h 。
4、一次函数图像经过的象限示意图k 、b 的符号直线y=kx+b 经过的象限增减性一.基础练习:1.一次函数y=3x-6的图像是,它与x轴的交点坐标是,它与y轴的交点坐标是2.将直线y=x向下平移4个单位,得到直线3.将直线y=-3x-5向上平移4个单位,得到直线4.若直线y=3x-5与直线y=kx-4相互平行,则k=5.若直线y=-2x-5与直线y=6x+b相交于y轴上同一点,则b=6. 请你在不同的平面直角坐标系中画出下列函数的图像(1)y=2x+6 (2)1722 y x=+(3)4833y x=--(4)1344y x=--7,做一做:画出函数y=-2x+2 的图像,结合图象回答下列问题:( 1 )这个函数中,随着x 的增大,y 将增大还是减小?( 2 )当x 取何值时,y=0 ?当y 取何值时,x=0 ?( 3 )当x 取何值时,y>0 ?( 4 )函数的图像不经过哪个象限?8、完成下列各题:(1)下列函数中,y的值随着x的增大而减小的是()A.y=2x-7B.y=0.5x+2C.y=(2-1)x+3D.y=-0.3x+1(2)函数y=4x-3中,y的值随着x值的增大而____(3)函数y=(2m-1)x+2的函数值随x的增大而减小,则m的值为______ (4)一次函数y=2x+4的图像上有两点A(3,a),B(4,b),请判断a与b的大小(5)y=x+5与y=2x-5的增减性(y 随着x 的增加而增加,还是随着x 的增加而减小)是否一样?(6)y=-2x+5与y=-2x-5的增减性是否一样?(7)A(a,6)和B(b,-2)在函数y=2x-5的图像上,请你判断a ,b 的大小关系 9、已知一次函数2(2)28y k x k =--+,分别根据下列条件求k 的值或k 的取值范围: (1)它的图像经过原点(2)它的图像经过点(0,-2)(3)它的图像与y 轴的交点在x 轴上方 (4)y 随着x 的增大而减小(5)这条直线经过一、二、三象限10、要使一次函数y=-3x+4的函数值大于4,求自变量x 的取值范围。
一次函数图象和性质专题题型一、一次函数图像的作图1、在同一平面直角坐标系中画出下列每组函数的图象. (1)y =2x (2)y =2x +32、说出直线y =3x +2与221+=x y ;y =5x -1与y =5x -4的相同之处. 直线y =3x +2与221+=x y 的 ,相同,所以这两条直线 同一点,且交点坐标 ;直线y =5x -1与y =5x -4的 相同,所以这两条线 .题型二、一次函数图形的平移1、直线521,321--=+-=x y x y 和x y 21-=的位置关系是 ,直线521,321--=+-=x y x y 可以看作是直线x y 21-=向 平移 个单位得到的; 向平移 个单位得到的。
2、直线y=2x-3可以由直线y=2x 经过 单位而得到;直线y=-3x+2可以由直线y=-3x 经过 而得到;直线y=x+2可以由直线y=x-3经过 而得到.题型三、一次函数图像的平行1、函数y =kx -4的图象平行于直线y =-2x ,求函数若直线4y kx =-的解析式为 ;2、已知一次函数35y x =+与一次函数6y ax =-,若它们的图象是两条互相平等的直线,则a = .题型四、一次函数图形与坐标轴的交点1、一次函数y=kx+b 当x=0时,y= 横坐标为0点在 上,在y kx b =+中;当y=0时,x= 纵坐标为0点在 上。
画一次函数的图象,常选取(0, )、( ,0)两点连线。
2、直线y =4x -3过点(_____,0)、(0, );3、直线y =-x +2与x 轴的交点坐标是 ,与y 轴的交点坐标是4、 一次函数3y x =+与2y x b =-+的图象交于y 轴上一点,则b = .题型五、一次函数图像与系数1、直线y mx n =+如图所示,化简:2m n m --= .2、 如图,表示一次函数y mx n =+与正比例函数y mnx =(m n ,为常数,且mn 0≠)图象的是( )3、已知一次函数y kx k =+,其在直角坐标系中的图象大体是( )4、当00><b ,a 时,函数y =a x+b 与a bx y +=在同一坐标系中的图象大致是( )A B C D题型六、一次函数图像与坐标轴围成的三角形面积 1、求函数323-=x y 与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.Oxy mx n =+(第1题)OxyxyOx yOxyOA.B.C .D .O y x O y x O y x O yxD.C.B .A .2、一次函数y =3x +b 的图象与两坐标轴围成的三角形面积是24,求b .3、一次函数y =k x +3的图象与两坐标轴围成的三角形面积是24,求k.一次函数的性质题型一、一次函数的增减性1、已知函数y =(m -3)x -32.(1)当m 取何值时,y 随x 的增大而增大? (2)当m 取何值时,y 随x 的增大而减小?2、函数y=(k-1)x+2,当k >1时,y 随x 的增大而______,当k <1时,y 随x 的增大而_____3、 如图所示,已知正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =--的图象大致是( )4、已知点(x1, y1)和(x2, y2)都在直线 y=43x-1上, 若x1 < x2, 则 y 1__________y 25、已知一次函数2(3)16y m x m =++-,且y 的值随x 值的增大而增大. (1)m 的范围;(2)若此一次函数又是正比例函数,试求m 的值.xxxxD .C.B .A .题型二、一次函数象限问题1、若 a 是非零实数 , 则直线 y=ax-a 一 定( ) A.第一、二象限 B. 第二、三象限 C.第三、四象限 D. 第一、四象限2、 已知一次函数y kx b =+的图象不经过第三象限,也不经过原点,那么k b 、的取值范围是( ) A.0k >且0b < B.0k >且0b < C.0k <且0b >D.0k <且0b <3、若m <0, n >0, 则一次函数y=mx+n 的图象不经过 ( )A.第一象限B. 第二象限C.第三象限D.第四象限4、已知一次函数(3)21y m x m =-+-的图象经过一、二、四象限,求m 的取值范围.题型三、一次函数增减性与象限的综合1、 已知一次函数y =(1-2m)x +m-1,若函数y 随x 的增大而减小,并且函数的图象经过二、三、四象限,求m 的取值范围.2、已知一次函数y =(1-2k ) x +(2k +1). ①当k 取何值时,y 随x 的增大而增大? ②当k 取何值时,函数图象经过坐标系原点?③当k 取何值时,函数图象不经过第四象限?求一次函数解析式的常见题型一. 定义型例1. 已知函数y m x m=-+-()3328是一次函数,求其解析式。
第二十章一次函数专题20.2 一次函数的图像与性质(第1课时)基础巩固一、单选题(共6小题)1.直线y=kx沿y轴向下平移4个单位长度后与x轴的交点坐标是(﹣3,0),以下各点在直线y=kx上的是()A.(﹣4,0)B.(0,3)C.(3,﹣4)D.(﹣4,3)【答案】C【分析】根据“上加下减”的原则求解即可.【解答】解:直线y=kx沿y轴向下平移4个单位长度后的解析式为y=kx﹣4,把x=﹣3,y=0代入y=kx﹣4中,﹣3k﹣4=0,解得:k=﹣,所以直线y=kx的解析式为:y=﹣x,当x=3时,y=﹣4,当x=﹣4时,y=,当x=0时,y=0,故选:C.【知识点】一次函数图象与几何变换、一次函数图象上点的坐标特征2.一个正比例函数的图象经过点(1,﹣2),它的表达式为()A.B.C.y=﹣2x D.y=2x【答案】C【分析】利用待定系数法求正比例函数解析式即可.【解答】解:设正比例函数解析式为y=kx(k≠0),把(1,﹣2)代入得﹣2=k×1,解得k=﹣2,所以正比例函数解析式为y=﹣2x.故选:C.【知识点】一次函数图象上点的坐标特征、待定系数法求正比例函数解析式3.已知一次函数y=(1+2m)x﹣3中,函数值y随自变量x的增大而减小,那么m的取值范围是()A.m≤﹣B.m≥﹣C.m<﹣D.m>【答案】C【分析】根据一次函数的性质解题,若函数值y随自变量x的增大而减小,那么k<0.【解答】解:函数值y随自变量x的增大而减小,那么1+2m<0,解得m<﹣.故选:C.【知识点】一次函数图象与系数的关系4.下列四点中,在函数y=3x+2的图象上的点是()A.(﹣1,1)B.(﹣1,﹣1)C.(2,0)D.(0,﹣1.5)【答案】B【分析】只要把点的坐标代入一次函数的解析式,若左边=右边,则点在函数的图象上,反之就不在函数的图象上,代入检验即可.【解答】解:A、把(﹣1,1)代入y=3x+2得:左边=1,右边=3×(﹣1)+2=﹣1,左边≠右边,故A 选项错误;B、把(﹣1,﹣1)代入y=3x+2得:左边=﹣1,右边=3×(﹣1)+2=﹣1,左边=右边,故B选项正确;C、把(2,0)代入y=3x+2得:左边=0,右边=3×2+2=8,左边≠右边,故C选项错误;D、把(0,﹣1.5)代入y=3x+2得:左边=﹣1.5,右边=3×0+2=2,左边≠右边,故D选项错误.故选:B.【知识点】一次函数图象上点的坐标特征5.小王同学类比研究一次函数性质的方法,研究并得出函数y=|x|﹣2的四条性质,其中错误的是()A.当x=0时y具有最小值为﹣2B.如果y=|x|﹣2的图象与直线y=k有两个交点,则k>0C.当﹣2<x<2时,y<0D.y=|x|﹣2的图象与x轴围成的几何图形的面积是4【答案】B【分析】画出函数y═|x|﹣2的大致图象,即可求解.【解答】解:函数y═|x|﹣2的大致图象如下:A.当x=0时y具有最小值为﹣2,正确;B.如果y=|x|﹣2的图象与直线y=k有两个交点,则k>﹣2,故B错误;C.当﹣2<x<2时,y<0,正确;D.y=|x|﹣2的图象与x轴围成的几何图形的面积=×4×2=4,正确,故选:B.【知识点】一次函数的性质、两条直线相交或平行问题6.如图,直线y=kx+b与x轴,y轴分别相交于点A(﹣3,0),B(0,2),则不等式kx+b>2的解集是()A.x>﹣3B.x<2C.x>0D.x<2【答案】C【分析】根据图象和B的坐标得出即可.【解答】解:∵直线y=kx+b和y轴的交点是B(0,2),∴不等式kx+b>2的解集是x>0,故选:C.【知识点】一次函数的性质、一次函数与一元一次不等式二、填空题(共8小题)7.已知一次函数y=2x+b的图象经过点A(2,y1)和B(﹣1,y2),则y1y2(填“>”、“<”或“=”).【答案】>【分析】由k=2>0,利用一次函数的性质可得出y随x的增大而增大,结合2>﹣1即可得出y1>y2.【解答】解:∵k=2>0,∴y随x的增大而增大,又∵2>﹣1,∴y1>y2.故答案为:>.【知识点】一次函数的性质8.已知一次函数y=﹣x+3,当﹣1≤x≤4时,y的最大值是.【分析】由﹣<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣1≤x≤4,即可求出y的最大值.【解答】解:∵﹣<0,∴y随x的增大而减小,又∵﹣1≤x≤4,∴当x=﹣1时,y取得最大值,最大值=﹣×(﹣1)+3=.故答案为:.【知识点】一次函数的性质9.如图直线a,b交于点A,则以点A的坐标为解的方程组是.【分析】先利用待定系数法求出直线a、b的解析式,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求解.【解答】解:直线a的解析式为y=kx+m,把(0,1)和(1,2)代入得,解得,∴直线a的解析式为y=x+1,易得直线b的解析式为y=﹣x+3,∵直线a与直线b相交于点A,∴以点A的坐标为解的方程组为.故答案为(答案不唯一).