蒙特卡罗方法 (Monte Carlo simulation)教材
- 格式:ppt
- 大小:637.00 KB
- 文档页数:20
蒙特卡洛仿真法
蒙特卡洛仿真法(Monte Carlo Simulation)是一种基于随机抽样的数值计算方法,用于模拟和估计复杂系统或过程的行为和特性。
它通过生成大量随机数,并利用这些随机数对系统进行多次模拟,从而获得系统的统计特征或输出结果。
蒙特卡洛仿真法的基本思想是基于概率分布的采样。
首先,需要确定系统中各个变量或参数的概率分布函数。
然后,通过随机生成符合这些概率分布的样本值,来代表系统在不同情况下的可能状态。
接下来,对每个生成的样本进行计算或模拟,得到相应的输出结果。
通过重复这个过程多次(通常是数千或数万次),可以获得大量的样本结果。
根据这些样本结果,可以计算出系统的统计指标,如均值、标准差、概率分布等,从而对系统的行为进行估计和预测。
蒙特卡洛仿真法的优点包括:
1. 能够处理复杂的系统和不确定性问题;
2. 可以提供系统的统计特征和概率分布信息;
3. 适用于难以通过解析方法求解的问题。
蒙特卡洛仿真法在许多领域都有广泛的应用,如金融工程、风险管理、物理科学、工程设计等。
它可以帮助决策者在不确定性环境下进行风险评估、优化设计和决策制定。
需要注意的是,蒙特卡洛仿真法的准确性和可靠性取决于所选择的概率分布函数、抽样次数以及对结果的统计分析方法。
在实际应用中,需要合理选择和验证这些参数和方法,以确保模拟结果的有效性和可靠性。
monto carlo仿真方法蒙特卡洛仿真方法简介蒙特卡洛仿真方法是一种基于随机数生成的统计模拟方法,用于解决复杂问题和评估不确定性。
它通过大量的随机抽样和模拟运算来近似计算数学问题的解决方案。
原理蒙特卡洛仿真方法基于概率统计理论和计算机模拟技术。
其主要思想是通过对模型中的随机变量进行抽样和模拟,计算大量的样本数据,从而得到目标问题的近似解。
步骤1.建立模型:首先需要将目标问题抽象成一个数学模型,明确问题的目标、约束和变量。
2.设定随机变量:为模型中的不确定变量设定随机分布,并生成大量的随机数。
3.进行抽样:根据设定的随机分布,抽取一定数量的随机数,并代入模型进行计算。
4.模拟运算:根据模型的计算规则,对每个随机数进行运算,得到相应的结果。
5.统计与分析:对得到的结果进行统计分析,得出问题的近似解、概率分布、置信区间等。
6.反馈与优化:根据分析结果,对模型进行优化和调整,进一步提高计算的准确性和效率。
应用领域蒙特卡洛仿真方法在各个领域都有广泛应用,包括但不限于: - 金融领域:用于风险评估、衍生品估值、投资组合优化等。
- 工程领域:用于可靠性分析、结构优化、系统建模等。
- 生物医学领域:用于药物研发、流行病传播模拟、生物统计等。
- 物理学领域:用于高能物理实验模拟、粒子轨迹模拟等。
优点与限制蒙特卡洛仿真方法具有如下优点: - 适用范围广,可以解决各种类型的问题; - 能够处理复杂和高维的问题; - 可以提供概率分布和置信区间等统计信息。
然而,蒙特卡洛仿真方法也有一些限制: - 需要大量的计算资源和时间; - 对模型中的不确定性敏感,需要合理设定概率分布; - 结果的准确性受到样本数量的限制。
总结蒙特卡洛仿真方法是一种基于随机数生成的统计模拟方法,可以解决复杂问题和评估不确定性。
它通过随机抽样和模拟运算来近似计算问题的解决方案。
该方法在多个领域都有广泛应用,同时也具有一定的优点和限制。
通过合理的模型建立和参数设定,蒙特卡洛仿真方法可以成为解决实际问题的有力工具。
蒙特卡洛模拟方法在风险管理中的应用教程蒙特卡洛模拟方法(Monte Carlo Simulation)是一种基于概率分析的统计技术,广泛应用于风险管理领域。
通过模拟随机变量的分布特征,可以帮助风险管理人员定量评估风险,制定合理的决策方案。
本文将详细介绍蒙特卡洛模拟方法在风险管理中的应用步骤和注意事项。
1. 确定风险管理的问题和目标:在应用蒙特卡洛模拟方法前,首先需要明确风险管理的问题和目标。
例如,我们希望评估某个投资组合在未来一年内的收益率风险,以便确定合理的投资策略。
2. 建立模型和假设:根据问题和目标,建立相应的模型并确定相关的假设。
例如,我们可以使用股票收益率的历史数据来构建收益率模型,并假设收益率服从正态分布。
3. 收集数据:获取必要的数据以支持模型的构建和分析。
数据可以来自历史统计数据、市场调研数据、专家判断等渠道。
确保数据的准确性和代表性是保证模拟结果可信度的关键。
