控制系统的频率特性
- 格式:ppt
- 大小:8.65 MB
- 文档页数:10
实验四控制系统频率特性的测试一.实验目的认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。
二.实验装置(1)微型计算机。
(2)自动控制实验教学系统软件。
三.实验原理及方法(1)基本概念一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下:幅频特性相频特性(2)实验方法设有两个正弦信号:若以)(y tω为纵轴,而以tω作为参变量,则随tω的变xω为横轴,以)(t化,)(y tω?所确定的点的轨迹,将在 x--y平面上描绘出一条封闭的xω和)(t曲线(通常是一个椭圆)。
这就是所谓“李沙育图形”。
由李沙育图形可求出Xm ,Ym,φ,四.实验步骤(1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。
(2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K(3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点五.数据处理(一)第一种处理方法:(1)得表格如下:(2)作图如下:(二)第二种方法:由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。
(三)误差分析两图形的大体趋势一直,从而验证了理论的正确性。
在拐点处有一定的差距,在某些点处也存在较大的误差。
分析:(1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。
(2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。
(3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异六.思考讨论(1)是否可以用“李沙育”图形同时测量幅频特性和想频特性答:可以。
在实验过程中一个频率可同时记录2Xm,2Ym,2y0。
(2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。
自动控制原理第5章频率特性频率特性是指系统对输入信号频率的响应特点。
在自动控制系统设计中,了解和分析系统的频率特性是非常重要的,因为它可以帮助工程师评估系统的稳定性,性能和稳定裕度。
本章主要介绍频率特性的相关概念和分析方法,包括频率响应函数、频率幅频特性、相频特性、对数坐标图等。
1.频率响应函数频率响应函数是描述系统在不同频率下的输出和输入之间的关系的函数。
在连续时间系统中,频率响应函数可以表示为H(jω),其中j是虚数单位,ω是频率。
频率响应函数通常是复数形式,它包含了系统的振幅和相位信息。
2.频率幅频特性频率幅频特性是频率响应函数的模的图形表示,通常用于表示系统的增益特性。
频率幅频特性通常用对数坐标图绘制,以便更好地显示系统在不同频率下的增益特性。
对数坐标图上,增益通常以分贝(dB)为单位表示。
3.相频特性相频特性是频率响应函数的相角的图形表示,通常用于表示系统的相位特性。
相频特性可以让我们了解系统对输入信号的相位延迟或提前情况。
在相频特性图上,频率通常是以对数坐标表示的。
4. Bode图Bode图是频率幅频特性和相频特性的综合图形表示。
它将频率幅频特性和相频特性分别绘制在纵轴和横轴上,因此可以直观地了解系统在不同频率下的增益和相位特性。
5.系统的稳定性分析频率特性可以帮助工程师判断系统的稳定性。
在Bode图上,当系统的相位角趋近于-180度,且增益在此处为0dB时,系统即将变得不稳定。
对于闭环控制系统,我们希望系统在特定频率范围内保持稳定,以便实现良好的控制性能。
6.频率特性的设计频率特性的设计是自动控制系统设计中的一个重要任务。
工程师需要根据系统对不同频率下的增益和相位的要求,设计出合适的控制器。
常见的设计方法包括校正器设计、分频补偿、频率域设计等。
总结:本章重点介绍了自动控制系统的频率特性,包括频率响应函数、频率幅频特性、相频特性和Bode图。
频率特性的分析和设计对于掌握自动控制系统的稳定性、性能和稳定裕度非常重要。