【知识点】一次函数与二元一次方程(组)10.一次函数y1=﹣x﹣1与y2=x+4的图象如图,则﹣x﹣1>x+4的解集是.【答案】x<-2【分析】结合函数图象,写出一次函数y1=﹣x﹣1图象在函数y2=x+4的图象上方所对应的自变量的范围即可.【解答】解:∵一次函数y1=﹣x﹣1与y2=x+4的图象的交点的横坐标为﹣2,∴当x<﹣2时,y1>y2,∴﹣x﹣1>x+4的解集为x<﹣2.故答案为x<﹣2.【知识点】一次函数的图象、一次函数与一元一次不等式11.一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式.【答案】y=x+3【分析】把点A的坐标代入一次函数解析式,列出关于系数k的方程k+3=4,通过解该方程可以求得k的值.【解答】解:由题意,得k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案为y=x+3【知识点】待定系数法求一次函数解析式、一次函数图象上点的坐标特征12.已知一次函数y1=kx﹣2和y2=2x+3,当自变量x>﹣1时,y1<y2,则k的取值范围为.【答案】-3≤k≤2且k≠0【分析】解不等式kx﹣2<2x+3,根据题意得出k﹣2<0且≤﹣1且k≠0,解此不等式即可.【解答】解:∵一次函数y1=kx﹣2和y2=2x+3,当自变量x>﹣1时,y1<y2,∴kx﹣2<2x+3,∴kx﹣2x<5,∴k﹣2<0且≤﹣1且k≠0,解得﹣3≤k<2且k≠0;当k=2时,也成立,故k的取值范围是:﹣3≤k≤2且k≠0.故答案为:﹣3≤k≤2且k≠0.【知识点】一次函数与一元一次不等式13.在一次函数y=(k﹣5)x+2中,y随x的增大而减小,则k的取值范围为.【答案】k<5【分析】根据已知条件“一次函数y=(k﹣5)x+2中y随x的增大而减小”知,k﹣5<0,然后解关于k 的不等式即可.【解答】解:∵一次函数y=(k﹣5)x+2中y随x的增大而减小,∴k﹣5<0,解得,k<5;故答案是:k<5.【知识点】一次函数图象与系数的关系14.一次函数的图象过点(0,3)且与直线y=﹣x平行,那么一次函数表达式是.【答案】y=-x+3【分析】一次函数的图象过点(0,3)且与直线y=﹣x平行,则一次项系数相等,设一次函数的表达式是y=﹣x+b,代入(0,3)即可求得函数解析式.【解答】解:设一次函数的表达式是y=﹣x+b.则3把(0,3)代入得b=3,则一次函数的解析式是y=﹣x+3.故答案是:y=﹣x+3.【知识点】待定系数法求一次函数解析式、两条直线相交或平行问题拓展提升三、解答题(共6小题)15.正比例函数y=kx的图象经过点A(﹣1,3),B(a,a+1),求a的值.【分析】由点A,B的坐标,利用一次函数图象上点的坐标特征可得出关于k,a的方程组,解之即可求出a的值.【解答】解:∵正比例函数y=kx的图象经过点A(﹣1,3),B(a,a+1),∴,∴.答:a的值为﹣.【知识点】一次函数图象上点的坐标特征16.已知y与x+2成正比例,且当x=1时,y=6;(1)求出y与x之间的函数关系式;(2)当x=﹣3时,求y的值.【分析】(1)根据正比例函数的定义,设y=k(x+2),然后把已知的对应值代入求出k即可;(2)把x=﹣3代入(1)中的解析式中可计算出对应的函数值.【解答】解:(1)设y=k(x+2),把x=1,y=6代入得6=3k,解得k=2,∴y=2(x+2)=2x+4,即y与x之间的函数关系式为y=2x+4;(2)当x=﹣3时,y=2×(﹣3)+4=﹣2.【知识点】一次函数的性质、待定系数法求一次函数解析式17.已知一次函数y=kx+5的图象经过点A(2,﹣1).(1)求k的值;(2)在图中画出这个函数的图象;(3)若该图象与x轴交于点B,与y轴交于点C,试确定△OBC的面积.【分析】(1)将点A的坐标代入一次函数解析式中,即可求出k的值;(2)利用一次函数图象上点的坐标特征可求出点B,C的坐标,连接点A,C并双向延长,即可画出一次函数y=kx+5的图象;(3)由点B,C的坐标可得出OB,OC的长,再利用三角形的面积公式即可求出△OBC的面积.【解答】解:(1)∵一次函数y=kx+5的图象经过点A(2,﹣1),∴2k+5=﹣1,∴k=﹣3.(2)当x=0时,y=﹣3x+5=5,∴点C的坐标为(0,5);当y=0时,﹣3x+5=0,解得:x=,∴点B的坐标为(,0).由点A,C可画出一次函数y=kx+5的图象,如图所示.(3)∵点B的坐标为(,0),点C的坐标为(0,5),∴OB=,OC=5,∴S△OBC=OB•OC=.【知识点】一次函数的图象、一次函数图象上点的坐标特征18.已知:如图,直线y=x+3与x轴,y轴分别交于点A和点B.(1)点A坐标是,点B的坐标是;(2)△AOB的面积=;(3)当y>0时,x的取值范围是.【答案】【第1空】(-6,0)【第2空】(0,3)【第3空】9【第4空】x>-6【分析】(1)根据坐标轴上点的坐标特征求A点和B点坐标;(2)根据三角形面积公式求解;(3)根据图象直接求解.【解答】解:(1)当y=0时,x+3=0,解得x=﹣6,则A(﹣6,0);当x=0时,y=x+3=3,则B(0,3);故答案为(﹣6,0),(0,3);(2)△AOB的面积=×6×3=9,故答案为9;(3)由图象得:当y>0时,x的取值范围是x>﹣6,故答案为x>﹣6.【知识点】一次函数图象上点的坐标特征、一次函数的性质19.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式;(2)判定点C(4,﹣2)是否在该函数图象上?说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.【分析】(1)首先求得B的坐标,然后利用待定系数法即可求得函数的解析式;(2)把C的坐标代入一次函数的解析式进行检验即可;(3)首先求得D的坐标,然后利用三角形的面积公式求解.【解答】解:(1)在y=2x中,令x=1,解得y=2,则B的坐标是(1,2),设一次函数的解析式是y=kx+b,则,解得:.则一次函数的解析式是y=﹣x+3;(2)当a=4时,y=﹣1,则C(4,﹣2)不在函数的图象上;(3)一次函数的解析式y=﹣x+3中令y=0,解得:x=3,则D的坐标是(3,0).则S△BOD=OD×2=×3×2=3.【知识点】待定系数法求一次函数解析式、一次函数图象上点的坐标特征20.已知一次函数y=﹣2x﹣2.(1)根据关系式画出函数的图象.(2)求出图象与x轴、y轴的交点A、B的坐标,(3)求A、B两点间的距离.(4)在坐标轴上有点C,使得AB=AC,写出C的坐标.【分析】(1)根据函数解析式,可以画出相应的函数图象;(2)令x=0求出y的值,再令y=0求出x的值,即可得到点A和点B的坐标;(3)根据(2)中点A和点B的坐标,即可得到A、B两点间的距离;(4)根据题意,可以得到点C的坐标.【解答】解:(1)函数图象如右图所示;(2)∵y=﹣2x﹣2,∴当x=0时,y=﹣2,当y=0时,x=﹣1,∴图象与x轴、y轴的交点A、B的坐标分别为(﹣1,0),(0,﹣2);(3)∵点A(﹣1,0),点B(0,﹣2),∴OA=1,OB=2,∴AB==,即A、B两点间的距离是;(4)由(3)知,AB=,∵点C在坐标轴上,AB=AC,∴当C在x轴上时,点C的坐标为(﹣1﹣,0)或(﹣1+,0),当点C在y轴上时,点C的坐标为(0,2),由上可得,点C的坐标为:(﹣1﹣,0)、(﹣1+,0)或(0,2).【知识点】一次函数的性质、一次函数的图象。
专题19.2.2一次函数的图象和性质一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.在函数3y x =-的图象上的点是()A .(1,-3)B .(0,3)C .(-3,0)D .(1,-2)【答案】D【解析】A.1-3=-2≠-3,故本选项不在3y x =-的图象上,B.0-3=-3≠3,故本选项不在3y x =-的图象上,C.-3-3=-6≠0,故本选项不在3y x =-的图象上,D.1-3=-2,故本选项在3y x =-的图象上.故选:D .2.函数2y kx =-的图象经过点(3,1)p -,则k 的值为()A .3B .3-C .13D .13-【答案】C【解析】∵函数2y kx =-的图象经过点(3,1)p -,∴3k −2=-1,解得k =13.故选:C .3.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是一次函数y =﹣x ﹣1图象上的点,并且y 1<y 2<y 3,则下列各式中正确的是()A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1【答案】D【解析】解:∵一次函数y=﹣x ﹣1中k=﹣1<0,∴y 随x 的增大而减小,又∵y 1<y 2<y 3,∴x 1>x 2>x 3.故选:D .4.在平面直角坐标系中,将直线1:41l y x =--平移后,得到直线2:47l y x =-+,则下列平移作法正确的是()A .将1l 向右平移8个单位B .将1l 向右平移2个单位C .将1l 向左平移2个单位D .将1l 向下平移8个单位【答案】B【解析】A :将直线1:41l y x =--向右平移8个单位得到直线()481y x =---,即直线431y x =-+.B :将直线1:41l y x =--向右平移2个单位得到直线()421y x =---,即直线2:47l y x =-+.C :将直线1:41l y x =--向左平移2个单位得到直线()421y x =-+-,即直线49y x =--.D :将直线1:41l y x =--向下平移8个单位得到直线418y x =---,即直线49y x =--.故选B .5.一次函数35y x =-+的图象经过()A .第一、三、四象限B .第二、三、四象限C .第一、二、三象限D .第一、二、四象限【答案】D【解析】解: 一次函数35y x =-+中,30k =-<,50b =>,∴此一次函数的图象经过一、二、象限.故选:D6.下图为正比例函数()0y kx k =≠的图像,则一次函数y x k =+的大致图像是()A .B .C .D .【答案】B 【解析】解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,∴k<0,∴一次函数y=x+k 的图象与y 轴交于负半轴且经过一、三象限.故选B.7.若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是()A .k <3B .k <0C .k >3D .0<k <3【答案】D【解析】∵一次函数y=(k-3)x-k 的图象经过第二、三、四象限,∴ ॰䃰< ॰,解得:0<k <3,故选:D .8.如图,已知一次函数y kx b =+,y 随着x 的增大而增大,且0kb <,则在直角坐标系中它的图象大致是()A .B .C .D .【答案】A【解析】∵y 随x 的增大而增大,∴0k >.又∵0kb <,∴0b <,∴一次函数过第一、三、四象限,故选A .9.对于次函数21y x =-,下列结论错误的是()A .图象过点()0,1-B .图象与x 轴的交点坐标为1(,0)2C .图象沿y 轴向上平移1个单位长度,得到直线2y x=D .图象经过第一、二、三象限【答案】D【解析】A 、图象过点()0,1-,不符合题意;B 、函数的图象与x 轴的交点坐标是1(,0)2,不符合题意;C 、图象沿y 轴向上平移1个单位长度,得到直线2y x =,不符合题意;D 、图象经过第一、三、四象限,符合题意;故选:D .10.直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是()A .B .C .D .