数学思想与方法作业1-4参考解答
- 格式:pdf
- 大小:278.19 KB
- 文档页数:10
、论述题1. 分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。
解答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列岀关于这些具体数据的算式,然后通过四则运算求得算式的结果。
代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列岀方程,然后通过对方程进行恒等变换求岀未知数的值。
它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。
2. 比较决定性现象和随机性现象的特点,简单叙说确定数学的局限。
解答:人们常常遇到两类截然不同的现象,一类是决定性现象,另一类是随机现象。
决定性现象的特点是:在一定的条件下,其结果可以唯一确定。
因此决定性现象的条件和结果之间存在着必然的联系,所以事先可以预知结果如何。
随机现象的特点是:在一定的条件下,可能发生某种结果,也可能不发生某种结果。
对于这类现象,由于条件和结果之间不存在必然性联系。
在数学学科中,人们常常把研究决定性现象数量规律的那些数学分支称为确定数学。
用这些的分支来定量地描述某些决定性现象的运动和变化过程,从而确定结果。
但是由于随机现象条件和结果之间不存在必然性联系,因此不能用确定数学来加以定量描述。
同时确定数学也无法定量地揭示大量同类随机现象中所1. 论述社会科学数学化的主要原因。
解答:从整个科学发展趋势来看,社会科学的数学化也是必然的趋势,其主要原因可以归结为有下面四个方面:第一,社会管理需要精确化的定量依据,这是促使社会科学数学化的最根本的因素。
第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化。
第三,随着数学的进一步发展,它岀现了一些适合研究社会历史现象的新的数学分支。
第四,电子计算机的发展与应用,使非常复杂社会现象经过量化后可以进行数值处理。
2. 论述数学的三次危机对数学发展的作用。
方法技巧专题一 数形结合思想训练数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质解决几何问题(以数助形)的一种数学思想.一、选择题1.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化2.若实数a ,b ,c 在数轴上对应的点如图F 1-1所示,则下列式子中正确的是( )图F 1-1A .ac >bcB .|a -b |=a -bC .-a <-b <-cD .-a -c >-b -c3.[2017·怀化] 一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A 、B ,则△AOB 的面积是( )A .12 B.14C .4D .8 4.[2017·聊城] 端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队500米的赛道上,所划行的路程y (m )与时间x (min)之间的函数关系式如图F 1-2所示,下列说法错误的是( )图F 1-2A .乙队比甲队提前0.25 min 到达终点B .当乙队划行110 m 时,落后甲队15 mC .0.5 min 后,乙队比甲队每分钟快40 mD .自1.5 min 开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 m /min5.[2016·天津] 已知二次函数y =(x -h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-5B .-1或5C .1或-3D .1或36.[2017·鄂州 ] 如图F 1-3,抛物线y =ax 2+bx +c 的图象交x 轴于A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =O C.下列结论:①2b -c =2;②a =12;③ac =b -1;④a +bc>0.其中正确的个数有( )图F 1-3A .1个B .2个C .3个D .4个 二、填空题7.如图F 1-4是由四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式:________.图F 1-48.[2017·十堰] 如图F 1-5,直线y =kx 和y =ax +4交于A (1,k ),则不等式kx -6<ax +4<kx 的解集为________.图F 1-59.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图F 1-6所示.由图易得:12+122+123+…+12n =________.图F 1-610.当x =m 或x =n (m ≠n )时,代数式x 2-2x +3的值相等,则x =m +n 时,代数式x 2-2x +3的值为________. 11.已知实数a 、b 满足:a 2+1=1a ,b 2+1=1b ,则2018|a -b |=________.12.[2017·荆州] 观察下列图形:图F 1-7它们是按一定规律排列的,依照此规律,第9个图形中共有________个点. 13.(1)观察下列图形与等式的关系,并填空:图F 1-8(2)观察图F 1-9,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:图F 1-91+3+5+…+(2n -1)+(________)+(2n -1)+…+5+3+1=__________. 三、解答题14.[2016·菏泽] 如图F 1-10,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +2过B (-2,6),C (2,2)两点. (1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y =-12x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.图F 1-10参考答案1.B 2.D 3.B 4.D5.B [解析] (1)如图①,当x =3,y 取得最小值时,⎩⎪⎨⎪⎧h >3,(3-h )2+1=5,解得h =5(h =1舍去);(2)如图②,当x =1,y 取得最小值时,⎩⎪⎨⎪⎧h <1,(1-h )2+1=5,解得h =-1(h =3舍去). 6.C [解析] 在y =ax 2+bx +c 中,当x =0时,y =c ,∴C (0,c ),∴OC =-c .∵OB =OC ,∴B (-c ,0).∵A (-2,0),∴-c 、-2是一元二次方程ax 2+bx +c =0的两个不相等的实数根,∴-c ·(-2)=c a ,∵c ≠0,∴a =12,②正确;∵a =12,-c 、-2是一元二次方程12x 2+bx +c =0的两个不相等的实数根,∴-c +(-2)=-b12,即2b -c =2,①正确;把B (-c ,0)代入y =ax 2+bx +c ,得0=a (-c )2+b ·(-c )+c ,即ac 2-bc +c =0.∵c ≠0,∴ac -b +1=0,∴ac =b -1,③正确;∵抛物线开口向上,∴a >0.∵抛物线的对称轴在y 轴左侧,∴-b2a <0,∴b >0.∴a +b >0.∵抛物线与y 轴负半轴交于点C ,∴c <0.∴a +bc<0,④不正确. 7.(a -b )2=(a +b )2-4ab8.1<x <52 [解析] 将A (1,k )代入y =ax +4得a +4=k ,将a +4=k 代入不等式kx -6<ax +4<kx 中得(a +4)x -6<ax +4<(a +4)x ,解不等式(a +4)x -6<ax +4得x <52,解不等式ax +4<(a +4)x 得x >1,所以不等式的解集是1<x <52.9.1-12n (或2n-12n )10.3 11.112.135 [解析] 第1个图形有3=3×1=3个点; 第2个图形有3+6=3×(1+2)=9个点; 第3个图形有3+6+9=3×(1+2+3)=18个点; …第n 个图形有3+6+9+…+3n =3×(1+2+3+…+n )=3n (n +1)2个点.当n =9时, =135个点. 13.解:(1)1+3+5+7=16=42.观察,发现规律,第一个图形:1+3=22,第二个图形:1+3+5=32,第三个图形:1+3+5+7=42,…, 第(n -1)个图形:1+3+5+…+(2n -1)=n 2. 故答案为:42;n 2. (2)观察图形发现:图中黑球可分三部分,1到n 行,第(n +1)行,(n +2)行到(2n +1)行, 即1+3+5+…+(2n -1)+[2(n +1)-1]+(2n -1)+…+5+3+1 =[1+3+5+…+(2n -1)]+(2n +1)+[(2n -1)+…+5+3+1] =n 2+2n +1+n 2 =2n 2+2n +1.故答案为:2n +1;2n 2+2n +1.14.解:(1)由题意,得⎩⎪⎨⎪⎧4a -2b +2=6,4a +2b +2=2,解得⎩⎪⎨⎪⎧a =12,b =-1.∴抛物线的解析式为y =12x 2-x +2.(2)如图,∵y =12x 2-x +2=12(x -1)2+32,∴抛物线的顶点坐标是(1,32).由B (-2,6)和C (2,2)求得直线BC 的解析式为y =-x +4. ∴对称轴与直线BC 的交点是H (1,3). ∴DH =32.∴S △BDC =S △BDH +S △CDH =12×32×3+12×32×1=3.(3)如图.①由⎩⎪⎨⎪⎧y =-12x +b ,y =12x 2-x +2消去y ,得x 2-x +4-2b =0.当Δ=0时,直线与抛物线只有一个公共点,∴(-1)2-4(4-2b )=0,解得b =158.②当直线y =-12x +b 经过点C 时,b =3.③当直线y =-12x +b 经过点B 时,b =5.综上,可知158<b ≤3.。
第4讲智用推理——巧填竖式-二年级数学上册数学思想方法系列(人教版)(含解析)第4讲智用推理——巧填竖式-二年级数学上册数学思想方法系列(人教版)第4讲智用推理巧填竖式填竖式的未知数时,要认真分析算式的特点,不仅要充分运用加、减法之间的关系,也要分析和推理出是否是进位加法或退位减法,合理正确地安排每一个数,就能很快求出方格里应填的数字。