【实验名称】控制系统的频率特性分析【实验目的】1) 掌握运用MATLAB 软件绘制控制系统波特图的方法; 2) 掌握MATLAB 软件绘制奈奎斯特图的方法; 3) 利用波特图和奈奎斯特图对控制系统性能进行分析。
【实验仪器】1) PC 机一台 2) MATLAB 软件【实验原理】1. 奈奎斯特稳定判据及稳定裕量(1)奈氏(Nyquist )判据:反馈控制系统稳定的充要条件是奈氏曲线逆时针包围临界点的圈数R 等于开环传递函数右半s 平面的极点数P , 即R=P ;否则闭环系统不稳定, 闭环正实部特征根个数Z 可按下式确定Z=P-R=P-2N (2)稳定裕量利用)()(ωωj H j G 轨迹上两个特殊点的位置来度量相角裕度和增益裕度。
其中)()(ωωj H j G 与单位圆的交点处的频率为c ω(截止频率);)()(ωωj H j G 与负实轴的交点频率为x ω(穿越频率)。
则相角裕度:)(180)()(180c c c j H j G ωϕωωγ+=∠+= 增益裕度:)(1)()(1x x x A j H j G h ωωω==(对数形式:)(lg 20)()(lg 20x x x A j H j G h ωωω-=-= 2. 对数频率稳定判据将系统开环频率特性曲线分为幅频特性和相频特性,分别画在两个坐标上,横轴都用频率ω,纵轴一个用对数幅值和相角,这两条曲线画成的图就是Bode 图,即对数频率特性图。
因为Bode 图与奈氏图有一一对应关系,因此,奈氏稳定判据就可描述为基于Bode 图的对数频率稳定判据:(1)开环系统稳定,即开环系统没有极点在正右半根平面,如果其对数幅频曲线大于0dB 的区域内,相频曲线对180-线正负穿越次数相等,那么闭环系统就是稳定的,否则是不稳定的。
(2)开环系统不稳定,有P 个极点在正右半平面,如果其对数幅频曲线大于0dB 的区域内,相频曲线对180-线正穿越次数大于负穿越次数P/2,闭环系统就是稳定的,否则是不稳定的。
第六章 控制系统的频率特性采用频率特性法原因: (1) (2) (3)第一节 频率特性的基本概念一.概念 1.频率响应:指控制系统对正弦输入信号的稳态正弦输出响应。
例:如图所示的机械系统,K 为弹簧刚度系数,单位N/m ,C 是阻尼系数,单位m/s.N,当输入力为正弦信号f(t)=Fsinwt 时,求其位移x(t)的稳态响应解:列写力平衡方程)()()(t f t kx dtt dx C =+其传递函数为:11111)()()(+=+=+==Ts K s KC K K Cs s F s X s Gx (t )tF t f ωsin )(=22)(ωω+=s F s F输出位移)()()(s F s G s X =2232122111ωωω++++=+⋅+=s K s K Ts k s F s KCKTt e T KF T T arctg t T K Ft x -++-+=22221)sin(1)(ωωωωω上式中第一项为稳态分量,第二项为瞬态分量,当时间t 趋向于无穷大时为零。
系统稳态输出为:)](sin[)](sin[)()sin(1)(22ωϕωωϕωωωωω+=+⋅=-+=t X t F A T arctg t T K Ft x其幅值为:2)(11)()(ωωωT K F X A FA X +===相位为:T arctg ωωϕ-=)(从上式的推导可以看出,频率响应是时间响应的一种特例。
正弦输入引起的稳态输出是频率相同的正弦信号,输入输出幅值成比例)(ωA ,相位)(ωϕ都是频率ω的函数,而且与系统的参数c,k 有关。
二 频率特性及其求解方法 1.频率特性:指线性系统或环节在正弦函数作用下,稳态输出与输入幅值比)(ωA 和相位差)(ωϕ随输入频率的变化关系。
用)(ωj G 表示。
)()]([)(Im Im )()()(ωϕωωϕωωωj tj t j eA eF eX t f t x j G ===+2)(11)()(ωωωT K F X j G A +===T arctg j G ωωωϕ-=∠=)()()(ωj G 称为系统的频率特性,其模)(ωA 称为系统的幅频特性,相位差)(ωϕ称为相频特性2.频率特性求解 (1)根据已知系统的微分方程或传递函数,输入用正弦函数代入,求其稳态解,取输出和输入的复数比(2)根据传递函数来求取 (3)通过实验测得令传递函数中的ωj s =则得到频率表达式)(ωj G ,又由于)(ωj G 是一个复变函数,可在复平面上用复数表示,分解为实部和虚部,即:)()()()()(w j e w A w jV w U jw G ϕ=+=)(cos )()(w w A w U ϕ= )(sin )()(w w A w V ϕ=)()()(22w V w U w A += )()()(w U w V arctg w =ϕ例:某闭环系统传递函数为237)(+=s s G ,当输入为)4532sin(71 +t 时,试求系统稳态输出。