【答案】C【解析】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx+b 中,k <0,b <0,y 2=bx+k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx+b 中,k >0,b <0,y 2=bx+k 中,b <0,k <0,k 的取值相矛盾,故本选项错误;故选:C .11.一次函数23y x =-的图像在y 轴的截距是()A .2B .-2C .3D .-3【答案】D【解析】∵23y x =-,即b=-3,∴图像与y 轴的截距为-3,故选:D.12.如果直线y=2x+m 与两坐标轴围成的三角形的面积是4,那么m 的值是()A .4-B .2C .2±D .4±【答案】D【解析】∵当x=0时,y=m ,当y=0时,x=2m -,∴直线y=2x+m 与x 轴和y 轴的交点坐标分别为(2m -,0)、(0,m ),∵直线y=2x+m 与两坐标轴围成的三角形的面积是4,∴12|2m -||m|=4,解得:m=±4,故选:D .13.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为()A .35y x =B .910y x =C .34y x =D .y x=【答案】B【解析】解:设直线l 和八个正方形的最上面交点为A ,过A 作AB ⊥y 轴于B ,作AC ⊥x 轴于C ,∵正方形的边长为1,∴OB =3,∵经过原点的一条直线l 将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO 面积是5,∴12OB•AB =5,∴AB =103,∴OC =103,由此可知直线l 经过(103,3),设直线l 解析式为y =kx ,则3=103k ,解得:k =910,∴直线l 解析式为y =910x ,故选:B .14.在平面直角坐标系中,点()11,1A -在直线y x b =+上,过点1A 作11A B x ⊥轴于点1B ,作等腰直角三角形112A B B (2B 与原点O 重合),再以12A B 为腰作等腰直角三角形212A A B ;以22A B 为腰作等腰直角三角形223A B B …;按照这样的规律进行下去,那么2019A 的坐标为()A .()2018201821,2-B .()2018201822,2-C .()2019201921,2-D .()2019201922,2-【答案】B【解析】解:如上图,∵点B 1、B 2、B 3、…、B n 在x 轴上,且A 1B 1=B 1B 2,A 2B 2=B 2B 3,A 3B 3=B 3B 4,∵A 1(−1,1),∴A 2(0,2),A 3(2,4),A 4(6,8),…,∴A n (2n−1−2,2n−1).∴A 2019的坐标为(22018−2,22018).故选:B .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.一次函数36y x =-+的图象与y 轴的交点坐标是________.【答案】(0,6)【解析】解:根据题意,令0x =,解得6y =,所以一次函数36y x =-+的图象与y 轴的交点坐标是(0,6).故答案为:(0,6).16.一次函数(3)2=-+y k x ,若y 随x 的增大而增大,则k 的取值范围是_________.【答案】3k >【解析】∵一次函数(3)2=-+y k x ,y 随x 的增大而增大,30k ∴->,3k ∴>.k .故答案为:317.已知A(2,1),B(2,4).(1)若直线l:y=x+b与AB有一个交点.则b的取值范围为_______________;(2)若直线l:y=kx与AB有一个交点.则k的取值范围为_______________.【答案】-1≤b≤2;0.5≤k≤2.【解析】解:(1)把A(2,1),代入直线l:y=x+b,得2+b=1,解得b=-1;把B(2,4)代入直线l:y=x+b,的2+b=4,解得b=2;所以:b的取值范围是:-1≤b≤2;(2)把A(2,1),代入直线l:y=kx,得2k=1,解得k=0.5;把B(2,4)代入直线l:y=kx,的2k=4,解得k=2;∴k的取值范围为:0.5≤k≤2.故答案为:-1≤b≤2;0.5≤k≤2.18.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.【答案】一【解析】首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分)19.先完成下列填空,再在同一直角坐标系中画出以下函数的图象(不必再列表)(1)正比例函数2y x =过(0,)和(1,);(2)一次函数3y x =-+(0,)(,0).【答案】(1)0,2;(2)3,3,作图见解析【解析】解:(1)当x=0时,y=2x=0,∴正比例函数y=2x 过(0,0);当x=1时,y=2x=1,∴正比例函数y=2x 过(1,2).故答案为:0;2.(2)当x=0时,y=-x+3=3,∴一次函数y=-x+3过(0,3);当y=0时,有-x+3=0,解得:x=3,∴一次函数y=-x+3过(3,0).故答案为:3;3.20.已知一次函数()226y k x k =--+.(1)k 满足何条件时,y 随x 的增大而减小;(2)k 满足何条件时,图像经过第一、二、四象限;(3)k 满足何条件时,它的图像与y 轴的交点在x 轴的上方.【答案】(1)k>2;(2)2<k<3;(3)k<3且k≠2.【解析】(1)∵一次函数y=(2−k)x−2k+6的图象y 随x 的增大而减小,∴2−k<0,解得k>2;(2)∵该函数的图象经过第一、二、四象限,∴2−k<0,且−2k+6>0,解得2<k<3;(3)∵y=(2−k)x −2k+6,∴当x=0时,y=−2k+6,由题意,得−2k+6>0且2−k≠0,∴k<3且k≠2.21.如图,已知正比例函数y kx =(0)k ≠经过点(2,4)P .(1)求这个正比例函数的解析式;(2)该直线向上平移4个单位,求平移后所得直线的解析式.【答案】(1)2y x =;(2)24y x =+【解析】解:(1)把(2,4)P 代入y kx =,得42k =,∴2k =,∴这个正比例函数的解析式是2y x =.(2)设平移后所得直线的解析式是y =2x +b ,把(0,4)代入得:4=b ,∴y =2x +4.答:平移后所得直线的解析式是y =2x +4.22.已知一次函数的图象与正比例函数23y x =-的图象平行,且经过点()04,.(1)求一次函数的解析式;(2)若点()8M m -,和()5N n ,在一次函数的图象上,求m ,n 的值.【答案】(1)243y x =-+;(2)283m =;32n =-.【解析】设一次函数的解析式为y=kx+b ,∵一次函数的图象与正比例函数23y x =-的图象平行,∴k=23-,∵一次函数图象经过点(0,4),∴b=4,∴一次函数的解析式为y=23-x+4.(2)∵点()8M m -,和()5N n ,在一次函数的图象上,∴m=23-×(-8)+4=283,5=23-n+4,解得:m=283,n=32-.23.已知一次函数y =-x +3与x 轴,y 轴分别交于A ,B 两点.(1)求A ,B 两点的坐标.(2)在坐标系中画出一次函数y =-x +3的图象,并结合图象直接写出y <0时x 的取值范围.【答案】(1)()3,0A ,()0,3B (2)作图见解析,3x >【解析】(1)令0x =,则3y =,故()0,3B 令0y =,则03x =-+,故()3,0A .(2)如图所示,即为所求,根据图象可得y <0时,3x >.24.如图,直线AB 与x 轴相交于点(3,0)A ,与y 轴相交于点(0,4)B ,点C 是直线AB 上的一个动点.(1)求直线AB 的函数解析式;(2)若AOC ∆的面积是3,求点C 的坐标.【答案】(1)443y x =-+;(2)点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.【解析】解:(1)设直线AB 的解析式为y kx b =+.∵直线过点(3,0)A 和点(0,4)B ,∴30,4.k b b +=⎧⎨=⎩解得4,34.k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为443y x =-+.(2)∵(3,0)A ,∴3AO =,∵AOC ∆的面积是3,∴AOC ∆边OA 上的高为2,∴点C 的纵坐标为2或-2,∵点C 为直线AB 上的点,当4423x -+=时,解得32x =;当4423x -+=-时,解得92x =.∴当AOC ∆的面积是3时,点C 的坐标为3,22⎛⎫ ⎪⎝⎭或9,22⎛⎫- ⎪⎝⎭.25.在平面直角坐标系中,一次函数122y x =-+的图象交x 轴、y 轴分别于A B 、两点,交直线y kx =于P 。
探究一次函数及其图像性质一次函数是数学中的常见函数之一,它的表达式为f(x) = ax + b,其中a和b为实数且a不等于0。
本文将探究一次函数及其图像性质,分别从函数的定义、图像的特征以及相关应用进行论述。
一、函数的定义一次函数是指函数的式子中最高次幂是1,并且函数可由f(x) = ax + b表示。
其中,a称为一次函数的斜率,表示函数图像的倾斜程度,当a为正数时,函数图像呈现上升趋势,当a为负数时,函数图像呈现下降趋势。
b称为一次函数的截距,表示函数图像与y轴的交点。
一次函数的定义域为所有实数,即(-∞, +∞)。
二、图像的特征1. 斜率:一次函数的图像的斜率决定了其是上升还是下降,当斜率为正时,对应的函数图像从左下方向上升到右上方;当斜率为负时,函数图像从左上方向下降到右下方。
2. 截距:一次函数的图像与y轴的交点即为截距,用来确定函数的纵向位置。
当截距为正时,函数图像在y轴上方;当截距为负时,函数图像在y轴下方。
3. 相关性质:一次函数是线性函数的特例,因此具有线性函数的性质,包括:平行性、反比例性和零点性。
平行性表示具有相同斜率的一次函数图像是平行的;反比例性则表示斜率为负的一次函数图像关于原点对称;零点性则表示当f(x) = 0时,对应的x值是函数的零点。
三、相关应用1. 直线方程:一次函数的图像为一条直线,因此在几何学中有广泛应用。
通过给定斜率和截距,可以确定一条直线的方程,进而求解直线与其他几何图形之间的关系。
2. 财务分析:一次函数可以用来描述某些经济变量之间的线性关系,比如成本和产量、销量和利润等。
通过分析函数的斜率和截距,可以评估经济变量之间的相关性,并进行更深入的财务分析和决策。
3. 物理学应用:在物理学中,一次函数常用于描述一些物理量之间的关系。
例如,物体的位移与时间的关系、速度与时间的关系等,都可以用一次函数来表示,通过函数的图像可以更直观地理解和分析物理学中的各种现象。
专题5.3 一次函数的图象与性质-重难点题型【浙教版】函数图像一次函数变为正比例函数,正比例函数是一次函数的特例。