最后还要按填好的数验算一下,看算式是否成立。
【例题1】1.在里填上合适的数。
【例题2】2.在□里填合适的数,使整式成立。
【例题3】3.下面算式中的“爱”“数”“学”三个字各代表几?(1)(2)1.找出藏着的数字。
4.下面藏着几?填一填。
5.小花下面藏着几?填一填。
2.在□里填上合适的数。
6.在□里填上合适的数。
3.图形代表数。
7.每种小花各代表几?填一填。
8.下面每种图形分别代表数字几?=( ) =( )4.从混合运算的竖式中分析出未知数9.下面竖式中的水果各代表什么数字?=( ) =( ) =( )10.填上适当的数。
11.在□里填上合适的数字。
12.算一算,填一填。
13.在□里填上合适的数。
试卷第1页,共3页试卷第1页,共3页参考答案:1.见详解【分析】根据加减法的互逆关系和计算方法,在里填上合适的数即可。
【详解】规范解答:【点睛】熟练掌握100以内数的加减法是解决此题的关键。
2.见详解【分析】(1)第一个加数是:82-37=45,差的个位数字是:12-9=3,据此填数即可。
(2)差的个位数字是:12-6=6,减数的个位数字是:12-6=6,被减数是:26+46=72,据此填数即可。
(3)9+6=15,所以和的个位数字是5,减数的个位数字是:9-4=5,被减数是:39+35=74,据此填数即可。
【详解】【点睛】本题考查学生对100以内整数加减法运算的运用。
3.(1)“爱”代表8;(2)“数”代表4,“学”代表5【分析】(1)从个位上想,两个相同的数相加,和的个位是6,那么“爱”可能是3,也可能是8。
国家开放大学《小学数学教学论》形考任务1-4参考答案形考任务11.()是指教师不直接把现成的知识传授给学生,而是引导学生在教师事先精心设计、周密组织安排的一系列学习活动中,通过自主探索、合作交流,自己去发现所学内容的事实、主动获取知识的一种教学方法。
A. 发现教学法B. 情境教学法C. 尝试教学法D. 游戏教学法2.拉面馆的师傅把一根很粗的面条两端第一次捏合在一起拉开,就变成了两根面条,第二次对折后再拉开,就变成了四根面条,第三次对折后拉开......如此重复下去,第五次会会拉出()根面条。
A. 128B. 32C. 64D. 163.教师应精心设计练习题,体现()的原则。
A. 数量优先B. 题海战术C. 由易到难D. 多多益善4.关于备学生,以下说法中,不正确的有()。
A. 要了解本节课知识与学生的经验之间的联系B. 要了解班级学生的分层情况C. 只需要考虑学生的年龄特征,不必熟悉学生身心发展特点D. 要了解学生已有知识与本节课所要学的未知知识之间的联系5.关于内容设计科学化,以下说法中,不正确的有()。
A. 在设计教学内容如何教的过程时,不必考虑学生的认知规律B. 教学内容本身要有科学性C. 教学内容不能有违背科学性的错误D. 要做到内容准确无误,符合科学规范6.把一个角放在10倍放大镜下观察,这个角的大小()。
A. 缩小10倍B. 大小不变C. 无法确定D. 扩大10倍7.在教室内设计一个顾客到商店里购买东西的情境,在课桌上摆出各种文具用品,几个学生当售货员,一些学生当顾客;要求学生根据购买文具用品的情境,一边编题,一边计算,这个过程采用的教学方法是()。
A. 情境教学法B. 发现教学法C. 游戏教学法D. 尝试教学法8.下列图形中,对称轴最多的是()。
A. 圆B. 长方形C. 正方形D. 等边三角形9.以下说法中,不正确的有()。
A. 教师应该让学生通过观察、操作、猜测、交流、反思等活动,逐步体会数学知识的产生、形成与发展的过程B. 教师应充分利用学生的生活经验、知识背景,设计生动的、学生感兴趣的学习情境进行教学C. 应该让学生在“做数学”的过程中学习数学D. 在新授课的课堂教学中,教师要满堂灌10.下列英文字母中,是轴对称图形的是()。
数学(shùxué)练习与测试答案数学练习与测试答案(dá àn)篇1:数学测试题及答案参考一、填空(tiánkòng)。
(每空1分,共24分)1、根据(gēnjù)18×64=1152,可知1.8×0.64=( ),11.52÷6.4=( )。
2、686.8÷0.68的商的最高位在( )位上,结果(jiē guǒ)是( )。
3、一个两位小数“四舍五入〞保存整数取得近似值是3,这个数最小可能是( ),最大可能是( )。
4、34. …用简便方法表示是( ),保存三位小数约是( )5、不计算,在○里填“>〞“ (培养学生合理灵活运用计算方法的能力,提高计算的正确率。
)五、解决问题(30分)1.农具厂方案生产1378件小农具,已经生产了10天,每天生产91件,剩下的要4天完成,平均每天应做多少件2、一种圆珠笔原价每支4.8元,降价后每支廉价0.3元,原来买150支笔的钱,现在可以买多少支3、果园里有桃树和杏树一共有1700棵,桃树的棵数是杏树的4倍。
桃树和杏树各有多少棵(用方程解。
)4、靠墙边围成一个花坛,围花坛的篱笆长46米,求这个花坛的面积。
6米5、有一块梯形的菜地,上底是32米,下底是48米,高是60米。
如果每平方米收25千克白菜,这块地一共收白菜多少千克6、甲、乙两车同时从两地相对开出,两地相距285千米,5小时后相遇。
甲车每小时行30千米,乙车每小时行多少千米(从学生生活实际出发,结合已有经验,综合运用所学知识和技能解决问题,开展应用意识。
)一、填空。
1、1.152 1.82、千 10103、2.50 3.494、34. 8(.)64(.) 34.8655、>6、3a+b7、58、6200 2.75 2 300 369、4.810、3 蓝球十分之五11、二、判断。
1、×2、×3、×4、×5、×6、×7、√8、√三、选择。
2024年中考数学二轮复习模块专练—化归思想(含答案)在于将未知的,陌生的,复杂的问题通过演绎归纳转化为已知的,熟悉的,简单的问题.三角函数,几何变换,因式分解,乃至古代数学的尺规作图等数学理论无不渗透着转化的思想.常见的转化方式有:一般特殊转化,等价转化,复杂简单转化,数形转化,构造转化,联想转化,类比转化等.转化思想亦可在狭义上称为化归思想.化归思想就是将待解决的或者难以解决的问题A 经过某种转化手段,转化为有固定解决模式的或者容易解决的问题B ,通过解决问题B 来解决问题A 的方法.考点解读:有理数减法转化为有理数的加减,有理数的除法转化为有理数的乘法;多项式乘以多项式转化为单项式乘以单项式,异分母的分式相加减转化为同分母的分式相加减;数式的化归,递进式变化,构建起数式知识与方法的脉络.【例1】(2023·广东江门·统考一模)1.在《九章算术》“割圆术”中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这里所用的割圆术所体现的是一种由有限到无限的转化思想.比如在求234111112222+++++⋅⋅⋅的和中,“…”代表按此规律无限个数相加不断求和.我们可设234111112222x =+++++⋅⋅⋅.则有234111*********x ⎛⎫=++++++⋅⋅⋅ ⎪⎝⎭,即112x x =+,解得2x =,故2341111122222+++++⋅⋅⋅=.类似地,请你计算:2468111113333+++++⋅⋅⋅=.(直接填计算结果即可)【变1】考点解读:从一般的三角形到等腰三角形、等边三角形,从平行四边形到矩形、菱形,试卷第2页,共14页A .BEA ∠B .DEB ∠C .ECA ∠D .ADO∠【变1】(2023·浙江·统考中考真题)4.小贺在复习浙教版教材九上第81页第5题后,进行变式、探究与思考:如图1,O 的直径CD 垂直弦AB 于点E ,且8CE =,2DE =.(1)复习回顾:求AB 的长.(2)探究拓展:如图2,连接AC ,点G 是 BC上一动点,连接AG ,延长CG 交AB 的延长线于点F .①当点G 是 BC的中点时,求证:GAF F ∠=∠;②设CG x =,CF y =,请写出y 关于x 的函数关系式,并说明理由;③如图3,连接DF BG ,,当CDF 为等腰三角形时,请计算BG 的长.考点解读:三元一次方程转化为二元一次方程,分式方程转化为整式方程,一元二次方程转化为一元一次方程.方程化归,构成了方程知识和方法体系.【例1】(2019·浙江台州·统考中考真题)考点解读:由正比例函数图像的平移来研究一次函数图像及性质,试卷第4页,共14页(1)求点C,D的坐标;(2)当13a=时,如图1,该抛物线与x轴交于A,B直线AD上方抛物线上一点,将直线PD沿直线AD 2试卷第6页,共14页三、解答题(2023·山西忻州·校联考模拟预测)16.下面是小彬同学解二元一次方程组的过程,请认真阅读并完成相应的任务.用上面方法所作出的正方形,有一个顶点恰好是直角三角形的直角顶点.△的内接正方形的一边恰好在斜边AB上,我就可用如下方法,如图2,如果Rt ABC⊥,垂足为D;第一步:过直角顶点C作CD AB第二步,延长AB到M,使得BM AD=,连接CM;试卷第8页,共14页试卷第10页,共14页试卷第12页,共14页(1)求EPF ∠的度数;(2)设PE x =,PF y =,随着点P 的运动,32x y +的值是否会发生变化?若变化,请求出它的变化范围;若不变,请求出它的值;(3)求EF 的取值范围(可直接写出最后结果).试卷第14页,共14页参考答案:答案第2页,共31页∵O 的直径CD 垂直弦∴10CD CE DE =+=,∴152OA OD CD ===在Rt OAE △中,AE =∵点G 是 BC的中点,∴»»CGBG =,∴GAF D ∠=∠,答案第4页,共31页∵O 的直径CD 垂直弦AB 于点∴ AC BC=,∴CAF CGA ∠=∠,在Rt CEF △中,2EF CF CE =-在Rt DEF △中,2EF DF DE =-在Rt CEF △中,2CF CE EF =+∴464BF EF BE =-=-,同理FGB FAC ∽△△,答案第6页,共31页次方程转化为二元一次方程组是解题关键.7.D【分析】利用“倍值点”的定义得到方程()210t x tx s +++=,则方程的0∆>,可得2440t ts s -->,利用对于任意的实数s 总成立,可得不等式的判别式小于0,解不等式可得出s 的取值范围.【详解】解:由“倍值点”的定义可得:()()2212x t x t x s =++++,整理得,()210t x tx s +++=∵关于x 的二次函数()()212y t x t x s =++++(,s t 为常数,1t ≠-)总有两个不同的倍值点,∴()22=41440,t t s t ts s ∆-+=-->∵对于任意实数s 总成立,∴()()24440,s s --⨯-<整理得,216160,s s +<∴20,s s +<∴()10s s +<,∴010s s <⎧⎨+>⎩,或010s s >⎧⎨+<⎩,当010s s <⎧⎨+>⎩时,解得10s -<<,当010s s >⎧⎨+<⎩时,此不等式组无解,∴10s -<<,故选:D .