4. 设定变量和参数:根据模型的需求,确定需要模拟的变量和参数。
例如,在投资组合风险评估中,我们可以将各个投资标的的收益率作为变量,并设定相应的投资比例作为参数。
5. 设定随机数生成方法:蒙特卡洛模拟方法依赖于随机数的生成。
根据模型的需要,选择合适的随机数生成方法。
常用的方法包括伪随机数生成器和随机数表格,确保生成的随机数满足模型所假设的分布特征。
6. 运行蒙特卡洛模拟:根据设定的变量、参数和随机数生成方法,运行蒙特卡洛模拟。
一般情况下,需要运行多次模拟以获取稳定的结果。
7. 分析和解读结果:根据模拟结果,进行相应的分析和解释。
可以通过绘制直方图、散点图、累积分布函数等图表,来帮助理解结果的分布情况和风险程度。
8. 风险度量和决策制定:根据模拟结果,进行风险度量和决策制定。
可以使用各种风险度量指标如价值-at-风险(Value-at-Risk)、杠杆率(Leverage)等,来评估风险的大小和分布情况。
根据这些度量结果,可以制定相应的风险管理策略和决策方案。
实验十二计算机仿真实验实验目的:1. 掌握全概率公式与贝叶斯公式;2. 了解计算机仿真方法;3. 了解蒙特卡罗法(Monte Carlo method), 具有初级编程能力.实验原理:全概率公式: 设A 1, A 2, …, A n 为两两互斥事件,B 是A 1 + A 2 + … + A n 的子事件,则P(B )=P(A 1)P(B |A 1) + P(A 2)P(B |A 2) + … + P(A n )P(B |A n ).贝叶斯公式: P(A k |B )= P(A k )P(B | A k )/P(B ).计算机仿真: 就是在计算机上模拟各种实际系统的运行过程. 计算机仿真通常用来产生规定分布的随机变量.对于任意随机变量ξ ,其分布函数为F (x ),设 η = F (ξ )的分布函数为G (y ),则G (y ) = P{η ≤y }= P{F (ξ ) ≤y }= P{ξ ≤F -1( y )}= y ,这说明η 服从[0,1]的均匀分布.一般的编程语言都提供了均匀分布随机数发生器.应用随机数模拟试验的方法通常称为蒙特卡罗法(Monte Carlo method). 蒙特卡罗法不仅适用于处理随机性问题, 如存贮、排队、质量检验、市场营销、社会救急、生态竞争和传染病等问题;也可处理定性问题, 如计算多重积分、解积分方程及微分方程、解整数规划(特别是非线性整数规划)等.应用蒙特卡罗法解规划问题的基本思想是:先估计各个变量的大致取值范围,每次试验从中随机取出一个样本点,然后判断它是否为可行点. 若是则将其目标函数值与上一次的目标函数值相比较,记录下较优目标函数值与其样本点;否则重新抽样。
直到试验次数达到指定值或可行点数达到指定值为止.实验内容:1. 设有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球.由甲袋任取一个球放入乙袋,再从乙袋中取出一个球.若从乙袋中取出的球是白球,那么从甲袋中取出放入乙袋的球是白球还是黑球? 用计算机模拟上述过程1000次,问理论判断是正确的有多少次?2. 用计算机模拟随机变量ξ ~ϕ (x ) =⎩⎨⎧≤>-0,0,0,e 55x x 的取值200次. 3. 用计算机模拟随机变量ξ ~N (120,102 )的取值800次,并画出统计直方图.4. 应用蒙特卡罗法解非线性规划问题:max z = - 2x 2 - y 2 + xy + 8x + 3ys.t. 3 x + y = 10x ≥0, y ≥0.C 语言简介(仅介绍本实验所用到的)1.标识符标识符是由程序员定义的单词,如函数名、变量名等. 标识符是由大小写字母、数字和下划线组成的,并以字母和下划线开始.2.关键字void (无值型) char (字符型) int (整数型) long (长整数型) float (浮点型) double (双精度浮点型)if (如果) else (或者)for (循环) while (循环) break (满足一定的条件终止循环)return (返回函数值)3.函数形式类型函数名(参数){}4.