)A.B.C.D.【变式1-1】函数y=ax+b﹣2的图象如图所示,则函数y=﹣ax﹣b的大致图象是()A.B.C.D.【变式1-2】(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.【变式1-3】函数y=|x﹣2|的图象大致是()A.B.C.D.【题型2 正比例函数的图象】【例2】如图,三个正比例函数的图象分别对应函数关系式:①y=ax,①y=bx,①y=cx,将a,b,c从小到大排列并用“<”连接为()A.a<b<c B.c<a<b C.c<b<a D.a<c<b【变式2-1】(2020秋•达川区期末)如图,四个一次函数y=ax,y=bx,y=cx+1,y=dx﹣3的图象如图所示,则a,b,c,d的大小关系是()A.b>a>d>c B.a>b>c>d C.a>b>d>c D.b>a>c>d【变式2-2】(2021秋•茂名期中)直线y=2kx的图象如图所示,则y=(k﹣2)x+1﹣k的图象大致是()A.B.C.D.【变式2-3】(2021春•新田县期末)如图,直线l1①x轴于点(1,0),直线l2①x轴于点(2,0),直线l3①x轴于点(3,0),…直线l n①x轴于点(n,0).函数y=x的图象与直线l1,l2,l3,…,l n分别交于点A1,A2,A3,…,A n ;函数y =3x 的图象与直线l 1,l 2,l 3,…,l n 分别交于点B 1,B 2,B 3,…,B n ,如果①OA 1B 1的面积记的作S 1,四边形A 1A 2B 2B 1的面积记作S 2,四边形A 2A 3B 3B 2的面积记作S 3,…四边形A n ﹣1A n B n B n ﹣1的面积记作S n ,那么S 2021= ..) C .第一、三、四象限D .第二、三、四象限【变式3-1】(2021•黄州区校级自主招生)已知过点(2,3)的直线y =ax +b (a ≠0)不经过第四象限,设s =a ﹣2b ,则s 的取值范围是( ) A .32≤s <6B .﹣3<s ≤3C .﹣6<s ≤32D .32≤s ≤5【变式3-2】(2021春•忠县期末)已知一次函数y =(5﹣a )x +a +1的图象不经过第四象限,且关于x 的分式方程102−x=2−axx−2有整数解,则满足条件的所有整数a 的和为( )A .6B .7C .8D .9【变式3-3】(2021•渝中区模拟)若关于x 的一元一次不等式组{23x >x −14x +1≥a恰有3个整数解,且一次函数y =(a﹣2)x +a +1不经过第三象限,则所有满足条件的整数a 的值之和是( ) A .﹣2B .﹣1C .0D .1【题型4 一次函数图象与系数的关系】【例4】(2021春•鄢陵县期末)已知A (x 1,y 1)、B (x 2,y 2)是一次函数y =(2﹣m )x +3图象上两点,且(x 1﹣x 2)(y 1﹣y 2)<0,则m 的取值范围为 .【变式4-1】如图,平面直角坐标系中,若点A (3,0)、B (4,1)到一次函数y =kx +4(k ≠0)图象的距离相等,则k 的值为 .【变式4-2】(2020•成都模拟)在平面直角坐标系xOy 中,直线l :y =kx ﹣1(k ≠0)与直线x =﹣k ,y =﹣k 分别交于点A ,B .直线x =﹣k 与y =﹣k 交于点C .记线段AB ,BC ,AC 围成的区域(不含边界)为W ;横,纵坐标都是整数的点叫做整点.(1)当k =﹣2时,区域W 内的整点个数为 ; (2)若区域W 内没有整点,则k 的取值范围是 . 【变式4-3】已知一次函数y =(6+3m )x +(n ﹣2).求(1)当m ,n 为何值时,y 值随x 的增大而减小,且与y 轴交点在x 轴下方? (2)当m ,n 为何值时,此一次函数也是正比例函数?(3)当m =﹣1,n =﹣2时,设此一次函数与x 轴交于点A ,与y 轴交于点B ,并求出①AOB 的面积(O 为坐标原点)【题型5 一次函数图象上点的坐标特征】 【例5】已知一次函数y =(6+3m )x +(n ﹣2).求(1)当m ,n 为何值时,y 值随x 的增大而减小,且与y 轴交点在x 轴下方? (2)当m ,n 为何值时,此一次函数也是正比例函数?(3)当m =﹣1,n =﹣2时,设此一次函数与x 轴交于点A ,与y 轴交于点B ,并求出①AOB 的面积(O 为坐标原点)【变式5-1】如图,直线y =2x +3与x 轴相交于点A ,与y 轴相交于点B .(1)求①AOB 的面积;(2)过B 点作直线BP 与x 轴相交于P ,①ABP 的面积是92,求点P 的坐标.【变式5-2】如图,直线y =kx +6与x 轴y 轴分别相交于点E ,F .点E 的坐标(8,0),点A 的坐标为(6,0).点P (x ,y )是第一象限内的直线上的一个动点(点P 不与点E ,F 重合). (1)求k 的值;(2)在点P 运动的过程中,求出①OP A 的面积S 与x 的函数关系式. (3)若①OP A 的面积为278,求此时点P 的坐标.【变式5-3】(2021春•青县期末)如图,直线y =﹣x +10与x 轴、y 轴分别交于点B ,C ,点A 的坐标为(8,0),P (x ,y )是直线y =﹣x +10在第一象限内一个动点.(1)求①OP A 的面积S 与x 的函数关系式,并写出自变量的x 的取值范围; (2)当①OP A 的面积为10时,求点P 的坐标.【题型6 一次函数图象与几何变换】【例6】已知一次函数y =kx +b 的图象过点A (﹣4,﹣2)和点B (2,4) (1)求直线AB 的解析式;(2)将直线AB 平移,使其经过原点O ,则线段AB 扫过的面积为 .【变式6-1】若直线y=kx+3与直线y=2x+b关于直线x=1对称,则k、b值分别为()A.k=2、b=﹣3B.k=﹣2、b=﹣3C.k=﹣2、b=1D.k=﹣2、b=﹣1【变式6-2】(2018春•沙坪坝区校级期末)如图:一次函数y=13x+2交y轴于A,交y=3x﹣6于B,y=3x﹣6交x轴于C,直线BC顺时针旋转45°得到直线CD.(1)求点B的坐标;(2)求四边形ABCO的面积;(3)求直线CD的解析式.【变式6-3】(2018•沙坪坝区模拟)如图,正比例函数y=kx(k≠0)的图象过点A(2,﹣3).直线y=x+b沿y 轴平行移动,与x轴、y轴分别交于点B、C,与直线OA交于点D.(1)若点D在线段OA上(含端点),求b的取值范围;(2)当点A关于直线BC的对称点A'恰好落在y轴上时,求①OBD的面积.。
初中数学.精品文档如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯专题:一次函数的图像及性质重难点考点一一次函数的图像及性质1.一次函数y=kx+b与y=kx的图像关系(1)平移变换:y=kx------------------------→y=kx+b;(2)作图:通常采用“两点定线”法作图,一般取直线:与y轴的交点(0,b) ,与x轴的交点(-bk,0) ;注意:平移前后两直线,平行直线的系数k ;2.一次函数y=kx+b的图像与性质k b示意图象限增减性k>0 b>0y随x增大而.b<0k<0 b>0y随x增大而.b<0注意:①系数k叫直线的斜率,反映直线的倾斜程度,与直线的增减性有关,即:k>0时直线递增,k<0时直线递减;②常数b叫直线的截距,反映直线与y轴的交点位置,即:b>0时直线交于y正半轴,b<0时直线交于y负半轴.【例1】1.对于y=-2x+4的图象,下列说法正确的是(D) A.经过第一、二、三象限B.y随x的增大而增大C.图象必过点(-2,0) D.与y=-2x+1的图象平行2.若ab<0且a>b,则函数y=ax+b的图象可能是(A) 3.将函数y=-0.5x 的图象向上平移3个单位,得到的函数与x轴、y轴分别交于点A,B,则△AOB 的面积是9 .4.已知一次函数y=kx+2k+3(k≠0)的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为-1 .5.已知一次函数y=(2m-1)x-m+3,分别求下列m的范围:(1)过一、二、三象限;(2)不过第二象限;(3) y随x增大减小.(4)与y正半轴相交.解:(1) 12<m<3;(2) m≥3;(3) m<12;(4) m<3且m≠12.变式训练1:1.点A(x1,y1),B(x2,y2)是一次函数y=kx+2(k<0)图象上不同的两点,若t=(x2-x1)(y2-y1),则( A )A.t<0 B.t=0 C.t>0 D.t≤0 2.如图,在同一坐标系中,一次函数y=mx+n与正比例函数y=mnx (m,n为常数,且mn≠0)的图象可能是( A )3.将直线y=3个单位得到直线y=-3x-n,则实数m= - 3 ,n= -2 .4.已知函数y=abx+a-b的图像经过一、二、四象限,则函数y=ax+b的图像经过一三四象限.5.已知直线l:y=kx+b与直线y=-3x+4平行,且与直线y=-2x-2交y轴于上同一点.(1)直线l:y=kx+b的关系式为y=-3x-2 ;(2)当-3≤x<1时,求直线l的函数值y的取值范围.解:(2)-5<y≤7考点二一次函数关系式的确定1.求一次函数表达式的方法称为:待定系数法.【例2】1.已知y是x的一次函数,下表列出了y与x的部分x …-101…y …1m -5…A.-2.一次函数的图象经过点A(-2,-1),且与直线y=2x+1平行,则此函数的表达式为(B)A.y=x+1 B.y=2x+3 C.y=2x-1 D.y=-2x-5 3.若y-2与x成正比例,且当x=1时,y=6,则y关于x的函数表达式是y=4x+2 .4.已知一次函数图像经过两点A(2,7)、B(m,-5),且与直线y=-2x+1相交于y轴一点C,则m的值是-2 .5.已知某产品的成本是5元/件,每月的销售量y(件)与销售价格x(元/件)成一次函数关系,调查发现,当售价定位30元/件时,每月可售出360件产品,若降价10元,每月可多售出80件.(1)求销售量y与销售价格x的函数关系式;(2)若某月可售出480件产品,求该月的利润.解:(1) y=-8x+600;(2)当y=480,x=15,利润=4800元.变式训练2:1.如图1,两摞相同规格的碗整齐地叠放,根据图信息,则饭碗的高度y(cm)与饭碗数x (个)之间关系式是y=1.5x+4.5 ;图1 图22.如图2,已知直线l1与直线l2相较于点A,点A的横坐标为-1,直线l2与x轴交于点B(-3,0),若△ABO的面积为3,则l1的函数关系式是y=-2x ;l2的函数关系式是y=x+3 .3.已知函数y=kx+b,当自变量x满足-3≤x≤2时,函数值y的取值范围是0≤y≤5,求该函数关系式.解:当k>0时y=x+3;当k<0时y=-x+2;考点三一次函数与方程、不等式【例3】1.如图3,函数y1=2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式2x>ax+3的解集是(A)A.x>1 B.x<1C.x>2 D.x<22.如图是直线y=kx+b的图象,图3初中数学.精品文档根据图上信息填空:(1)方程kx +b =0的解是 x =1 ; 方程kx +b =2的解是 x =0 ;(2)不等式kx +b >0的解集为 x <1 , 不等式kx +b <0的解集为 x >1 ; (3)当自变量x >0 时,函数值y <2, 当自变量x <0 时,函数值y >2;(4)不等式0<kx +b ≤2的解集为 0≤kx +b <1 ; 变式训练3:1.一元一次方程ax -b =0的解为x =-3,则函数y =ax -b 的图象与x 轴的交点坐标是( B ) A .(3,0) B .(-3,0) C .(0,3) D .(0,-3) 2.如图,函数y =ax +b 和y =kx 的交于点P ,根据图象解答:(1)方程ax +b -kx =0的解是 x =-4 ; (2)方程组⎩⎨⎧y =ax +b ,y =kx的解是 ;(3)不等式ax +b<kx 的解集是_ x >-4__;(4)不等式组 的解集为 -4<x <0 .考点四 两个一次函数相交综合应用【例4】如图,直线l 1的解析表达式为y =-3x +3,且l 1与x 轴交于点D ,直线l 2经过点A B ,,直线l 1,l 2交于点C . (1)求点D 的坐标和直线l 2的解析表达式; (2)求△ADC 的面积;(3)在直线l 2上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接..写出点P 的坐标. 