【点睛】本题主要考查了二次函数图象上点的坐标特征,一元二次方程根的判别式以及二次函数与不等式的关系,理解新定义并能熟练运用是解答本题的关键.答案第8页,共31页答案第10页,共31页(3)解:①当1a =时,抛物线解析式为∴4EH EF FG ===,∴()16H ,,()56G ,,②如图3-1所示,当抛物线与∵当正方形EFGH 的边与该抛物线有且仅有两个交点,∴点T 的纵坐标为2+151 4.5a -++=如图3-2所示,当抛物线与∵当正方形EFGH的边与该抛物线有且仅有两个交点,∴15 2.5a-=,解得0.4a=(舍去,因为此时点如图3-3所示,当抛物线与∵当正方形EFGH的边与该抛物线有且仅有两个交点,∴21152 a aa a⎛⎫-⋅+⋅+⎪⎝⎭17 3.5aa=.综上所述,0.5【点睛】本题主要考查了二次函数综合,勾股定理,轴对称的性质,正方形的性质等等,利用分类讨论和数形结合的思想求解是解题的关键.9.C答案第12页,共31页答案第14页,共31页抛物线223y x x =+-交于C 、D 两点,∵0m n >>,关于x 的方程2230x x m +--=的解为()1212,x x x x <,关于x 的方程2230x x n +--=的解为3434,()x x x x <,∴1234,,,x x x x 分别是A 、B 、C 、D 的横坐标,∴1342x x x x <<<,故选B .【点睛】本题主要考查了抛物线与一元二次方程的关系,正确把一元二次方程的解转换成直线与抛物线交点的横坐标是解题的关键.13.12x y =⎧⎨=⎩【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【详解】解:∵一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),∴联立y =3x -1与y =kx 的方程组31y x y kx =-⎧⎨=⎩的解为:12x y =⎧⎨=⎩,即310x y kx y -=⎧⎨-=⎩的解为:12x y =⎧⎨=⎩,答案第16页,共31页答案第18页,共31页证明:FD AB ⊥ ,FE AC ⊥,90AEG GDF ∴∠=∠=︒,AGE FGD ∠=∠ ,180BAC ∠=BAC DFE ∴∠=∠;(2)解:BC CD ⊥ ,90BCD ∴∠=︒,在Rt BCD 中,tan BC CD BDC =∠在Rt BCE 中,BC CE =答案第20页,共31页解得:9m BC =,9 1.610.6m AB BC AC ∴=+=+=,答:大树的高度AB 为10.6m .【点睛】本题考查了三角形的内角和定理,解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.19.(1)当Δ0=时,方程有两个相等的实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像有一个交点;当Δ0<时,方程没有实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像没有交点;(2)16t =;(3)y x =-,答案不唯一,合理即可.【分析】(1)根据一元二次方程根的判别式说明根的情况和函数图像交点的情况即可;(2)联立方程组,化简成一元二次方程的一般形式,用根的判别式Δ0=,代入求解;(3)函数图像有两个交点,保证根的判别式0∆>即可.【详解】(1)解:根据一元二次方程根的判别式可得:当Δ0=时,方程有两个相等的实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像有一个交点;当Δ0<时,方程没有实数根,∴二次函数2(0)y ax bx c a =++≠的图像与一次函数()0y sx t s =+≠的图像没有交点;(2)联立函数表达式:253y x x y x t ⎧=-+⎨=-+⎩,可得:253x x x t -+=-+,答案第22页,共31页由旋转的性质,可证明△BPP ′是等边三角形,再证明C 、P 、A ′、P ′四点共线,最后由勾股定理解答.【详解】(1)解:∵ACP ABP ' ≌,∴AP ′=AP =3、CP ′=BP =4,∠AP ′C =∠APB ,由题意知旋转角∠PAP ′=60°,∴△APP ′为等边三角形,PP ′=AP =3,∠AP ′P =60°,由旋转的性质可得:AP ′=AP =PP ′=3,CP ′=4,PC=5,∵32+42=52∴△PP ′C 为直角三角形,且∠PP ′C =90°,∴∠APB =∠AP ′C =∠AP ′P +∠PP ′C =60°+90°=150°;故答案为:150°;(2)证明:∵点P 为△ABC 的费马点,∴120APB ∠=︒,∴60APD ∠=︒,又∵AD AP =,∴APD 为等边三角形∴AP PD AD ==,60PAD ADP ∠=∠=︒,∴120ADE ∠=︒,∴ADE APC ∠=∠,在△APC 和△ADE 中,PAC DAE AP AD APC ADE ∠=∠⎧⎪=⎨⎪∠=∠⎩【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、勾股定理、旋转的性质、费马点等知识,是重要考点,有难度,掌握相关知识,正确做出辅助线是解题关键.21.(1)120︒(2)不会;9(3)9219 7EF≤<【分析】(1)延长EP交BC于点G,根据平行线的性质得出答案第24页,共31页,∵PE CD∠=∠,∴PGB DCB∥,∵PF AB∠=∠,∴PFC ABC答案第26页,共31页则90EHP ∠=︒,∵120EPF ∠=︒,∴18012060EPH ∠=︒-︒=︒,∴906030PEH ∠=︒-︒=︒,22.(1)60︒;(2)①丙;②10【分析】(1)连接BC ',则A BC ''△为等边三角形,即可求得既不相交也不平行的两条直线BA '与AC 所成角的大小;(2)①根据正方体侧面展开图判断即可;②根据对称关系作辅助线即可求得PM PN +的最小值.【详解】解:(1)连接BC ',∵//AC A C '',BA '与A C ''相交与点A ',即既不相交也不平行的两条直线BA '与AC 所成角为BA C ''∠,根据正方体性质可得:A B BC A C ''''==,∴A BC ''△为等边三角形,∴=60BA C ''∠︒,即既不相交也不平行的两条直线BA '与AC 所成角为60︒;(2)①根据正方体展开图可以判断,甲中与原图形中对应点位置不符,乙图形不能拼成正方体,故答案为丙;②如图:作M 关于直线AB 的对称点M ',答案第28页,共31页∵90ABC ∠=︒,DQ ∴四边形DBNQ 是矩形,∴90DQN ∠=︒,QN答案第30页,共31页∵A ABN BNQ AQN ∠+∠+∠+∠∴180ABN AQN ∠+∠=︒,∴AQN PBN ∠=∠.。
第1 芝麻开门 点到成功●计名释义 七品芝麻官,说的是这个官很小,就是芝麻那么小的一点. 《阿里巴巴》用“芝麻开门”,讲的是“以小见大”. 就是那点芝麻,竟把那个庞然大门给“点”开了.数学中,以点成线、以点带面、两线交点、三线共点、还有顶点、焦点、极限点等等,这些足以说明“点”的重要性. 因此,以点破题,点到成功就成了自然之中、情理之中的事了.●典例示范[例题] (2006年鄂卷第15题)将杨辉三角中的每一个数rn C 都换成分数rnC n )1(1+,就得到一个如下图所示的分数三角形,称来莱布尼茨三角形. 从莱布尼茨三角形可以看出rn x n r n nC C n C n 11)1(1)1(1-=+++,其中=x . 令221)1(1160130112131nn n C n nC a +++++++=- ,则=∞→n n a lim .[分析] 一看此题,图文并举,篇幅很大,还有省略号省去的有无穷之多,真乃是个庞然大物. 从何处破门呢?我们仍然在“点”上打主意.莱布三角形,它虽然没有底边,但有个顶点,我们就打这个顶点11的主意.[解Ⅰ] 将等式rn x n r n nC C n C n 11)1(1)1(1-=+++与右边的顶点三角形对应(图右),自然有21)1(1=+rnC n 21)1(1=+x n C n 1111=-r n nC 对此,心算可以得到:n =1,r =0,x =1对一般情况讲,就是x = r +1 这就是本题第1空的答案.[插语] 本题是填空题,只要结果,不讲道理. 因此没有必要就一般情况进行解析,而是以点带面,点到成功. 要点明的是,这个顶点也可以不选大三角形的顶点. 因为三角形中任一个数,都等于对应的“脚下”两数之和,所以选择任何一个“一头两脚”式的小三角形,都能解出x = r +1.第2道填空,仍考虑以点带面,先抓无穷数列的首项31.[解Ⅱ] 在三角形中先找到了数列首项31,并将和数列 ++++=60130112131n a 中的各项依次“以点连线”(图右实线),实线所串各数之和就是a n . 这个a n ,就等于首项31左上角的那个21. 因为21在向下一分为二进行依次列项时,我们总是“取右舍左”,而舍去的各项(虚线所串)所成数列的极限是0.因此得到=∞→n n a lim 21这就是本题第2空的答案.[点评] 解题的关键是“以点破门”,这里的点是一个具体的数31,采用的方法是以点串线——三角形中的实线,实线上端折线所对的那个数21就是问题的答案. 事实上,三角形中的任何一个数(点)都有这个性质. 例如从201这个数开始,向左下连线(无穷射线),所连各数之和(的极限)就是201这个数的左上角的那个数121. 用等式表示就是1211401601201=⋯+++[链接] 本题型为填空题,若改编成解答题,那就不是只有4分的小题,而是一个10分以上的大题. 有关解答附录如下.