库函数简介double sin(double x) double cos(double x) double exp(double x) double log(double x) double sqrt(double x) double pow(double x, double y)double fabs(double x) int abs(int x)int printf(const char *format, ...); 屏幕格式化输出函数FILE *fopen(const char *filename, const char *mode); 文件打开int fprintf(FILE *fp, const char *format, ...); 文件格式化输出函数int fgetc(FILE *fp); 从文件中读出一字符int fclose(FILE *fp); 文件关闭void far setcolor(int color); 设置输出颜色void far line(int x1, int y1, int x2, int y2); 画直线void far rectangle(int left, int top, int right, int bottom); 画矩形unsigned far getpixel(int x, int y); 读出点(x, y)的颜色void far putpixel(int x, int y, int pixelcolor); 画点int random(int Num), 均匀产生0到Num-1中的一个随机数5.示例计算9!#include<stdio.h>void main(void){int i;long n;n=1;for(i=1;i<=9;i++)n*=i;printf("\n9!=%ld\n",n);getch();}6. Turbo C(2.0) 编辑命令F3 录入文件F9 编译Ctrl+F9 运行Ctrl+KB 定义块首Ctrl+KK 定义块尾Ctrl+KC 块粘贴Ctrl+KV 块移动Ctrl+Y 删除当前行7.部分源程序程序LAB1_1.C 求出方程sin x- x = 1在( -2,2)内的近似根#include<stdio.h>#include<math.h>float f(float x){ return sin(x)-x-1; }void main(void){float r=0.618,x0=-2,x1=2,x;int n=0;while(1){n++;x=(1-r)*x0+r*x1;if(f(x)*f(x0)<0.0)x1=x;else if(f(x)*f(x1)<0.0)x0=x;else break;if(fabs(x1-x0)<0.001)break;}printf("n=%d, x=%f\n",n,x);getch();}程序LAB2_3.C 给出正态分布函数表#include<stdio.h>#include<math.h>float f(float x){ return exp(-x*x/2); }void main(void){float x,x0,x1=0.0,F=0,h=0.0001;long n=0;FILE *fp;int i=0,p;fp=fopen("x.c","w");for(x1=0.0;x1<0.04;x1+=0.001){n=0; F=0; x0=-10;for(x=x0+h;x<x1;x+=h){if(n%2)F+=2*f(x);else F+=4*f(x);n++;}F+=f(x0)+f(x1);F/=3; F*=h; F*=0.39894;printf("x=%5.3f, F=%6.4f\n",x1,F);i++;p=F*10000;fprintf(fp,"%d,",p);if(i==10){i=0;fprintf(fp,"\n ");}if(p==9999)break;}fclose(fp);getch();}程序LAB3_2_1.C 解下列微分方程y - y tan x = sec x ,y (0) = 0, 并画出其图形: #include <stdio.h>#include <math.h>#include <graphics.h>float f(float x,float y){ return y*sin(x)/cos(x)+1/cos(x); }void main(void){int i=DETECT,j;float x=0.0,y=0.0,h=0.005;char *str="0.00";initgraph(&i,&j," ");setviewport(0,0,639,479,1);cleardevice();setbkcolor(BLUE);setcolor(WHITE);line(20,200,620,200);for(i=0;i<10;i++){line(20+i*60,195,20+i*60,200);str[0]=48+3*i/10;str[2]=48+3*i%10;outtextxy(20+i*60,205,str);}for(i=0;i<600;i++){y=y+f(x,y)*h;x+=h;putpixel(i+20,200-y*10,GREEN);}getch();closegraph();}程序LAB3_2_2.C 解下列微分方程组⎪⎪⎩⎪⎪⎨⎧+-=-=.01.0d d ,25.02d d xy y t y xy x t x x (0) = 100, y (0) = 8, 并画出其图形:#include <stdio.h>#include <math.h>#include <graphics.h>float f1(float x,float y){ return 2*x-0.25*x*y; }float f2(float x,float y){ return -y+0.01*x*y; }void main(void){int i=DETECT,j;float x=99.0,y=7.9,h=0.015;initgraph(&i,&j," ");setviewport(0,0,639,479,1);cleardevice();for(i=0;i<600;i++){x=x+f1(x,y)*h;y=y+f2(x,y)*h;putpixel(i+20,(102.5-x)*60,GREEN);putpixel(i+20,(8.6-y)*600,WHITE);}getch();closegraph();}程序LAB4.C 将矩阵化为行阶梯型,化为行最简型#include<stdio.h>#include<math.h>#define MAXR 20#define MAXC 40/*解线性方程组,以下是其增广矩阵*/float M_B[MAXR][MAXC]={{1,-2,2,1,-3},{2,1,1,-2,-1},{3,4,0,-5,1}}; void f1(int m,int n){int i,j,r=0,c=0;float x0;printf("\n以下将矩阵化为行阶梯型\n");for(i=0;i<m;i++){for(j=0;j<n;j++)printf("%8.2f",M_B[i][j]);printf("\n");}printf("按任一健继续...\n");getch();while(c<n){for(i=r;i<m;i++)if(fabs(M_B[i][c])>=0.0001)break;if(i<m){if(i!=r)for(j=0;j<n;j++){x0=M_B[i][j];M_B[i][j]=M_B[r][j];M_B[r][j]=x0;}x0=M_B[r][c];for(j=0;j<n;j++)M_B[r][j]/=x0;for(i=r+1;i<m;i++){x0=M_B[i][c];for(j=0;j<n;j++)M_B[i][j]-=x0*M_B[r][j];}r++;for(i=0;i<m;i++){for(j=0;j<n;j++)printf("%8.2f",M_B[i][j]);printf("\n");}printf("按任一健继续...\n");getch();}c++;if(r==m)break;}printf("\n以下将行阶梯型化为行最简型\n");while(r){r--;for(j=0;j<n-1;j++)if(fabs(M_B[r][j])>=0.0001)break; c=j;for(i=0;i<r;i++){x0=M_B[i][c];for(j=0;j<n;j++)M_B[i][j]-=x0*M_B[r][j];}for(i=0;i<m;i++){for(j=0;j<n;j++)printf("%8.2f",M_B[i][j]);printf("\n");}printf("按任一健继续...\n");getch();}printf("完毕,按任一健退出...\n");getch();}void f2(int n){int i,j;for(i=0;i<n;i++)for(j=0;j<n;j++){if(i!