解:(1) D (1,0)和直线l 2:y =32x -6;(2) C (2,-3)和△ADC 的面积4.5; (3)点P 的坐标(6,3).※课后练习1.平面直角坐标系中,将y =3x 的图象向上平移6个单位,则平移后的图象与x 轴的交点坐标为( B ) A .(2,0) B .(-2,0) C .(6,0) D .(-6,0) 2.直线y =kx +b 经过第一、三、四象限,则直线y =bx -k 的图象可能是( C )3.直线y =3(x -1)在y 轴上的截距是-3 ,其图像不过第 二 象限且由直线y = 3x -1 向下平移2单位得到.4.已知直线y =kx +m 与直线y =-2x 平行且经过点P (-2,3),则直线y =kx +m 与坐标轴围成的三角形的面积是 14 .5.若y =ax +2与y =bx +3的交于x 轴上一点,则a b = 23 .6.已知函数y =2x -3,当自变量x 的取值范围是-1<x ≤0, 则函数值y 的取值范围是 -5<y ≤-3 .7.如图1,正比例函数y 1的图象与一次函数y 2的图象交于点A (1,2),两直线与y 轴围成的△AOC 的面积为2,则这正比例函数的解析式为y 1= 2x ,一次函数y 2= -2x +4 . 8.如图2,已知函数y=ax+b 和y=kx 的图象交于点P ,则根据图象可得不等式组的解集 x <-3 .图1 图29.某商店购进一批单价为16元/件的电子宠物,销售一段时间后,为了获取更多利润,商店决定提高售价.经试销发现:当按20元/件的价格销售时,每月能卖出360件;当按25元/件的价格销售时,每月能卖出210件.若每月的销售数量y (件)是售价x (元/件)的一次函数,则按28元/件的价格销售时,这个月可卖出____120____件,这个月的利润是___1440___元.10.如图,直线l 1:y=x+1与直线l 2:y=mx+n 相交于点P (1,b ). (1)根据图中信息填空: ①b =2 ; ②方程组的解为;③不等式x+1≤mx+n 的解集为 x ≤1 ;(2)判断直线l 3:y=nx+m 是否也经过点P ? 请说明理由.解:(2)直线l 3:y=nx+m 经过点P . 理由:因为y=mx+n 经过点P (1,2),所以m+n=2,所以直线y=nx+m 也经过点P .11.如图,直线l 1:y 1=2x +1与坐标轴交于A ,C 两点,直线l 2:y 2=-x -2与坐标轴交于B ,D 两点,两直线的交点为点P . (1)求△APB 的面积;(2)利用图象直接写出下列不等式的解集: ①y 1<y 2; ②y 1<y 2≤0. 解:(1)联立l 1,l 2的表达式, 得⎩⎨⎧ y =2x +1,y =-x -2,解得⎩⎨⎧x =-1,y =-1, ∴点P 的坐标为(-1,-1).又∵A (0,1),B (0,-2),∴S △APB =3×12=32.(2)由图可知,①当x <-1时,y 1<y 2. ②-2≤x <-1时,0<y 2≤y 1.12.“十一”期间,小明一家计划租用新能源汽车自驾游.当前,有甲乙两家租车公司,设租车时间为x h ,租用甲公司的车所需要的费用为y 1元,租用乙公司的车所需要的费用为y 2元,他们的租车的情况如图所示.根据图中信息: (1)直接写出y 1与y 2的函数关系式;{02<-<+kx b ax初中数学.精品文档(2)通过计算说明选择哪家公司更划算. 解:(1)y 1=15x +80(x ≥0), y 2=30x (x ≥0).(2)当y 1=y 2时,x =163,选甲乙一样合算;当y 1<y 2时,x >163,选甲公司合算;当y 1>y 2时,x <163,选乙公司合算.。
专题12 一次函数的图像和性质(强化-基础)一、单选题(共32分)1.(本题4分)(2021·全国九年级专题练习)如果一个正比例函数y =kx 的图象经过不同象限的两点(m ,1)、(2,n ),那么一定有( )A .m >0,n >0B .m <0,n <0C .m >0,n <0D .m <0,n >0 【答案】B【分析】利用正比例函数的性质可知正比例函数y =kx 的图象经过第一、三象限或第二、四象限,结合点(m ,1)和(2,n )在不同象限,即可得出点(m ,1)在第二象限、点(2,n )在第四象限,进而可得出m <0,n <0.【详解】解:正比例函数y =kx 的图象经过第一、三象限或第二、四象限.∵点(m ,1)和(2,n )在不同象限,∵点(m ,1)在第二象限,点(2,n )在第四象限,∵m <0,n <0.故选:B .【点睛】本题主要考查了正比例函数的性质,熟悉掌握正比例函数的图象特点是解题的关键. 2.(本题4分)(2021·西安市浐灞第一中学八年级期末)已知正比例函数y ax =的图象经过点()3,6-,则下列四个点中在这个函数图象上的是( )A .()1,3-B .()2,4-C .()4,7-D .()5,8-【答案】B【分析】将点(3,-6)代入正比例函数的解析式y=kx ,求得k 值,然后再判断点是否在函数图象上.【详解】解:∵正比例函数y=kx 经过点(3,-6),∵-6=3k ,解得k=-2;∵正比例函数的解析式是y=-2x;A、∵当x=1时,y=-2,∵点(1,-3)不在该函数图象上;故A不符合题意;B、∵当x=2时,y=-4,∵点(2,-4)在该函数图象上;故B符合题意;C、∵当x=4时,y=-8,∵点(4,-7)不在该函数图象上;故C不符合题意;D、∵当x=5时,y=-10,∵点(5,-8)不在该函数图象上;故D不符合题意.故选:B.【点睛】本题主要考查了正比例函数图象上的点的坐标特征.点在函数的图象上,则点的坐标满足函数的解析式.3.(本题4分)(2021·西安市铁一中学九年级三模)在平面直角坐标系中,已知点A(3,0),点B(0,4),正比例函数y=kx(k≠0)的图象恰好经过线段AB的中点.若点C(2,p)在该正比例函数的图象上,则p的值为()A.34B.32C.43D.83【答案】D【分析】由题意易得线段AB的中点坐标,然后代入正比例函数y=kx的解析式进行求解,进而问题可求解.【详解】解:∵点A(3,0),点B(0,4),∵线段AB的中点坐标为3,22⎛⎫ ⎪⎝⎭,把点3,22⎛⎫⎪⎝⎭代入正比例函数y=kx的解析式得:322k=,解得:43k=,∵正比例函数的解析式为43y x =,∵点C(2,p)在该正比例函数的图象上,∵48233 p=⨯=;故选D.【点睛】本题主要考查正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.4.(本题4分)(2021·西安市·陕西师大附中九年级二模)若点()1,2M 关于y 轴的对称点在一次函数()32y k x k =++的图象上,则k 的值为( )A .2-B .0C .1-D .37- 【答案】A【分析】依题意,点(1,2)M 关于y 轴的对称点为12()1,M -,然后将点1M 带入一次函数解析式即可;【详解】由题知,点关于y 轴的对称点坐标的规律---横坐标变为相反数,纵坐标不变,可得:对称点12()1,M -将点12()1,M -代入一次函数(32)y k x k =++,即为2(32)(1)k k =+⨯-+,可得:2k =-; 故选:A【点睛】本题主要考查点的对称、一次函数解析式的性质,难点在熟悉二者的衔接;5.(本题4分)(2021·江苏苏州市·九年级专题练习)对于一次函数(y kx b k =+,b 为常数),如表中给出几组自变量及其对应的函数值,其中恰好有一个函数值计算有误,则这个错误的函数值是( )A .1-B .2C .5D .7【答案】B【分析】经过观察4组自变量和相应的函数值(1,7)-,(0,5),(3,1)-符合解析式25y x =-+,(1,2)不符合,即可判定.【详解】解:(1,7)-,(0,5),(3,1)-符合解析式25y x =-+,当1x =时,312y =≠∴这个计算有误的函数值是2,故选:B .【点睛】本题考查了一次函数图象上点的坐标特征,图象上点的坐标符合解析式是解决本题的关键.6.(本题4分)(2018·福建福州市·八年级期中)已知 2,()1P m m +是平面直角坐标系的点,则点P 的纵坐标随横坐标变化的函数解析式可以是 ( )A .21y x =-B .112y x =-C .112y x =+D .21y x =+ 【答案】C【分析】令2m=x ,m+1=y ,利用代入消元法,消去m ,即可得到答案.【详解】令2m=x ,m+1=y , ∵m=12x ,m=y -1, ∵12x= y -1,即:112y x =+, 点P 的纵坐标随横坐标变化的函数解析式可以是:112y x =+. 故选C .【点睛】本题主要考查一次函数图象上点的坐标特征,掌握代入消元法,是解题的关键. 7.(本题4分)(2020·浙江杭州市·八年级期末)一次函数y kx b =+中,若0kb <,且y 随着x 的增大而增大,则其图象可能是( )A .B .C .D .【答案】B【分析】由y 随着x 的增大而增大,利用一次函数的性质可得出k >0,结合kb <0可得出b <0,再利用一次函数图象与系数的关系即可得出一次函数y =kx +b 的图象经过第一、三、四象限.【详解】解:∵y 随着x 的增大而增大,∵k >0,又∵kb <0,∵b <0,∵一次函数y =kx +b 的图象经过第一、三、四象限.故选:B .【点睛】本题考查了一次函数的性质以及一次函数图象与系数的关系,牢记“k >0,b <0∵y =kx +b 的图象在一、三、四象限”是解题的关键.8.(本题4分)(2021·全国八年级课时练习)一次函数片1y ax b 与2y cx d =+的图象如图所示,下列说法:①ab <0;①函数y =ax +d 不经过第一象限;①函数y =cx +b 中,y 随x 的增大而增大;①3a +b =3c +d ,其中正确的个数有( )A .4个B .3个C .2个D .1个【答案】A仔细观察图象:∵a 的正负看函数y 1=ax +b 图象从左向右成何趋势,b 的正负看函数y 1=ax +b 图象与y 轴交点即可;∵观察函数图象可以直接得到答案;∵观察函数图象可以直接得到答案;∵根据两直线交点可以得到答案.【详解】由图象可得:a <0,b >0,c >0,d <0,∵ab <0,故∵正确;函数y =ax +d 的图象经过第二,三,四象限,即不经过第一象限,故∵正确;函数y =cx +b 中,y 随x 的增大而增大,故∵正确;∵一次函数y 1=ax +b 与y 2=cx +d 的图象的交点的横坐标为3,∵3a +b =3c +d ,故∵正确.综上所述,正确的结论有4个.故选:A .【点睛】本题主要考查了一次函数的图象与性质,利用数形结合是解题的关键.二、填空题(共30分)9.(本题5分)(2020·盐城市初级中学八年级月考)在2(1)1y k x k =-+-中,若y 是x 的正比例函数,则k 值为____________.【答案】-1【分析】根据正比例函数的定义得到k -1≠0且k 2−1=0即可求出k 值.∵函数y=(k-1)x+k2−1是正比例函数,∵k-1≠0且k2−1=0,解得k=-1;故填:-1.【点睛】此题考查正比例函数的定义,熟记定义是解题的关键,主要是定义的理解,比较容易.10.(本题5分)(2021·全国八年级)下列函数关系式:①y=kx+1;①y=2x;①y=x2+1;①y=22﹣x.其中是一次函数的有_____个.【答案】1【分析】根据一次函数的定义解答即可.【详解】解:∵当k=0时,y=kx+1不是一次函数;∵y=2x的右边不是整式,不是一次函数;∵y=x2+1的自变量的次数是2,不是一次函数;∵y=22﹣x是一次函数.故答案为:1.【点睛】本题考查了一次函数的定义,一般地,形如y=kx+b,(k为常数,k≠0)的函数叫做一次函数.11.