[法1] 由rn r n r n nC C n C n 111)1(1)1(1-+=+++知,可用合项的办法,将n a 的和式逐步合项.221)1(1130112131nn n C n nC a ++++++=- 11221242322)1(1)1(1)1(11514131nn n n C n C n C n nC C C C +-⎥⎦⎤⎢⎣⎡++++++++=- 11121242322)1(111514131n n n C n nC nC C C C +-⎪⎪⎭⎫ ⎝⎛+++++=-- 11222)1(13131n C n C C +-⎪⎪⎭⎫ ⎝⎛+=111)1(121nC n C +-=nn )1(121+-=→21[法2] 第二问实质上是求莱布尼茨三角形中从第三行起每一行的倒数的和,即231241302)1(11514131---++++++=n nn n n C n nC C C C a 根据第一问所推出的结论只需在原式基础上增加一项1)1(1-+n nC n ,则由每一行中的任一数都等于其“脚下”两数的和,结合给出的数表可逐次向上求和为21,故1)1(121---=n nn C n a ,从而21)1(121l i m l i m 1=⎥⎥⎦⎤⎢⎢⎣⎡+-=-∞→∞→n n n n n C n a[法3] (2)将1+=r x 代入条件式,并变形得rnr n r n C n nC C n )1(11)1(111+-=+-+ 取,1=r 令 ,,,3,2n n =得1211223121)12(131C C C -=+= 1312234131)13(1121C C C -=+=, 1413245141)14(1301C C C -=+= … … … 1111211)1(11-----=n n n nC C n nC 1112)1(11)1(1nn n C n nC C n +-=+- 以上诸式两边分别相加,得 )1(121+-=n n a n 21[说明] 以上三法,都是对解答题而言. 如果用在以上填空题中,则是杀鸡动用了牛刀. 为此我们认识到“芝麻开门,点到成功”在使用对象上的真正意义.●对应训练1.如图把椭圆1162522=+y x 的长轴AB 分成8份,过每个分点作x 轴的垂线交椭圆的上半部分于P 1,P 2,…,P 7七个点,F 是椭圆的一个焦点,则|P 1F |+|P 2F |+……+|P 7F |=_______.2.如图所示,直三棱柱ABC —A 1B 1C 1中,P ,Q 分别是侧棱AA 1,CC 1上的点,且A 1P =CQ ,则四棱锥B 1—A 1PQC 1→的体积与多面体ABC —PB 1Q 的体积比值为 .●参考解答1.找“点”——椭圆的另一个焦点F 2.连接P 1F 2 、P 2F 2 、…、P 7F 2,由椭圆的定义FP 5+P 5 F 2 = 2a =10 如此类推FP 1+P 1F 2 = FP 2 + P 2F 2 = … =FP 7 + P 7F 2 = 7×10 = 70 由椭圆的对称性可知,本题的答案是70的一半即35. 2.找“点”——动点P 、Q 的极限点.如图所示,令A 1P = CQ = 0. 即动点P 与A 1重合,动点Q 与C 重合. 则多面体蜕变为四棱锥C —AA1B 1B ,四棱锥蜕化为三棱锥C —A 1B 1C 1 .显然311 1 1 —=C B A C V V 棱柱.∴1 1 1 —C B A C V ∶B B AA C V 1 1 —=21 于是奇兵天降——答案为21. [点评] “点到成功”的点,都是非一般的特殊点,它能以点带面,揭示整体,制约全局. 这些特殊点,在没被认识之前,往往是人们的盲点,只是在经过点示之后成为亮点的. 这个“点”字,既是名词,又是动词,是“点亮”和“亮点”的合一.第2 西瓜开门 滚到成功●计名释义 比起“芝麻”来,“西瓜”则不是一个“点”,而一个球. 因为它能够“滚”,所以靠“滚到成功”. 球能不断地变换碰撞面,在滚动中能选出有效的“触面”.数学命题是二维的. 一是知识内容,二是思想方法. 基本的数学思想并不多,只有五种:①函数方程思想,②数形结合思想,③划分讨论思想,④等价交换思想,⑤特殊一般思想. 数学破题,不妨将这五种思想“滚动”一遍,总有一种思想方法能与题目对上号.●典例示范[题1] (2006年赣卷第5题)对于R 上可导的任意函数f (x ),若满足(x -1)f '(x )≥0,则必有 A. f (0)+f (2)< 2f (1) B. f (0)+f (2)≤2 f (1) C. f (0)+f (2)≥ 2f (1) D. f (0)+f (2)>2f (1)[分析] 用五种数学思想进行“滚动”,最容易找到感觉应是③:分类讨论思想. 这点在已条件(x -1)f '(x )≥0中暗示得极为显目.其一,对f '(x )有大于、等于和小于0三种情况; 其二,对x -1,也有大于、等于、小于0三种情况. 因此,本题破门,首先想到的是划分讨论.[解一] (i)若f '(x ) ≡ 0时,则f (x )为常数:此时选项B 、C 符合条件.(ii)若f '(x )不恒为0时. 则f '(x )≥0时有x ≥1,f (x )在[)∞,1上为增函数;f '(x )≤0时x ≤1. 即f (x )在(]1,-∞上为减函数. 此时,选项C 、D 符合条件.综合(i),(ii),本题的正确答案为C.[插语] 考场上多见的错误是选D. 忽略了f '(x ) ≡ 0的可能. 以为(x-1)f '(x ) ≥0中等号成立的条件只是x -1=0,其实x-1=0与f '(x )=0的意义是不同的:前者只涉x 的一个值,即x =1,而后是对x 的所有可取值,有f '(x ) ≡ 0.[再析] 本题f (x )是种抽象函数,或者说是满足本题条件的一类函数的集合. 而选择支中,又是一些具体的函数值f (0),f (1),f (2). 因此容易使人联想到数学⑤:一般特殊思想.[解二] (i)若f '(x )=0,可设f (x )=1. 选项B、C符合条件. (ii)f '(x )≠0. 可设f (x ) =(x-1)2 又 f '(x )=2(x-1).满足 (x-1) f '(x ) =2 (x-1)2≥0,而对 f (x )= (x-1)2. 有f (0)= f (2)=1,f (1)=0 选项C ,D 符合条件. 综合(i),(ii)答案为C.[插语] 在这类f (x )的函数中,我们找到了简单的特殊函数(x -1)2. 如果在同类中找到了(x -1)4,(x-1)34 ,自然要麻烦些. 由此看到,特殊化就是简单化.[再析] 本题以函数(及导数)为载体. 数学思想①——“函数方程(不等式)思想”. 贯穿始终,如由f '(x )= 0找最值点x =0,由f '(x )>0(<0)找单调区间,最后的问题是函数比大小的问题.由于函数与图象相联,因此数形结合思想也容易想到.[解三] (i)若f (0)= f (1)= f (2),即选B ,C ,则常数f (x ) = 1符合条件. (右图水平直线)(ii)若f (0)= f (2)< f (1)对应选项A.(右图上拱曲线),但不满足条件(x -1) f '(x )≥0若f (0)= f (2)> f (1)对应选项C ,D(右图下拱曲线). 则满足条件(x -1) f '(x )≥0.[探索] 本题涉及的抽象函数f (x ),没有给出解析式,只给出了它的一个性质:(x -1) f '(x )≥0,并由此可以判定f (0)+ f (2) ≥ f (1). 自然,有这种性质的具体函 数是很多的,我们希望再找到一些这样的函数.[变题] 以下函数f (x ),具有性质(x -1) f '(x )≥0从而有f (0)+ f (2) ≥2 f (1)的函数是 A. f (x )= (x-1)3B. f (x )= (x-1)21 C. f (x )= (x-1)35 D. f (x )= (x-1)20052006[解析] 对A ,f (0)= -1, f (2) =1,f (1)=0,不符合要求;对B ,f (0)无意义; 对C ,f (0)= -1, f (2) =1,f (1)=0,不符合要求; 答案只能是D. 对D , f (0)= 1, f (1) =0,f (2)=1.且f '(x )=20052006(x-1)20051 使得 (x-1) f '(x ) =(x-1)20052006(x-1)20051≥0.[说明] 以x=1为对称轴、开口向上的函数都属这类抽象函数. 如f '(x )=(x-1)122-m n,其中m ,n 都是正整数,且n ≥m .[点评] 解决抽象函数的办法,切忌“一般解决”,只须按给定的具体性质“就事论事”,抽象函数具体化,这是“一般特殊思想”在解题中具体应用.[题2] 已知实数x ,y 满足等式 369422=+y x ,试求分式5-x y的最值。
2018年上半年中小学教师资格考试模拟卷数学学科知识与教学能力(初级中学)一、单项选择题(本大题共8小题,每小题5分,共40分)1.若)(x f 为(﹣l ,l )内的可导奇函数,则)('x f ( ).A .是(﹣l ,l )内的偶函数B .是(﹣l ,l )内的奇函数C .是(﹣l ,l )内的非奇非偶函数D .可能是奇函数,也可能是偶函数1.【答案】A .解析:因为()()f x f x -=-,所以.2.当x 0→时,与1x 133-+为同阶无穷小的是( ).A .3xB .34xC .32xD .x 2.【答案】A.解析.12233312332000311(1)1133lim lim (1)3313x x x x x x x ---→→→-+⋅==+=,选A . 3.直线383311x y z ---==-与直线376324x y z ++-==-的位置关系为( ). A .平行 B .相交 C .异面 D .重合3.【答案】B .解析:直线383311x y z ---==-可以化为一般式:36z x -=,直线376324x y z ++-==-可以化为一般式:346z x +=,联立两个方程,解得12565x z ⎧=⎪⎪⎨⎪=⎪⎩,说明两条直线相交. 4.计算22x y D edxdy --⎰⎰,其中D 是由中心在原点、半径为a 的圆周所围成的闭区域( ).A .()21a e π--B .()21a e π-C .()21a e π-+D .()21a e π+ 4.【答案】A .解析:在极坐标系中,闭区域D 可表示为0,02a ρθπ≤≤≤≤,所以()()222222222200000111122a a x y a a D D edxdy e d d e d d e d e d e πππρρρρρθρρθθθπ-------⎡⎤⎡⎤===-=-=-⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰⎰⎰⎰⎰⎰,所以答案选A .5.求幂级数()()2202!!n n n x n ∞=∑的收敛半径是( ). A .1 B .2 C .12 D .-15.【答案】C .解析:级数缺少奇次幂的项,定理2不能直接应用.