=j)M_B[i][n+j]=0;else M_B[i][n+j]=1;}f1(n,2*n);}void main(void){ f1(3,5); }程序LAB6_3.C 模拟产生服从N(120,400)分布的随机变量800次,并画出统计直方图#include <stdio.h>#include <stdlib.h>#include <math.h>#include <graphics.h>int Np[4000]={/*下列数据为标准正态分布函数值×10000, 由程序LAB2_3.C 产生*/ 5000,5003,5007,5011,5015,5019,5023,5027,5031,5035,…};int f(int p){int i;for(i=0;i<4000;i++)if(Np[i]>=p)break;return i;}void main(void){int i,j,x;float F,X[800];randomize();printf("\n\n");for(i=0;i<800;i++){x=random(10000);if(x<5000)F=-f(10000-x);else F=f(x);F*=0.001;X[i]=120+20*F;printf("%8.2f",X[i]);}getch();i=DETECT;initgraph(&i,&j," ");setviewport(0,0,639,479,1);cleardevice();setbkcolor(BLUE);setcolor(WHITE);line(20,400,620,400);j=20;for(F=90;F<150;F+=3){x=0;for(i=0;i<800;i++)if(X[i]>=F&&X[i]<F+5)x+=4;rectangle(j,400-x,j+30,400);j+=30;}getch();closegraph();}程序2000A01.C 统计文件2000A1.txt中A TCG的个数#include<stdio.h>void main(void){int n=-1,ATCG[40][4]={0,0};char c;FILE *fp;fp=fopen("2000A1.txt","r");while((c=fgetc(fp))!=EOF){if(c=='.')n;else if(c=='a')ATCG[n][0];else if(c=='t')ATCG[n][1];else if(c=='c')ATCG[n][2];else if(c=='g')ATCG[n][3];}fclose(fp);for(n=0;n<40;n)printf("{%d,%d,%d,%d},\n",ATCG[n][0], ATCG[n][1],ATCG[n][2],ATCG[n][3]);getch();}。
(完整版)蒙特卡洛算法详讲Monte Carlo 法§8.1 概述Monte Carlo 法不同于前⾯⼏章所介绍的确定性数值⽅法,它是⽤来解决数学和物理问题的⾮确定性的(概率统计的或随机的)数值⽅法。
Monte Carlo ⽅法(MCM ),也称为统计试验⽅法,是理论物理学两⼤主要学科的合并:即随机过程的概率统计理论(⽤于处理布朗运动或随机游动实验)和位势理论,主要是研究均匀介质的稳定状态[1]。
它是⽤⼀系列随机数来近似解决问题的⼀种⽅法,是通过寻找⼀个概率统计的相似体并⽤实验取样过程来获得该相似体的近似解的处理数学问题的⼀种⼿段。
运⽤该近似⽅法所获得的问题的解in spirit 更接近于物理实验结果,⽽不是经典数值计算结果。
普遍认为我们当前所应⽤的MC 技术,其发展约可追溯⾄1944年,尽管在早些时候仍有许多未解决的实例。
MCM 的发展归功于核武器早期⼯作期间Los Alamos (美国国家实验室中⼦散射研究中⼼)的⼀批科学家。
Los Alamos ⼩组的基础⼯作刺激了⼀次巨⼤的学科⽂化的迸发,并⿎励了MCM 在各种问题中的应⽤[2]-[4]。
“Monte Carlo ”的名称取⾃于Monaco (摩纳哥)内以赌博娱乐⽽闻名的⼀座城市。
Monte Carlo ⽅法的应⽤有两种途径:仿真和取样。
仿真是指提供实际随机现象的数学上的模仿的⽅法。
⼀个典型的例⼦就是对中⼦进⼊反应堆屏障的运动进⾏仿真,⽤随机游动来模仿中⼦的锯齿形路径。
取样是指通过研究少量的随机的⼦集来演绎⼤量元素的特性的⽅法。
例如,)(x f 在b x a <<上的平均值可以通过间歇性随机选取的有限个数的点的平均值来进⾏估计。
这就是数值积分的Monte Carlo ⽅法。
MCM 已被成功地⽤于求解微分⽅程和积分⽅程,求解本征值,矩阵转置,以及尤其⽤于计算多重积分。
任何本质上属随机组员的过程或系统的仿真都需要⼀种产⽣或获得随机数的⽅法。