(本题5分)(2021·江苏泰州市·九年级一模)直线y=﹣12x+2分别交x轴、y轴于A、B两点,点O为坐标原点,则S①AOB=_____.【答案】4【分析】求出OA、OB的值,根据三角形面积公式求出即可.【详解】解:把x=0代入y=﹣12x+2得:y=2,把y =0代入y =﹣12x +2得:x =4, 即OA =4,OB =2,AOB S =12OA ×OB =12×4×2=4, 故答案为:4.【点睛】本题考查了一次函数图象上点的坐标特征的应用,关键是求出OA 、OB 的值.12.(本题5分)(2021·江苏苏州市·九年级专题练习)在平面直角坐标系中,直线y =12x ﹣4与x 轴的交点坐标为_____.【答案】(8,0)【分析】令y =0求出x 的值,从而可得出直线与x 轴的交点坐标.【详解】解:令y =0,则12x ﹣4=0, 解得:x =8,∵直线12x ﹣4与x 轴的交点坐标是(8,0). 故答案为:(8,0).【点睛】本题主要考查一次函数与坐标轴的交点,准确的计算是解题的关键.13.(本题5分)(2021·天津九年级一模)将直线10y x =向上平移3个单位长度,平移后直线的解析式为_________.【答案】103y x =+【分析】根据上加下减的平移规律确定解析式即可【详解】将直线10y x =向上平移3个单位长度,平移后直线的解析式为y =10x +3,故答案为:y =10x +3.【点睛】本题考查了直线的平移规律,熟练掌握平移中上加下减是解题的关键.14.(本题5分)(2021·四川达州市·八年级期末)关于函数3y kx k k =++(为常数),给出下列结论:①此函数是一次函数;①无论k 取什么值,函数图象必经过点()1,3-;①若0k >时,函数图象经过第一、二、三象限;①若0k <时,函数图象与x 轴的交点始终在负半轴上.其中正确的是___________(填序号)【答案】∵∵【分析】∵根据一次函数的定义即可判断;∵将1x =-代入解析式即可判断;∵先确定30k +>即可判断;∵先确定3k +的正负再判断.【详解】解:∵当0k ≠时函数时一次函数,当0k =时,函数为常数函数;此说法错误; ∵当1x =-时,33y k k =-++=∴无论k 取什么值,函数图象必经过点()1,3-;此说法正确;∵若0k >时,30k +>∴函数图象经过第一、二、三象限;此说法正确;∵若0k <时,30k +>时函数图象与x 轴的交点在正半轴上;若0k <时,30k +<时函数图象与x 轴的交点始终在负半轴上,此说法错误; 故答案为:∵∵.【点睛】本题根据交点坐标确定解析式字母系数的取值及分类讨论思想的运用,一般地,先求出交点坐标,再把坐标满足的条件转化成相应的方程或不等式进而解决问题.三、解答题(共90分)15.(本题8分)(2021·全国八年级期末)如图,在平面直角坐标系xOy 中,已知(5,2),(1,6)A B -,直线AB 与直线:2l y x =+交于点C ,直线l 与x 轴交于点D .(1)求直线AB 的解析式:(2)求点C 的坐标;(3)求ACD △的面积.【答案】(1)y =-2x +8;(2)(2,4);(3)18【分析】(1)利用待定系数法求解即可;(2)联立y =-2x +8和y =x +2,求出x ,代入其中一个解析式求出y 值,即可得到点C ; (3)求出点D 和点E 坐标,利用∵ACD 的面积=∵CDE 的面积+∵ADE 的面积求出结果.【详解】解:(1)设直线AB 的解析式为:y =kx +b ,将A (5,-2),B (1,6)代入,得:256k b k b -=+⎧⎨=+⎩,解得:28k b =-⎧⎨=⎩, ∵直线AB 的解析式为:y =-2x +8;(2)∵直线AB 与直线y =x +2交于点C ,则令-2x +8=x +2,解得:x =2,代入y =x +2,得y =4,∵C (2,4);(3)∵直线l 与x 轴交于点D ,∵在y =x +2中,令y =0,则x =-2,∵D (-2,0),设E 为直线AB 与x 轴交点,在y =-2x +8中,令y =0,则x =4,∵E (4,0),∵∵ACD的面积=∵CDE的面积+∵ADE的面积=11646222⨯⨯+⨯⨯=18.【点睛】本题考查了待定系数法求直线的解析式,一次函数与坐标轴的交点问题,能正确求出函数解析式,从而得到相应点的坐标是解题的关键.16.(本题8分)(2020·甘州中学八年级月考)已知y﹣2与x成正比例,且x=2时,y=﹣6.求:(1)y与x的函数关系式;(2)当y=14时,x的值.【答案】(1)y=﹣4x+2;(2)x=﹣3.【分析】(1)设y﹣2=kx(k≠0),把x=2,y=﹣6代入即可求解;(2)把y=14代入函数关系式即可求解.【详解】解:(1)设y﹣2=kx(k≠0),则﹣6﹣2=2k,∵k=﹣4,∵y与x的函数关系式是:y=﹣4x+2;(2)当y=14时,14=﹣4x+2,解得x=﹣3.【点睛】此题主要考查正比例函数的解析式求解,解题的关键是熟知待定系数法的应用.17.(本题8分)(2020·上海八年级期中)已知正比例函数的图像经过点3)-,(1)求正比例函数解析式:(2)若,4)A a-在此正比例函数图像上,求a的值.【答案】(1)y=;(2)1a=【分析】(1)设正比例函数的解析式为y kx =,然后把点)3-代入求解即可;(2)由(1)及题意可直接进行求解. 【详解】解:(1)设正比例函数的解析式为y kx =,则有:3-=,解得:k =∵正比例函数的解析式为y =;(2)由(1)得:y =,把),4Aa -代入解析式得:4a -=,解得:1a =. 【点睛】本题主要考查正比例函数,熟练掌握正比例函数的解析式及性质是解题的关键.18.(本题8分)(2020·全国八年级课时练习)已知正比例函数(1)y m x =-的图象上有两点()11,,A x y ()22,B x y ,当12x x <时,有12y y >.(1)求m 的取值范围;(2)当m 取最大整数时,画出该函数图象.【答案】(1)m 的取值范围是1m <;(2)该正比例函数为y x =-,图象见解析.【分析】(1)根据正比例的性质可得出m -1<0,从而得出m 的取值范围; (2)由(1)得出m 的值,再代入得出解析式,画出图象即可. 【详解】 解:(1)正比例函数(1)y m x =-的图象上有两点()11,,A x y ()22,B x y ,当12x x <时,有12y y >.10,m ∴-< 1,m ∴<m ∴的取值范围是1m <.(2)1,m <m ∴取最大整数0,∴该正比例函数为y x =-,图象如图所示:【点睛】本题考查了正比例函数的图象和性质,当k >0时,y 随x 的增大而增大,当k <0时,y 随x 的增大而减小.19.(本题10分)(2020·辽宁锦州市·八年级期中)已知直线y kx b =+经过点()2,0A -,且平行于直线2y x =-(1)求该函数的关系式;(2)如果直线y kx b =+经过点()3,P m -,求m 的值; (3)求经过P 点的直线13y x n =+与直线y kx b =+和y 轴所围成的三角形的面积. 【答案】(1)24y x =--;(2)2m =;(3)212【分析】(1)根据直线y kx b =+平行于直线2y x =-可得k =-2,然后根据待定系数法算出b 即可; (2)将点P 代入表达式中计算m 即可; (3)分别计算出y kx b =+和13y x n =+与y 轴的交点坐标,然后直接计算所围成图形面积即可.【详解】解:∵y kx b =+与2y x =-平行, ∵2k =-, ∵2y x b =-+. ∵过点(2,0)A - ∵()022b =-⨯-+, ∵4b =-,∵该函数的关系式:24y x =--. (2)∵24y x =--经过点(3,)P m - ∵()234m =-⨯--, ∵2m =;(3)令直线24y x =--中0x =时,则4y =-, ∵直线24y x =--与y 轴的交点是(0,4)-. 令直线13y x n =+中2y =,3x =-,可得:12(3)3n =⨯-+, ∵3n =, ∵直线13y x n =+表达式为直线133y x =+∵直线13y x n =+与y 轴的交点坐标为(0,3), ∵所围成的三角形的面积1217322=⨯⨯=. 【点睛】本题主要考查一次函数求解析式和简单的几何问题,用待定系数法求解析式是解题的关键. 20.(本题10分)(2020·江苏苏州市·八年级月考)已知一次函数y =﹣2x ﹣2. (1)根据关系式画出函数的图象.(2)求出图象与x 轴、y 轴的交点A 、B 的坐标,(3)在坐标轴上有点C,使得AB=AC,写出C的坐标.【答案】(1)作图见解析;(2)A(−1,0),B(0,−2);(3)(0)或(−1 0)或(0,2).【分析】(1)根据函数解析式,可以画出相应的函数图象;(2)令x=0求出y的值,再令y=0求出x的值,即可得到点A和点B的坐标;(3)由AB=AC,分情况讨论点C在x轴,y轴的坐标,即可求得点C的坐标.【详解】解:(1)函数图象如图所示;(2)∵y=−2x−2,∵当x=0时,y=−2,当y=0时,x=−1,∵图象与x轴、y轴的交点A、B的坐标分别为(−1,0),(0,−2);(3)由(3)知,A、B的坐标分别为(−1,0),(0,−2),∵AB∵点C在坐标轴上,AB=AC,∵当C在x轴上时,点C的坐标为(0)或(−10),当点C 在y 轴上时,点C 的坐标为(0,2),综上所述,点C 的坐标为:(0)或(−10)或(0,2). 【点睛】本题考查一次函数的图象、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.21.(本题12分)(2020·扬州市邗江区实验学校八年级月考)若等腰三角形的周长是80cm ,(1)写出这个等腰三角形的腰长y (cm )与底边长x (cm )之间的函数关系式,并求出自变量的取值范围; (2)画出该函数的图象.【答案】(1)400.5y x =-,040x <<;(2)见解析图 【分析】(1)根据等腰三角形的周长=腰长×2+底长.据此可得出函数关系式;根据三角形的三边关系来自变量取值范围;(2)按照画函数图象的方法,注意自变量取值范围即可. 【详解】(1)∵280y x += ∵400.5y x =- ∵0,0x y >>,2y x >∵0x >,400.50x ->,80x x ->. 解得:040x <<;(2)如图所示,注意自变量的取值范围,【点睛】本题考查了一次函数的应用,掌握求自变量的取值范围时要注意三角形三边关系是解题的关键.22.(本题12分)(2021·成都高新新源学校八年级期中)如图,直线AB :2y x k =-过点M (k ,2),并且分别与x 轴,y 轴相交于点A 和点B .(1)求k 的值;(2)求点 A 和点B 的坐标;(3)将直线AB 向上平移3个单位得直线l ,若C 为直线l 上一点,且3AOCS =,求点C的坐标.【答案】(1)2;(2)(1,0),(0,2)A B -;(3)5,62⎛⎫ ⎪⎝⎭或7,62⎛⎫-- ⎪⎝⎭. 【分析】(1)将()2M k ,代入2y x k =-中即可解题; (2)将2k =代入直线AB 可得∵22y x =-,再分别令0x =,0y =,即可解得点A 和点B 的坐标;(3)先解得平移3个单位后的直线l :21y x =+,设C 点坐标为(1)2a a +,,根据三角形面积公式解得11|21|32a ⨯⨯+=,结合绝对值的性质解题即可. 【详解】解:(1)将()2M k ,代入2y x k =-中可得, 22k k -=, 2k =,故k 的值为 2;(2)将2k =代入直线AB 可得∵22y x =-, 令0x =,则2y =-, 令0y =,则1x =,(1,0),(0,2)A B ∴-;(3)由题意可得,平移3个单位后的直线l 为,223y x =-+,即:21y x =+,设C 点坐标为(1)2a a +,, 12ADC C S AO y =⨯⨯△,11|21|32a ∴⨯⨯+=, |21|6a +=, 216a +=±,解得∵5 2a =或72a =-,代入可得,点C 的坐标为5,62⎛⎫ ⎪⎝⎭或7,62⎛⎫-- ⎪⎝⎭. 