我们根据比值审敛法来求收敛半径:()()()()()21222221!1!lim 42!!n n nn x n x n x n +→∞+⎡⎤⎣⎦+⎡⎤⎣⎦=,当2141,2x x <<即时级数收敛;当2141,2x x >>即时级数发散.所以收敛半径12R =. 6.设A ,B ,C 是三个随机事件,P (ABC )=0,且0<P (C )<1,则一定有( ).A .()()()()P ABC P A PB PC =B .()()()|||P A BC P A C P B C +=+⎡⎤⎣⎦ C .()()()()P A B C P A P B P C ++=++D .()()()||P A B C P A C P B C +=+⎡⎤⎣⎦ 6.【答案】B .解析:A .由于不知道P (A )或P (B )是否为零,因此选项A 不一定成立. B .()()()()()()P A B C P AC P BC P ABC P AC P BC -=⎣+=++⎡⎤⎦,()()()()()|||P A B C P A B C P C A P B C P C ⎡⎤⎣⎦+⎡⎤⎣⎦++==,选项B 正确.C .()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ---+++=++,由于不能确定 ()()()P AB P BC P AC 、、的概率是否全为零,因此选项C 不一定成立.D .()()()()()=P A B C P AC BC P AC P BC P ABC ⎡⎤-⎣=++⎦+,而()()()P AB P ABC P ABC =-,其值是否为零不能判断,因此选项D 不一定成立.7.对于求函数最大值的问题,下列关于该问题的解题过程所蕴涵的主要数学思想的()[]3221,1,3f x x x x x =+-+∈-表述中,不恰当的一项是( ).A .方程与函数思想B .特殊与一般思想C .化归与转化思想D .有限与无限思想7.【答案】D .解析:本题在结果过程中采用将原函数求导,并根据其导函数的取值范围确定原函数的单调性,再通过单调性判别最大值,分别体现了方程与函数、特殊与一般以及化归与转化的思想,没有体现有限与无限的思想.8.概念的外延是概念所反映的( )的总和.A .本质属性B .本质属性的对象C .对象的本质属性D .属性8.【答案】B .解析:概念的外延是概念所反映的本质属性的对象的总和,故选B .二、简答题(本大题共5小题,每小题7分,共35分)9.设1211321563A λμ⎡⎤-⎢⎥=-⎢⎥⎢⎥⎣⎦,已知()2R A =,求λμ与的值.9.【答案】51λμ=⎧⎨=⎩. 解析:121112110303444451080054A λλμμλ⎡⎤⎡⎤--⎢⎥⎢⎥++----⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦::, 因为()2R A =,所以505,101λλμμ-==⎧⎧⎨⎨-==⎩⎩即. 10.三个箱子中,第一箱装有4个黑球1个白球,第二箱装有3个黑球3个白球,第三箱装有3个黑球5个白球,现在任取一箱,再从该箱中任取一球,问(1)取出的球是白球的概率?(2)若取出的为白球,则该球属于第二箱的概率?10.【答案】(1)53120;(2)2053. 解析:设i A 表示“取出第i 个箱子”, 1,2,3i =,B 表示“取出白球”. 于是1231()()()3P A P A P A ===, 11(|)5P B A =,23(|)6P B A =,15(|)8P B A =. (1)由全概率公式得3153()(|)()120i i i P B P B A P A ===∑; (2)由贝叶斯公式得2(|)()20(|)()53i i P B A P A P A B P B ==. 11.证明当0x >,()ln 11x x x x<+<+. 11.【答案】见解析.解析:设()()ln 1f t t =+,显然()f t 在区间[]0,x 上满足拉格朗日中值定理的条件,根据定理,应有()()()()00,0f x f f x x ξξ'-=-<<;由于()()100,1f f t t'==+,因此上式即为()ln 11x x ξ+=+,又由0x ξ<<,有()()ln 101x x x x x <+<>+,由此得证. 12.试结合实际教学说说在数学教学中如何激发学习兴趣,引起学习动机?12.【参考答案】兴趣是一个人积极探究某种事物或进行活动的意识倾向.学习兴趣是学生对学习活动或学习对象的一种力求认识或趋近的意识倾向.兴趣是入门的向导,是感情的体现,能促使动机的产生.学习兴趣是一种学习动机,是学习积极性中很现实、很活跃的心理成分.总是积极主动,心情愉快的进行学习,不会产生负担.在数学教学之初,或学习新课题时,教师应精心设计教学学习情境,将学生置于该情境之中,激发学习兴趣,千方百计的诱发学生的求知欲,使学生有一种力求认识世界,渴望获得知识,不断追求真理的欲望,产生学习的自觉性,迸发出极大的学习热情.13.何为教学反思?如何进行教学反思.13.【参考答案】反思是指教师以自己的教育教学实践为思考对象,对自己的教育行为、决策及教学效果进行认真的审视和分析,不断提高自己教学水平和专业素养的过程.反思不仅仅是头脑内部的“想一想”,而是一个不断实践、学习、研究的过程,是自己与自己、自己与他人更深层次的对话.反思是教师认识自己的重要途径,又是改变自己的前提,教学是一门遗憾的艺术,即使是成功的课堂教学也难免有疏漏失误之处,课后要及时进行回顾、梳理,并对其作深刻反思、探究和认真的剖析,为教师再教积累理论和实践经验.课后反思还要对自己的教学行为是否会对学生造成伤害进行反思.有时,教师无意识的行为会对学生造成终身难以弥补的伤害,所以教师在与学生沟通时要时时注意自己的言行.三、解答题(本大题1小题,10分)14.非齐次线性方程组12312321232222x x x x x x x x x λλ⎧-++=-⎪-+=⎨⎪+-=⎩,当λ取何值时有解?并求出它的通解.14.【答案】见解析.解析:这里的系数矩阵A 是方阵,A 中不含参数,故对增广矩阵作初等行变换为宜,求解如下:()()()222121211212112121121211203322031112112112033000B λλλλλλλλλλλλ⎡⎤-⎢⎥⎡⎤⎡⎤⎡⎤----⎢⎥-⎢⎥⎢⎥⎢⎥=-----+⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-+----⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦:::, 因为()2R A =,故当()2R B =时,即当12λλ==-或时,方程组有解;当1λ=时,012111110000111100000000B ⎡⎤⎡⎤--⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦::,则有13231x x x x =+⎧⎨=⎩,即()123111010x x c c R x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 当2λ=-时,012121120011211200000000B ⎡⎤⎡⎤---⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦::,则有132322x x x x =+⎧⎨=+⎩,即()123121210x x c c R x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+∈ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.四、论述题(本大题1小题,15分)15.解释解析几何的含义,并说明解析几何的意义.15.【参考答案】解析几何是这样一个数学学科,在采用坐标法的同时,运用代数方法来研究几何对象.(1)解析几何使得数学的研究方向发生了一次重大的转折:以几何为主导的数学转变为宜代数和分析为主导的数学;(2)解析几何使得以常量为主的数学转变为以变量为主的数学为微积分到的诞生奠定了基础; (3)解析几何使代数与几何融为一体,实现了几何图形的数字化,是数学化时代的先声;(4)代数的几何化和几何的代数化,使得人们摆脱了现实的束缚,它带来了认识新空间的需要,帮助人们从现实空间进入虚拟空间,从三维空间进入更高维的空间.五、案例分析题(本大题1小题,20分)16.案例:阅读下列3个教师有关“代数式概念”的教学片断.教师甲的情境创设:“一隧道长l 米,一列火车长180米,如果该列火车穿过隧道所花的时间为t 分钟,则列车的速度怎么表示?”学生计算得出t l 180+,教师指出:“tl 180+”、“10a +2b”这类表达式称为代数式. 教师乙的教学过程:复习上节内容后,教师在黑板上写下代数式的定义:“由运算符号、括号把数和字母连接而成的表达式称为代数式”,特别指出“单独一个数或字母也称为代数式”;然后判断哪些是代数式,哪些不是;接着通过“由文字题列代数式”及“说出代数式所表示的意义”进一步解释代数式的概念;最后让学生练习与例题类似的题目.教师丙的教学过程:让学生自学教材,但是教材并没有说“代数式”是怎么来的,有什么作用.接着教师大胆地提出开放式问题:“我们怎样用字母表示一个奇数?”当时教室里静极了,学生们都在思考.先有一位男生举手回答:“2a -1”.“不对,若a =1.5呢?”一位男生说.沉默之后又有一位学生大声地说:“a 应该取整数!”有些学生不大相信:“奇数77能用这个式子表示吗?”不久,许多学生算出来:“a 取39”.此时,教师趁势作了一个简单的点拨:“只要a 取整数,2a -1定是奇数,对吗?那么偶数呢?”他并没有作更多的解说,点到为止,最后的课堂小结也很简单:“数和式有什么不同?”“式中的字母有约束吗?”“前面一节学过的式子很多都是代数式!……”从师生们自如的沟通来看,他们都已成竹在胸.问题:(1)你认可教师甲的情境创设吗?说明理由;(2)你认可教师乙的教学过程吗?说明理由;(3)你认可教师丙的教学过程吗?说明理由.16.【参考答案】(1)甲教师情境创设的优点在于运用学生熟悉的物理背景来进行情境导入,降低了认知的难度.缺点在于看似联系实际,其实脱离学生的现有认知水平,使学生的认知起点与数学逻辑起点失调,无法引起学生的思维共鸣,使问题情境中隐含的数学问题与数学方法不能与教学目标相衔接,不能形成学生原有认知水平及生活经验的正迁移.(2)乙教师的教学过程存在优点也存在缺陷.