第四章控制系统的频率特性本章要点本章主要介绍自动控制系统频域性能分析方法。
内容包括频率特性的基本概念,典型环节及控制系统Bode图的绘制,用频域法对控制系统性能的分析。
用时域分析法分析系统的性能比较直观,便于人们理解和接受。
但它必须直接或间接地求解控制系统的微分方程,这对高阶系统来说是相当复杂的。
特别是当需要分析某个参数改变对系统性能的影响时,需反复重新计算,而且还无法确切了解参数变化量对系统性能影响的程度。
而频率特性不但可以用图解的方法分析系统的各种性能,而且还能分析有关参数对系统性能的影响,工程上具有很大的实用意义。
第一节频率特性的基本概念一、频率特性的定义频率特性是控制系统的又一种数学模型,它是系统(或元件)对不同频率正弦输入信号的响应特性。
对线性系统,若输入信号为正弦量,则其稳态输出信号也将是同频率的正弦量,但是输出信号的幅值和相位一般不同于输入量,如图4-1。
若设输入量为r(t)=A r sin(ωt+υr)其输出量为c(t)=A c sin(ωt+υc)若保持输入信号的幅值A r不变,改变输入信号的角频率ω,则输出信号的角频率也变化,并且输出信号的幅值和相位也随之变化。
横坐标表示角频率ω,单位为弧度/秒(rad/s),按lgω均匀分度,但对ω而言是不均匀的,纵坐标表示υ(ω),单位为度(o),均匀分度,如图4-4所示。
图4-3 Bode图坐标系2)对数相频特性υ(ω) υ(ω)为一条-90o 的水平直线。
如图4-5所示。
图4-5 积分环节的Bode图2)对数相频特性υ(ω) υ(ω)为一条90o 的水平直线。
图4-6 理想微分环节的Bode图点,然后用一条光滑曲线与渐近线连接起来,就得到精确曲线。
图4-7 惯性环节的Bode图图4-8 比例微分环节的Bo0de图nω图4-9 振荡环节的Bode图计算表明,在ω=ωn处,当0.4<ξ<0.7时,误差小于3dB,可以不对渐近线进行修正;但当ξ<0.4或ξ>0.7时,误差较大,必须对渐近线进行修正。
控制系统频率特性实验控制系统频率特性实验是一种较为常见的控制工程实验,其主要目的是探究不同频率下控制系统的性能表现,同时应用所学知识进行系统频率特性分析和设计。
下面将分为实验目的、实验内容、实验步骤及实验结果几个方面进行详细介绍。
实验目的:1. 探究不同频率下控制系统性能表现2. 进行频率特性分析,并了解控制系统中的稳态误差与阻尼比之间的关系3. 进行频率特性设计,并掌握控制器在频率特性中的应用实验内容:1. 频率响应性能测试2. 获取系统的幅频和相频特性曲线3. 根据幅频曲线分析系统稳态误差,根据相频曲线分析系统阻尼比4. 根据工程实际需要,设计相应的控制器并给出稳态误差和阻尼比的实验结果实验步骤:1. 建立试验系统,包括控制对象和控制器2. 调整测试样本的初始参数,保证系统的稳态3. 绘制系统幅频特性曲线,观察幅频曲线的变化情况并进行分析7. 对实验结果进行统计分析实验结果:通过实验,我们得到了不同频率下控制系统的性能表现,以及系统的幅频和相频特性曲线。
在此基础上,我们可以进行系统频率特性分析,掌握控制器在频率特性中的应用。
通过对幅频曲线的分析,我们可以了解系统的稳态误差情况。
同时可发现,随着频率增大,系统稳态误差逐渐增大,这是由于系统的惯性效应在高频率下更为明显导致的。
在此基础上,我们可以通过设计相应的控制器来减小系统稳态误差。
通过对相频曲线的分析,我们可以了解系统的阻尼比情况。
随着频率增大,我们可以观察到系统阻尼比逐渐降低,这是由于系统越接近临界系统,其阻尼比越小,因此在系统设计中需要注意避免系统过度激励的情况。
总的来说,控制系统频率特性实验是一种重要的控制工程实验,通过实验,我们可以深入了解系统在不同频率下的性能表现,为实际工程中的控制系统设计提供有力的支持和指导。