【点睛】本题考查一次函数,设及一次函数与坐标轴的交点、平移、三角形面积公式、绝对值等知识,是重要考点,难度较易,掌握相关知识是解题关键.23.(本题14分)(2021·全国八年级课时练习)已知,如图,一次函数的图象经过了点(64)P ,和(04)B -,,与x 轴交于点A . (1)求一次函数的解析式;(2)在y 轴上存在一点M ,且ABM 的面积为152,求点M 的坐标.【答案】(1)443y x =-;(2)()M 0,1或()09-, 【分析】(1)把P 点和B 点坐标代入y =kx +b 得到关于k 、b 的方程组,然后解方程组求出k 、b 即可得到一次函数解析式;(2)利用x 轴上点的坐标特征求出A 点坐标,根据三角形面积公式列等式求解即可. 【详解】(1)设一次函数的解析式为y kx b =+,把点()64P ,和()04B -,代入y kx b =+得644k b b +=⎧⎨=-⎩,解得434k b ⎧=⎪⎨⎪=-⎩,所以一次函数解析式为443y x =-; (2)当0y =时,4403x -=,解得3x =, 则A (3,0),在y 轴上存在一点M ,且ABM 的面积为152, 11522ABMA SBM x ∴=⋅=,即115322BM ⨯= 5BM ∴=,B (0,-4),()01,∴M 或()09-,.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数与坐标轴的交点、三角形的面积,熟练掌握待定系数法是解题的关键.。
第二十章一次函数专题20.2 一次函数的图像与性质(第2课时)基础巩固一、单选题(共6小题)1.如图,直线y1=x+b与y2=kx﹣1相交于点P,若点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集是()A.x≥﹣1B.x>﹣1C.x≤﹣1D.x<﹣1【答案】B【分析】观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b >kx﹣1的解集为x>﹣1.【解答】解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.故选:B.【知识点】一次函数与一元一次不等式2.下列四个函数中,y随x的增大而减小的是()A.y=3x B.y=1+2x C.y=1﹣2x D.y=﹣1+x【答案】C【分析】根据k小于零时,y随x的增大而减小,可得答案.【解答】解:A、k=3>0,y随x的增大而增大,故A不符合题意;B、k=2>0,y随x的增大而增大,故B不符合题意;C、k=﹣2<0,y随x的增大而减小,故C符合题意;D、k=1>0,y随x的增大而增大,故C不符合题意;故选:C.【知识点】一次函数的性质、正比例函数的性质3.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.【答案】D【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三、四象限.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三、四象限,故选:D.【知识点】正比例函数的性质、一次函数的性质、一次函数的图象4.如图,一次函数y=kx+b的图象经过点(﹣3,0),则()A.b<0B.方程kx+b=0的解是x=﹣3C.k<0D.y随x的减小而增大【答案】B【分析】利用函数图象和一次函数的性质得到k>0,b>0,y随x的增大而增大,则可对A、C、D选项进行判断;利用自变量为﹣3对应的函数值为0可对B选项进行判断.【解答】解:∵一次函数图象经过第一、二、三象限,∴k>0,b>0,y随x的增大而增大,所以A、C、D选项错误;∵一次函数y=kx+b的图象经过点(﹣3,0),∴x=﹣3时,y=0,即x=﹣3为方程kx+b=0的解,所以B选项正确.故选:B.【知识点】一次函数图象与系数的关系、一次函数与一元一次方程5.在直角坐标系中,点A(2,﹣3)、B(4,3)、C(5,a)在同一条直线上,则a的值是()A.﹣6B.6C.6或3D.6或﹣6【答案】B【分析】根据点A,B的坐标,利用待定系数法可求出直线AB的解析式,再利用一次函数图象上点的坐标特征即可求出a的值.【解答】解:设直线AB的解析式为y=kx+b(k≠0).将A(2,﹣3),B(4,3)代入y=kx+b得:,解得:,∴直线AB的解析式为y=3x﹣9.当x=5时,y=3×5﹣9=6,∴a=6.故选:B.【知识点】一次函数图象上点的坐标特征、待定系数法求一次函数解析式6.若直线y=kx+3与直线y=2x+b关于直线x=1对称,则k、b值分别为()A.k=2、b=﹣3B.k=﹣2、b=﹣3C.k=﹣2、b=1D.k=﹣2、b=﹣1【答案】D【分析】先求出一次函数y=kx+3与y轴交点关于直线x=1的对称点,得到b的值,再求出一次函数y=2x+b与y轴交点关于直线x=1的对称点,代入一次函数y=kx+3,求出k的值即可.【解答】解:∵一次函数y=kx+3与y轴交点为(0,3),∴点(0,3)关于直线x=1的对称点为(2,3),代入直线y=2x+b,可得4+b=3,解得b=﹣1,一次函数y=2x﹣1与y轴交点为(0,﹣1),(0,﹣1)关于直线x=1的对称点为(2,﹣1),代入直线y=kx+3,可得2k+3=﹣1,解得k=﹣2.故选:D.【知识点】一次函数图象与几何变换二、填空题(共8小题)7.如图两条相交直线y1与y2的图象如图所示,当x时,y1<y2.【答案】>a【分析】观察函数图象,找出一次函数y1在y2的图象下方所对应的自变量的范围即可.【解答】解:观察图象得:当x>a时,y1<y2;故答案为>a.【知识点】一次函数与一元一次不等式8.已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象相交于点P(4,﹣6),则二元一次方程组的解是.【分析】两个一次函数的交点坐标为P(4,﹣6),那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:∵一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P(4,﹣6),∴点P(4,﹣6)满足二元一次方程组,∴方程组的解是.故答案为.【知识点】一次函数与二元一次方程(组)9.若关于x的一次函数y=kx+b的图象经过点A(﹣1,0),则方程k(x+2)+b=0的解为.【答案】-3【分析】把点A(﹣1,0)代入y=kx+b,求得b=k,所以方程变为k(x+2)+k=0,即可求得方程的解.【解答】解:∵关于x的一次函数y=kx+b的图象经过点A(﹣1,0),∴﹣k+b=0,∴b=k,∴方程k(x+2)+b=0化为方程k(x+2)+k=0,∴k(x+3)=0,∴x=﹣3.故答案为﹣3.【知识点】一次函数与一元一次方程10.点P(a,b)在函数y=3x+2的图象上,则代数式3a﹣b+1的值等于.【答案】-1【分析】把P(a,b)代入一次函数解析式得到b=3a+2,然后把b=3a+2代入3a﹣b+1后进行整式的加减运算即可.【解答】解:∵点P(a,b)在函数y=3x+2的图象上,∴b=3a+2,∴3a﹣b+1=3a﹣(3a+2)+1=3a﹣3a﹣2+1=﹣1.故答案为﹣1.【知识点】一次函数图象上点的坐标特征11.如图,将直线OA向上平移2个单位长度,则平移后的直线的表达式为.【答案】y=2x+2【分析】利用待定系数法确定直线OA解析式,然后根据平移规律填空.【解答】解:设直线OA的解析式为:y=kx,把(1,2)代入,得k=2,则直线OA解析式是:y=2x.将其上平移2个单位长度,则平移后的直线的表达式为:y=2x+2.故答案是:y=2x+2.【知识点】一次函数图象与几何变换12.点P为直线y=x+2上的任意一点,O为原点,则OP的最小值为.【分析】设直线y=x+2与y轴交于点A,与x轴交于点B,过点O作直线AB的垂线,垂足为点P,此时线段OP最小,分别将x=0、y=0代入一次函数解析式中求出与之对应的y、x值,进而即可得出OA、OB的长度,利用勾股定理即可得出AB的长度,再利用面积法即可求出OP的长度.【解答】解:设直线y=x+2与y轴交于点A,与x轴交于点B,过点O作直线AB的垂线,垂足为点P,此时线段OP最小.当x=0时,y=2,∴点A(0,2),∴OA=2;当y=0时,求得x=﹣2,∴点B(﹣2,0),∴OB=2,∴AB=2.∴OP===.故答案为.【知识点】一次函数图象上点的坐标特征、垂线段最短13.已知:a、b、c是三个非负数,并且满足3a+2b+c=6,2a+b﹣3c=1,设m=3a+b﹣7c,设s为m的最大值,则s的值为.【分析】先把c看作已知数,分别用c表示出a和b,让a≥0,b≥0列式求出c的取值范围,再求得m用c表示的形式,结合c的取值范围即可求得s的值.【解答】解:3a+2b+c=6,2a+b﹣3c=1,解得a=7c﹣4,b=9﹣11c;∵a≥0、b≥0,∴7c﹣4≥0,9﹣11c≥0,∴≤c≤.∵m=3a+b﹣7c=3c﹣3,∴m随c的增大而增大,∵c≤.∴当c取最大值,m有最大值,∴m的最大值为s=3×﹣3=﹣.故答案为﹣.【知识点】解三元一次方程组、一次函数的性质14.已知y是x的函数,其函数图象经过(1,2),并且当x>0时,y随x的增大而减小.请写出一个满足上述条件的函数表达式:﹣.【答案】y=-x+3【分析】答案不唯一,根据已知写出一个即可.【解答】解:答案不唯一,如:y=﹣x+3,故答案为:y=﹣x+3.【知识点】反比例函数的性质、正比例函数的性质、一次函数的性质拓展提升三、解答题(共6小题)15.已知y=y1+y2,且y1与x成反比例,y2与x﹣2成正比例,当x=1时,y=1;当x=﹣3时,y=13,求:(1)y与x之间的函数解析式;(2)当x=3时,求y的值.【分析】(1)根据题意分别设出y1,y2,代入y=y1+y2,表示出y与x的解析式,将已知两对值代入求出k 与b的值,确定出解析式;(2)将x=3代入计算即可求出值.【解答】解:(1)根据题意设y1=,y2=b(x﹣2),即y=y1+y2=+b(x﹣2),将x=1时,y=1;x=﹣3时,y=13分别代入得:,解得:k=﹣,b=﹣,则y=﹣﹣(x﹣2);(2)当x=3时,y=﹣﹣=﹣3.【知识点】待定系数法求一次函数解析式、一次函数的性质16.已知点(﹣4,2)在正比例函数y=kx的图象上.(1)求该正比例函数的解析式;(2)若点(﹣1,m)在该函数的图象上,求出m的值.【分析】(1)把(﹣4,2)代入正比例函数y=kx即可得出k的值;(2)把点(﹣1,m)代入y=kx的图象上,即可求出m的值;【解答】解:(1)∵点(﹣4,2)在正比例函数y=kx的图象上,∴﹣4k=2,∴k=﹣;∴该正比例函数的解析式为y=﹣x;(2)∵点(﹣1,m)在函数y=﹣x的图象上,∴m=﹣×(﹣1),∴m=.【知识点】一次函数图象上点的坐标特征、待定系数法求正比例函数解析式17.小颖根据学习函数的经验,对函数y=|x﹣1|+1进行探讨.x…﹣2﹣101234…y…4321234…(1)若点A(m,6)和点B(b,6)是该函数图象上的两点,则a+b=.(2)在平面直角型标系中画出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象;(3)由图象可知,函数y=|x﹣1|+1的最小值是;(4)由图象可知,当y≤4时,x的取值范围是.