优点是一开始复习了上节内容,进行了新旧知识间的过渡,降低了学生对新知识的认知难度;采取了直接导入的方法,开门见山的介绍本节课题,引起学生的注意,使学生迅速进入学习状态,对本节内容的基本轮廓有了大致了解;整个教学过程条理清楚、重难点突出;最后进行巩固练习,加深了学生对新知识的识记和掌握.缺点在于没有进行合适的情境创设,将知识全盘塞给学生,剥夺了学生研究问题的策略,无法激发学生学习新知识的兴趣,学生只能机械地配合老师的教学,整个过程中,缺乏师生间的互动,忽略了学生的主体地位.(3)丙教师的教学过程存在优点也存在缺陷.优点是充分发挥了学生的主体地位,开放性问题激发了学生自主探究的兴趣,有利于培养他们的独立思考能力和创新意识.缺点在于首先教师没有给出学生自主探究的准备时间,没有提供丰富的自学素材;另外教师导入的开放式问题并不能充分突出代数式这节的核心——“数”与“式”的区别;在探究过程中,教师没有科学合理地发挥自己的主导作用,小结也显得过于潦草和模糊.六、教学设计题(本大题1小题,30分)17.在进行初中数学“一次函数(第一课时)”时,你将怎样展开教学,请完成下列教学设计:(1)谈谈一次函数在初中数学课程中的作用;(2)确定本节课的教学目标和教学重难点;(3)请设计一个引入“一次函数概念”的教学片段,要求引导学生经历从实际背景抽象概念的过程.17.【参考答案】(1)一次函数属于《数学课程标准》中“数与代数”领域,是最基本的、最简单的函数.教材在前面首先安排了函数及正比例函数的内容,讨论了正比例函数的定义、图象、性质等,接着本节学习一次函数的定义、图象、性质和函数解析式,它既是对函数概念的进一步理解,又是特殊的一次函数——正比例函数到一般的一次函数的拓展,它还是今后继续学习“用函数观点看方程(组)与不等式”的基础,在本章中起着承上启下的作用.它也是将来学习二次函数,反比例函数的基础.本节教学内容还是学生进一步体会“函数思想”“类比思想”“数形结合思想”的很好素材.(2)教学目标:知识与技能目标:能通过实例观察、比较、探索、归纳得出一次函数概念.能根据实际条件,分清两个变量间的关系,列出一次函数解析式.过程与方法目标:在经历一次函数概念的形成过程中,体会数学建模和特殊到一般的思想及类比思想,提高发现问题、解决问题的能力.情感态度与价值观目标:体验函数与人类生活的密切联系,增强对函数学习的求知欲,体验数学充满着探索性和创造性,增强学习数学的兴趣.教学重点、难点:教学重点:一次函数的概念,能利用一次函数解决简单的实际问题.教学难点:能根据具体条件写出一次函数解析式.(3)引例:某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃,登山队员由大本营向上登高xkm时,他们所在的位置的气温是y℃,试写出y与x之间的关系式.引导学生得出正确结果:y=-6x+5追问:y是x的函数吗?引导学生回顾函数的定义,给出答案.提示并提问:我们看到实际问题中,两个变量之间的数量关系不总是k倍的关系,还有如引例中存在的数量关系.出示下列例题,让同学们自行写出其中变量对应的函数关系.①有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C与温度t(℃)有关,即C•的值约是t的7倍与35的差.②一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值.③某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.1元/分收取).④把一个长10cm,宽5cm的矩形的长减少x cm,宽不变,矩形面积y(cm2)随x的值而变化.引导学生得出正确结果:①c=7t-35;②G=h-105;③y=0.01x+22;④y=-5x+50.提问并进行小组讨论:这四个关系式显然都是函数,这些函数有什么共同的特点?若把它们叫做一次函数,你能类比正比例函数的定义给出一次函数的定义吗?由此引出一次函数的概念并总结:一般地,形如y=kx+b(k、b是常数,k≠0)的函数,叫做一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.。
《数学模型(第三版)》习题参考解答一、选择题(一)、单项选择1、数学教学就是数学活动的教学,就是师生之间、学生之间(3)的过程。
①交往互动②共同发展③交往互动与共同发展2、教师必须积极主动利用各种教学资源,创造性地采用教材,学会(2)。
①教教材②用教材教3、算法多样化属学生群体,(2)每名学生把各种算法都学会。
①要求②不要求4、新课程的核心理念就是(3)①联系生活学数学②培养学习数学的爱好③一切为了每一位学生的发展5、根据《数学课程标准》的理念,解决问题的教学必须横跨于数学课程的全部内容中,不再单独发生(3)的教学。
①概念②计算③应用题6、“三维目标”就是指科学知识与技能、(2)、情感态度与价值观。
①数学思考②过程与方法③解决问题7、《数学课程标准》中采用了“经历(体会)、体验(体会)、积极探索”等刻画数学活动水平的(1)的动词。
①过程性目标②知识技能目标8、创建蜕变记录就是学生积极开展(3)的一个关键方式,它能充分反映出来学生发展与进步的历程。
①自我评价②相互评价③多样评价9、学生的数学自学活动应就是一个生动活泼的、主动的和(2)的过程。
①单一②富有个性③被动10、“用数学”的含义就是(2)①用数学学习②用所学数学知识解决问题③了解生活数学11、以下现象中,(d)就是确认的。
a、后天下雪b、明天有人走路c、天天都有人出生d、地球天天都在转动1 2、《标准》精心安排了(b)个自学领域。
a)三个 b)四个 c)五个 d)不确定13、教师由“教书匠”转型为“教育家”的主要条件就是(d)a、坚持学习课程理论和教学理论b、认真备课,认真上课c、经常编写教育教学论文d、以研究者的眼光校对和分析教学理论与教学实践中的各种问题,对自身的行为进行反思14、崭新课程标准通盘考虑了九年的课程内容,将义务教育阶段的数学课程分成(b)个阶段。
a)两个 b)三个 c)四个 d)五个15、以下观点不恰当的就是(d)a)《标准》并不规定内容的呈现顺序和形式b)《标准》倡导以“问题情境——创建模型——表述、应用领域与开拓”的基本模式呈现出科学知识内容c)《标准》努力体现义务教育的普及性、基础性和发展性d)年全国教育工作会议后,制定了中小学各学科的“教学大纲”,以逐步替代原来的“课程标(二)、多项选择1、义务教育阶段的数学课程应当注重彰显(acd),并使数学教育面向全体学生。
教师资格考试高中数学学科知识与教学能力测试试题与参考答案一、单项选择题(本大题有8小题,每小题5分,共40分)1.题目:下列关于实数的说法中,正确的是()A. 实数都可以表示在数轴上B. 无理数都是无限小数C. 无限小数都是无理数D. 带根号的数都是无理数答案:B解析:A. 实数包括有理数和无理数,它们都可以在数轴上找到对应的点,所以A选项正确,但题目要求选择“正确”且“唯一正确”的选项,由于B选项也是正确的,且更具体,故A选项虽然正确但不是本题的最佳答案。
B. 无理数不能表示为两个整数的比,且其小数部分是无限不循环的,即都是无限小数。
所以B选项正确。
C. 无限小数包括无限循环小数和无限不循环小数,其中无限循环小数是有理数,无限不循环小数才是无理数。
所以C选项错误。
D. 带根号的数不一定都是无理数,例如√4=2,2是一个有理数。
所以D选项错误。
2.题目:在平面直角坐标系中,已知点A(2,3),若点B与点A关于x轴对称,则点B的坐标为()A.(2,−3)B.(−2,3)C.(−2,−3)D.(3,2)答案:A解析:关于x轴对称的两点,其横坐标相同,纵坐标互为相反数。
设点B的坐标为(x,y),由于点B与点A关于x轴对称,且点A的坐标为(2,3),则有x=2,y=−3。
所以点B的坐标为(2,−3)。
3.题目:已知一次函数y=kx+b(k≠0)的图象经过点(1,2)和点(−1,−4),则k+b=____.答案:0解析:将点(1,2)代入y=kx+b得:2=k×1+b,即k+b=2①;将点(−1,−4)代入y=kx+b得:−4=k×(−1)+b,即−k+b=−4②;① + ②得:2b=−2,解得b=−1;将b=−1代入①得:k=3;所以k+b=3−1=0。
4.题目:下列运算正确的是( )A.a6÷a2=a3B.3a−2=19a2C.(a3)2=a5D.(a−b)2=a2−b2答案:B解析:A. 根据同底数幂的除法法则,有a m÷a n=a m−n,所以a6÷a2=a6−2=a4,与选项A的a3不符,故A错误。
第3讲巧算加减法中的凑整思想-三年级数学上册数学思想方法系列(人教版)(含解析)第3讲巧算加减法中的凑整思想-三年级数学上册数学思想方法系列(人教版)第3讲巧算加减法中的凑整思想加减巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看做所接近的数进行简算。
凑整后,对于原数与整十、整百、整千相差的数,要根据“多加要减去,少加要再加,多减要加上,少减要再减”的原则进行处理。
另外,可以根据加法交换律、结合律以及减法的性质进行凑整,从而达到简算的目的。
【例题1】1.你能快速计算出下面各题的结果吗?(1)199+74 (2)347+102(3)784-297 (4)985-501思路分析:(1)在199+74中,199接近200,把199看作200来计算比较简便,这样就多加了1,再减去多加的1,就得到正确的结果。
(2)在347+102中,102接近100,把102看作100来计算比较简便,这样就少加了2,再加上少加的2,就得到正确的结果。
(3)在784-297中,297接近300,把297看作300来计算比较简便,这样就多减了3,再加上多减的3,就得到正确的结果。
(4)在985-501中,501接近500,把501看作500来计算比较简便,这样就少减了1,再减去少减的1,就得到正确的结果。
规范解答:(1)199+74=200+74-1=274-1=273(2)347+102=347+100+2=447+2=449(3)784-297=784-300+3=484+3=487(4)985-501=985-500-1=485-1=484【例题2】2.用简便算法计算下面各题。
(1)31+58+69 (2)325+28+675思路分析:由于题中有两数的和是整百、整千,所以我们应用加法交换律、结合律先把它们相加,可以简算。
规范解答:(1)原式=(31+69)+58=100+58=158(2)原式=(325+675)+28=1000+28=1028【例题3】3.用简便算法计算下面各题。
2024年教师资格考试初中数学学科知识与教学能力复习试卷(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、在下列数学概念中,不属于实数范畴的是()A、有理数B、无理数C、整数D、分数2、在下列教学方法中,适用于培养学生创新精神和实践能力的是()A、讲授法B、演示法C、讨论法D、练习法3、题干:在数学教学中,教师为了帮助学生理解“因式分解”的概念,采用了以下哪种教学方法?A. 演示法B. 案例分析法C. 小组合作探究法D. 讲授法4、题干:以下哪项不属于数学教学目标中的“知识与技能”领域?A. 理解数学概念B. 掌握数学运算C. 培养数学思维D. 传承数学文化5、在下列函数中,属于反比例函数的是()A.(y=x2+1)B.(y=2x−3))C.(y=1xD.(y=√x)6、在等差数列({a n})中,已知(a1=3),公差(d=2),则第10项(a10)的值是()A. 15B. 20C. 25D. 307、在平面直角坐标系中,点A(2,3)关于y轴的对称点是()A. A’(-2,3)B. A’(2,-3)C. A’(-2,-3)D. A’(2,3)8、下列函数中,在其定义域内为增函数的是()A.(f(x)=−x2+4x−3)B.(f(x)=2x−5))C.(f(x)=1xD.(f(x)=√x)二、简答题(本大题有5小题,每小题7分,共35分)第一题请简述数学课程标准中对于“数学思考”这一核心素养的要求,并结合初中数学教学实际,举例说明如何在教学中培养学生的数学思考能力。
1.能够从数学的视角观察、分析现实世界中的现象,提出数学问题,并用数学语言进行表述。
2.能够运用数学的基本思想和方法,对问题进行抽象和建模,形成数学表达式或图形。
3.能够运用逻辑推理、归纳总结、类比等数学思维方法,对问题进行探究和解决。
4.能够理解和欣赏数学的简洁美和逻辑美,体验数学思考的乐趣。
5.能够在解决问题过程中,培养创新精神和实践能力。
四年级数学下册第一单元作业设计案例四年级第一单元四则运算单元内容:1、加减法的意义和各部分间的关系。
2、乘除法的意义和各部分间的关系。
3、有关0的运算,含有括号的混合运算的运算顺序。
4、运用四则运算解决实际问题。
单元教材分析:本单元是这册书中的一个重点单元。
本单元主要教学何梳理混合运算的顺序。
混合运算学生之前已经学会按从左往右的顺序计算两步式题,并且知道括号的作用,这里主要教学含有两级运算的运算顺序,并对所学的混合运算的顺序进行整理。
单元学习目标:知识与技能:1、理解四则运算的意义,掌握每种运算各部分间的关系,能对四则运算的知识进行较系统的概括和总结。
2、认识中括号,掌握含有括号的混合运算的运算顺序,并能正确计算。
3、掌握0在四则运算中的特性,体会零在四则运算中的地位和作用。
4、掌握先假设,再调整的解决问题的策略。
过程与方法:1、通过解决问题经历总结加、减法,乘、除法的意义的过程,理解四则运算的意义。
掌握每种运算各部分间的关系。
2、经历解决租船问题的过程,积累解决问题的经验,体会优化思想。
情感态度与价值观:1、使学生养成认真审题、独立思考、抽象概括的能力。
2、在探究租船问题的过程中,感受数学与生活的密切联系,激发学生学习数学的兴趣,增强学生学好数学的信心。
单元作业整体设计思路:本单元共4课时,每课时作业设计体现基础性、拓展性,针对每课时重难点设计学生易错题、典型题。
在照顾多数学生基础训练的前提下,注重拓展学生创新思维训练。
在选题上,虽然是计算章节,注重从生活中选取素材,根据学生的兴趣爱好编写题目,并且实时设计数学游戏,让枯燥的计算变得生动有趣,使学生体会数学与生活的密切联系,激发学生喜爱学习、热爱生活。
第1课时加减法的意义和各部分间的关系一、填空1、把两个数( )一个数的运算叫做加法。
2、根据226十87=313,写出两道减法算式______,_______。
3、根据5701一306=5395,写出另外两道算式______,________。
一、选择题1.若关于x 的方程2lnx ax x -=在0,上有两个不等的实数根,则实数a 的取值范围为( ) A .(],1-∞-B .(),1-∞-C .[)1,-+∞D .()1,-+∞2.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .()()0,11,+∞B .()(),11,-∞-+∞C .()(),10,1-∞-⋃D .()()1,01,-⋃+∞3.已知函数()2sin x m f x x +=-在30,4π⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数m 的取值范围是( ) A .3,44ππ⎫⎡--⎪⎢⎣⎭ B .3,44ππ⎛⎤⎥⎝⎦ C .,42ππ⎛⎫⎪⎝⎭ D .,24ππ⎛⎫-- ⎪⎝⎭ 4.已知函数()23ln f x x ax x =-+在其定义域内为增函数,则a 的最大值为( )A.4B .C .D .65.已知函数()f x 定义域为R ,其导函数为f x ,且()()30f x f x '->在R 上恒成立,则下列不等式定成立的是( ) A .()()310f e f <B .()()210f e f < C .()()310f e f >D .()()210f e f >6.已知函数()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R .若函数()f x 有三个零点,则( )A .1a >,0b <B .01a <<,0b >C .0a <,0b >D .01a <<,0b < 7.已知定义在R 上的函数()f x 满足()()f x f x '<-,则下列式子成立的是( )A .(2020)(2021)f ef >B .(2020)(2021)f ef <C .(2020)(2021)ef f >D .(2020)(2021)ef f <8.已知函数()()()110ln x f x x x++=>,若()1kf x x >+恒成立,则整数k 的最大值为( ) A .2B .3C .4D .59.对于正数k ,定义函数:()()()(),,f x f x k g x k f x k ⎧≤⎪=⎨>⎪⎩.若对函数()ln 22f x x x =-+,有()()g x f x =恒成立,则( )A .k 的最大值为1ln2+B .k 的最小值为1ln2+C .k 的最大值为ln 2D .k 的最小值为ln 210.甲乙两人进行乒乓球友谊赛,每局甲胜出概率是()01p p <<,三局两胜制,甲获胜概率是q ,则当q p -取得最大值时,p 的取值为( ) A .12B .1326-C .1326+ D .2311.函数()212x f x x -=+的值域是( ) A .30,⎡⎤⎢⎥⎣⎦B .3⎛⎫∞ ⎪ ⎪⎝⎭,+C .()0,3D .)3,⎡+∞⎣12.若函数32()21f x ax x x =+++在(1,2)上有最大值无最小值,则实数a 的取值范围为( ) A .34a >-B .53a <-C .5334a -<<- D .5334a -≤≤- 二、填空题13.已知函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值,则实数m 的取值范围是_________.14.已知函数()(ln )xe f x k x x x=+-,若1x =是函数()f x 的唯一极值点,则实数k 的取值范围是_______.15.已知函数()f x 与()f x '的图象如图所示,则函数()()x f x g x e=的单调递减区间为___________.16.已知函数()2ln(1)f x x ax =+-,对任意的(0,1),(0,1)m n ∈∈,当m n ≠时,(1)(1)1f m f n m n+-+<-,则实数a 的取值范围是____________.17.函数21f x x x 的极大值为_________.18.已知函数3223,01()21,1x x m x f x mx x ⎧-+≤≤=⎨-+>⎩,若函数()f x 的图象与x 轴有且只有两个不同的交点,则实数m 的取值范围为________.19.函数2sin y x x =-在[]0,2π上的递增区间是________.20.已知函数()321f x x x =++,若对于x R ∀∈不等式()21xf ax e a -+≤恒成立,则实数a 的取值范围为:____________.三、解答题21.已知函数()2ln f x x a x x=--. (1)已知()f x 在点()()1,1f 处的切线方程为2y x =-,求实数a 的值; (2)已知()f x 在定义域上是增函数,求实数a 的取值范围. 22.已知函数()xax f x e =. (1)当1a =时,判断函数()f x 的单调性; (2)若0a >,函数()()212g x f x x x =+-只有1个零点,求实数a 的取值范围. 23.已知函数32()691f x x x x =-++. (1)求曲线()y f x =在点()0,1处的切线方程.(2)证明:()()1ln 2cos x x f x x +->对1()2,x ∈+∞恒成立. 24.已知函数()()3f x alnx ax a R =--∈. (1)函数()f x 的单调区间;(2)当1a =-时,证明:当()1x ∈+∞,时,()20f x +>. 25.已知函数21()ln (1)12f x a x x a x =+-++. (I )当0a =时,求曲线()y f x =在点(2,(2))f 处的切线方程;(Ⅱ)若函数()f x 在1x =处取得极小值,求实数a 的取值范围.26.已知函数321()23f x x x ax =-++,21()42g x x =-. (1)若函数()f x 在()0,∞+上存在单调递增区间,求实数a 的取值范围;(2)设()()()G x f x g x =-.若02a <<,()G x 在[]1,3上的最小值为13-,求()G x 在[]1,3上取得最大值时,对应的x 值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】通过分离参数变成ln x a x x=-,构造函数()ln x f x xx =-,利用导数求其单调区间和值域,数形结合写出a 的取值范围. 【详解】2lnx ax x -=故ln xa x x=- 则()ln x f x xx=- ()2'221ln 1ln 1x x x f x x x---=-= 设()21ln g x x x =--,0x >故()'120g x x x=--< ()21ln g x x x =--在0,上为减函数,10g .