【答案】【第1空】2【第2空】1【第3空】-2≤x≤4【分析】(1)把y=6代入=|x﹣1|+1,即可求出a、b的值;(2)画出该函数的图象即可;(3)观察函数图象,可知函数的最小值;(4)根据图象即可求出当y≤4时,x的取值范围.【解答】解:(1)把y=6代入=|x﹣1|+1,得6=|x﹣1|+1,解得x=﹣4或6,∵A(﹣4,6),B(6,6)为该函数图象上不同的两点,∴a=﹣4,b=6,∴a+b=2.故答案为2;(2)该函数的图象如图:(3)该函数的最小值为1;故答案为1;(4)∵y=4时,则4=|x﹣1|+1,解得,x=﹣2或x=4,由图象可知,当y≤4时,x的取值范围是﹣2≤x≤4.故答案为﹣2≤x≤4.【知识点】一次函数的性质、一次函数图象上点的坐标特征、一次函数的图象18.已知直线y=kx+b经过点(2,3)和(﹣4,1),求该直线的表达式.【分析】把点(2,3)和(﹣4,1)代入一次函数的解析式,列出方程组,解方程组便可求出其解析式.【解答】解:∵直线y=kx+b经过点(2,3)和(﹣4,1),∴,解得.故该直线的解析式为y=x+.【知识点】一次函数图象上点的坐标特征、待定系数法求一次函数解析式19.已知直线a过点M(﹣1,﹣4.5),N(1,﹣1.5).(1)求此直线的函数解析式;(2)求出此函数图象与x轴、y轴的交点A,B的坐标;(3)若直线a与b相交于点P(4,n),a,b与x轴围成的△P AC的面积为6,求出点C的坐标.【分析】(1)利用待定系数法即可求得函数的解析式;(2)在解析式中令x=0求得y,即可求得与y轴的交点坐标,在解析式中令y=0,求得x的值,即可求得与x轴的交点坐标;(3)设C的横坐标是m,利用三角形的面积公式即可得到关于m的方程,即可求解.【解答】解:(1)设直线a的解析式为y=kx+b,把M(﹣1,﹣4.5),N(1,﹣1.5)代入得:,解得:,则直线解析式为y=1.5x﹣3;(2)令x=0,得到y=﹣3;令y=0,得到x=2,则A(2,0),B(0,﹣3);(3)把P(4,n)代入y=1.5x﹣3得:n=3,即P(4,3),设C的横坐标是m,∵a,b与x轴围成的△P AC的面积为6,∴|m﹣2|×3=6,解得:m=﹣2,或m=6.则C的坐标是:(﹣2,0)或(6,0).【知识点】待定系数法求一次函数解析式、一次函数图象上点的坐标特征20.已知直线y=kx+b(k≠0)过点(1,2)(1)填空:b=(用含k代数式表示);(2)将此直线向下平移2个单位,设平移后的直线交x于点A,交y于点B,x轴上另有点C(1+k,0),使得△ABC的面积为2,求k值;(3)当1≤x≤3,函数值y总大于零,求k取值范围.【答案】2-k【分析】(1)把点(1,2)代入y=kx+b(k≠0),得出k+b=2,即b=2﹣k;(2)把b=2﹣k代入y=kx+b,得y=kx+2﹣k,根据上加下减的平移规律得出向下平移2个单位所得直线的解析式为y=kx﹣k,求出A(1,0),B(0,﹣k),根据△ABC的面积为2列出方程k2=2,解方程即可;(3)依题意,分两种情况讨论:ⅰ)当k>0时,y随x增大而增大,得出k+2﹣k=2>0;ⅱ)当k<0时,y随x增大而减小,得出3k+2﹣k=2k+2>0;分别解不等式即可.【解答】解:(1)∵直线y=kx+b(k≠0)过点(1,2),∴k+b=2,∴b=2﹣k.故答案为2﹣k;(2)由(1)可得y=kx+2﹣k,向下平移2个单位所得直线的解析式为y=kx﹣k,令x=0,得y=﹣k,令y=0,得x=1,∴A(1,0),B(0,﹣k),∵C(1+k,0),∴AC=|1+k﹣1|=|k|,∴S△ABC=AC•|y B|=|k|•|﹣k|=k2,∴k2=2,解得k=±2;(3)依题意,当自变量x在1≤x≤3变化时,函数值y的最小值大于0.分两种情况:ⅰ)当k>0时,y随x增大而增大,∴当x=1时,y有最小值,最小值为k+2﹣k=2>0,∴当k>0时,函数值总大于0;ⅱ)当k<0时,y随x增大而减小,∴当x=3时,y有最小值,最小值为3k+2﹣k=2k+2,由2k+2>0得k>﹣1,∴﹣1<k<0.综上,当k>0或﹣1<k<0时,函数值y总大于0.【知识点】一次函数图象与几何变换、一次函数图象上点的坐标特征。
教学过程
一、课程导入
画出y=-x与y=-x+2的图象,找出它们的相同点和不同点
小结:直线y=kx+b可以看作由直线y=kx平移___|b|__个单位而得到,当b>0时,向___上__平移,当b<0时,向___下__平移。
即k值相同时,直线一定平行。
二、 复习预习
①如图(l )所示,当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限);
②如图(2)所示,当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过第二象限);
③如图(3)所示,当k ﹤O ,b >0时,直线经过第一、二、四象限(直线不经过第三象限);
④如图(4)所示,当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限(直线不经过第一象限).
k >0时,y 的值随x 值的增大而增大;当k<0时, y 的值随x 值的增大而减小;一次函数y =kx +b 的图象为 一条直线,与坐标轴的交点分别为)0.(k b ,(0,b).它的倾斜程度由k 决定,b 决定该直线与y 轴交点的位置.
三、知识讲解
考点1 一次函数图象上点的坐标特征
1、 一次函数y =kx +b 的图象为一条直线,与坐标轴的交点分别为)0.(k
b ,(0,b).它的倾斜程度由k 决定,b 决定该直线与y 轴交点的位置.
2、 正比例函数图象上的点的坐标特征,经过函数的某点一定在函数的图象上,一定满足函数的解析式.根据正比例函数的定义,知x
y 是定值. 3、经过函数的某点一定在函数的图象上.在这条直线上的各点的坐标一定适合这条直线的解析式.
考点2 一次函数图像的平移
上加下减(b),左加右减(x)
直线y=kx+b可以看作由直线y=kx平移___|b|__个单位而得到,当b>0时,向___上__平移,当b<0时,向___下__平移。
即k值相同时,直线一定平行。
考点3 待定系数法求一次函数关系式
先设待求函数关系式(其中含有未知的常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。
四、 例题精析
考点一 一次函数图象上点的坐标特征
例1、下列四个点,在正比例函数x y 52-=的图像上的点是( )
A .(2,5)
B .(5,2)
C .(2,-5)
D .(5,-2)
答案:D
【规范解答】: 由x y 5
2-=,得52-=x y ; A 、5
2-=x y Θ故本选项错误; B 、5
2-=x y Θ故本选项错误; C 、5
2-=x y Θ,故本选项错误; D 、5
2-=x y Θ故本选项正确; 故选D .
分析:根据函数图象上的点的坐标特征,经过函数的某点一定在函数的图象上,一定满足函数的解析式.根据正比例函数的定义,知x
y 是定值.
考点二一次函数图像的平移
例2、将直线y=2x向右平移1个单位后所得图象对应的函数解析式为()
A、y=2x-1
B、y=2x-2
C、y=2x+1
D、y=2x+2
答案:B
【规范解答】:
直线y=2x向右平移1个单位后所得图象对应的函数解析式为y=2(x-1),即y=2x-2.
故选B.
分析:根据函数图象平移的法则进行解答即可
例3、在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为()A.y=x+1 B.y=x﹣1
C.y=x D.y=x﹣2
答案:A
【规范解答】:
由“左加右减”的原则可知,在平面直角坐标系中,把直线y=x向左平移一个单位长度后,其直线解析式为y=x+1.
故选A.
分析:根据“左加右减”的原则进行解答即可.
考点三待定系数法求一次函数关系式
例4、已知一次函数的图象经过(2,5)和(-1,-1)两点.
(1)画出这个函数的图象;
(2)求这个一次函数的解析式.
【规范解答】
(1)图象如图所示.
(2)设函数解析式为y =kx +b ,则⎩⎨⎧-=+-=+,
1,52b k b k 解得⎩
⎨⎧==,1,2b k 所以函数解析式为y =2x +1.
分析: 已知两点可确定一条直线,运用待定系数法即可求出对应的函数关系式
1,若y随着x的增大而减小,则k的例5、已知关于x的一次函数y=kx+4k﹣2(k≠0).若其图象经过原点,则k=
2
取值范围是k<0 .
1;k<0..
答案:k=
2
【规范解答】:
(1)当其图象经过原点时:
1;
4k﹣2=0,k=
2
(2)当y随着x的增大而减小时:k<0.
1;k<0.
故答案为:k=
2
分析:(1)若其图象经过原点,则4k﹣2=0,即可求出k的值;(2)若y随着x的增大而减小,则一次项系数当k<0时,图象经过二.四象限.
五、课堂运用
【基础】
1、在平面直角坐标系xOy 中,点P (2,a )在正比例函数x y 2
1 的图象上,则点Q (a ,3a -5)位于第 象限.
答案:四
【规范解答】:
∵点P (2,a )在正比例函数x y 2
1
的图象上, ∴a =1,
∴a =1,3a -5=-2,
∴点Q (a ,3a -5)位于第四象限.
故答案为:四
分析:把点P 坐标代入正比例函数解析式可得a 的值,进而根据点的Q 的横纵坐标的符号可得所在象限.
答案:增大.
【规范解答】:
∵一次函数y=3x-2中,k=3>0,
∴函数值y随自变量x值的增大而增大.
故答案为:增大.
分析:根据一次函数的性质判断出一次函数y=3x-2中k的符号,再根据一次函数的增减性进行解答即可.
【巩固】
1、若一次函数m
+
=的图像经过一、二、四象限,则m的取值范围是.
2(-
-
3
x
m
y2
)1
答案:m <2
1 【规范解答】:
∵y=(2m ﹣1)x+3﹣2m 的图象经过 一、二、四象限
∴(2m ﹣1)<0,3﹣2m >0
∴解不等式得:m <21,m <2
3 ∴m 的取值范围是m <2
1. 故答案为:m <2
1 分析:根据一次函数的性质进行分析:由图形经过一、二、四象限可知(2m ﹣1)<0,3﹣2m >0,即可求出m 的取
值范围
2、写出一个具体的y随x的增大而减小的一次函数解析式________________________.
答案:答案不唯一,如:y =-x +1.
【规范解答】:答案不唯一,如:y =-x +1.
分析:所写的一次函数y kx b =+只需满足0k <即可.
【拔高】
1、如图,直线l过A、B两点,A(0,﹣1),B(1,0),则直线l的解析式为.
答案:y=x ﹣1.
【规范解答】:
设函数解析式为y=kx+b ,
将(1,0),(0,﹣1)分别代入解析式得,⎩
⎨⎧-==+10b b k , 解得⎩
⎨⎧-==11b k , 函数解析式为y=x ﹣1.
故答案为y=x ﹣1.
分析:从图象上找到直线所过的两个点的坐标,利用待定系数法求解即可.
2、求与直线y=x平行,并且经过点P(1,2)的一次函数的解析式.
【规范解答】:根据题意,设一次函数解析式为y=kx+b,
∵与直线y=x平行,∴k=1,
由点P(1,2)得:1+b=2,
解得:b=1,
∴函数解析式为:y=x+1,
所以一次函数的解析式为:y=x+1.
分析:平行于直线y=x,则k=1,再根据待定系数法求解即可.
课程小结
1、经过函数的某点一定在函数的图象上.在这条直线上的各点的坐标一定适合这条直线的解析式.
2、直线y=kx+b可以看作由直线y=kx平移___|b|__个单位而得到,当b>0时,向___上__平移,当b<0时,向___下__平移。
即k值相同时,直线一定平行。
3、先设待求函数关系式(其中含有未知的常数系数),再根据条件列出方程或方程组,求出未知系数,从而得到所求结果的方法,叫做待定系数法。