故()0,1∈x 时()'0f x >;()1,∈+∞x 时()'0f x <.故()ln x f x xx=-在0,1上为增函数,在1,上为减函数.()()max 11f x f ==-,且0,x →时()f x →-∞;,x →+∞时()f x →-∞y a =与()ln x f x x x=-的图象要有两个交点则a 的取值范围为(),1-∞-. 故选:B 【点睛】方程在某区间上有解的问题,可通过分离参数,构造函数,利用导数求该区间上单调区间和值域,得出参数的取值范围.2.C解析:C 【分析】 构造函数()()f xg x x=,分析出函数()g x 为偶函数,且在()0,∞+上为减函数,由()0f x >可得出()00g x x ⎧>⎨>⎩或()00g x x ⎧<⎨<⎩,解这两个不等式组即可得解.【详解】构造函数()()f xg x x=,该函数的定义域为{}0x x ≠, 由于函数()f x 为奇函数,则()()()()()f x f x f x g x g x x x x---====--, 所以,函数()()f xg x x=为偶函数. 当0x >时,()()()20xf x f x g x x'-'=<,所以,函数()g x 在()0,∞+上为减函数, 由于函数()()f xg x x=为偶函数,则函数()g x 在(),0-∞上为增函数. ()10f -=,则()10f =且()00f =,所以,()()110g g -==.不等式()0f x >等价于()()010g x g x ⎧>=⎨>⎩或()()010g x g x ⎧<=-⎨<⎩,解得1x <-或01x <<.因此,不等式()0f x >的解集为()(),10,1-∞-⋃. 故选:C. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.3.A【分析】()0f x =有两解变形为2sin m xxe e =有两解, 设2sin ()xxg xe =,利用导数确定函数的单调性、极值,结合()g x 的大致图象可得结论. 【详解】 由()22sin x mf x e x +=-得2sin m xxe e =,设2sin ()xxg x e=,则2(cos sin )()x x g x -'=, 易知当04x π<<时,()0g x '>,()g x 递增,当344x ππ<<时,()0g x '<,()g x 递减,(0)0g =,414g e ππ⎛⎫= ⎪⎝⎭,34314g e ππ⎛⎫= ⎪⎝⎭,如图是()g x 的大致图象, 由2sin mx e =有两解得34411m e e eππ≤<,所以344m ππ-≤<-.故选:A .【点睛】关键点点睛:本题考查函数的零点问题,解题关键是转化.函数的零点转化为方程的解,再用分离参数变形为2sin m xe =2sin ()x g x =my e =有两个交点,利用导数研究函数()g x 的单调性、极值后可得.4.B解析:B 【分析】求导,则由题意导函数在0,上恒大于等于0,分参求a 范围.【详解】由题意可得()160f x x a x'=-+≥对()0,x ∈+∞恒成立,即16a x x ≤+,对()0,x ∈+∞因为16x x +≥16x x =即x =时取最小值所以a ≤ 故选:B 【点睛】(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k ,把所求问题转化为求函数的最小值问题.(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.5.A解析:A 【分析】 构造函数()()3xf xg x e=,由()()30f x f x '->得0g x ,进而判断函数()g x 的单调性,判断各选项不等式. 【详解】()()3x f x g x e=,则()()()()()()3323333x x x x f x e f x e f x f x g x e e ⋅--==''', 因为()()30f x f x '->在R 上恒成立, 所以0g x在R 上恒成立,故()g x 在R 上单调递减, 所以()()10g g <,即()()3010f f e e <,即()()310f e f <, 故选:A. 【点睛】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.6.B解析:B 【分析】首先求出函数的导函数,要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即可求出参数a 的取值范围,再求出函数的单调区间,从而得到()10f a ->,即可判断b 的范围; 【详解】解:因为()()()()221ln 10,,2a f x a x x a a xb x a b =-++--+>∈∈R R 所以()()()()()()()222111111ax a a x a a ax x a f x ax a a xxx+--+---+-'=++--==要使函数()f x 有三个零点,则()0f x '=必定有两个正实数根,即11x a=,21x a =-,所以1010a a->⎧⎪⎨>⎪⎩解得01a <<,此时111x a =>,211x a =-<,令()0f x '>,解得01x a <<-或1x a >,即函数在()0,1a -和1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,令()0f x '<,解得11a x a -<<或1x a >,即函数在11,a a ⎛⎫- ⎪⎝⎭上单调递减,所以()f x 在1x a =-处取得极大值,在1x a=处取得极小值; 因为当0x →时,()f x →-∞;当x →+∞时,()f x →+∞,要使函数函数()f x 有三个零点,则()10f a ->,10f a ⎛⎫< ⎪⎝⎭即()()()()()()2211ln 11112a f a a a a a a ab -=--+-+---+ ()()()()211ln 102a a a a b -+⎡⎤=--++>⎢⎥⎣⎦且()()2211111ln 102a f a a a b a a a a ⎛⎫⎛⎫=-++--+< ⎪ ⎪⎝⎭⎝⎭ 因为01a <<,所以011a <-<,20a -<,所以()()2102a a -+<,()ln 10a -<,所以()()()()211ln 102a a a a -+⎡⎤--+<⎢⎥⎣⎦,又()()()()211ln 102a a a a b -+⎡⎤--++>⎢⎥⎣⎦,所以0b >故选:B 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.7.A解析:A 【分析】构造函数()()xg x e f x =,求导判定函数单调性,根据单调性得(2020)(2021)g g >化简即可. 【详解】解:依题意()()0f x f x '+<,令()()x g x e f x =,则()(()())0xg x f x f x e ''=+<在R 上恒成立,所以函数()()xg x e f x =在R 上单调递减, 所以(2020)(2021)g g >即20202021(2020)(2021)(2020)(2021)e e e f f f f >⇒>故选:A. 【点睛】四种常用导数构造法:(1)对于不等式()()0f x g x ''+> (或0<) ,构造函数()()()F x f x g x =+. (2)对于不等式()()0f x g x ''->(或0<) ,构造函数()()()F x f x g x =-.(3)对于不等式()()0f x f x '+>(或0<) ,构造函数()()xF x e f x =.(4)对于不等式()()0f x f x '->(或0<) ,构造函数()()x f x F x e=. 8.B解析:B 【分析】 将不等式化为()()111ln x x k x +++>,令()()()111ln x g x xx ++=+,求出导函数,利用导数判断函数的单调性,从而可得()02,3x ∃∈使()00g x '=,进而可得()()001()g x x x g ≥=+,即求.【详解】()()()1ln 10x f x x x ++=>, ()1k f x x ∴>+可化为()111ln x k x x ++>+即()()111ln x x k x+++>, 令()()()111ln x g x xx ++=+, 则()()()()21ln 11111x x x x ln x g x x +++---++⎡⎤⎣⎦'= ()211x ln x x--+=令()()11h x x ln x =--+, 则()111h x x '=-+,()0,x ∈+∞时, ()0h x '>,()g x '∴在()0,∞+单调递增.又()()1ln 32ln 420,30,49g g --''=<=> ()02,3x ∃∈使()00g x '=,即()0011ln x x +=-.当()00,x x ∈时,()()0,g x g x '<单调递减, 当0(,)x x ∈+∞时,()()0,g x g x '>单调递增,()()000001ln 1))1(()(1x x g x x x x g +∴≥==+++, ()02,3x ∈,()013,4x +∴∈,∴正整数k 的最大值为3.故选:B. 【点睛】关键点点睛:本题考查了导数研究不等式恒成立问题,解题的关键根据函数的单调性确定存在()02,3x ∈,使得()00g x '=,考查了分离参数法求范围.9.B解析:B 【分析】利用导数求出函数()f x 的最大值,由函数()g x 的定义结合()()g x f x =恒成立可知()f x k ≤,由此可得出k 的取值范围,进而可得出合适的选项.【详解】对于正数k ,定义函数:()()()(),,f x f x kg x k f x k ⎧≤⎪=⎨>⎪⎩,且()()g x f x =恒成立,则()f x k ≤.函数()ln 22f x x x =-+的定义域为()0,∞+,且()111x f x x x-'=-=. 当01x <<时,()0f x '>,此时,函数()f x 单调递增; 当1x >时,()0f x '<,此时,函数()f x 单调递减. 所以,()()max 11ln 2f x f ==+,1ln 2k ∴≥+. 因此,k 的最小值为1ln2+. 故选:B. 【点睛】解决导数中的新定义的问题,要紧扣新定义的本质,将问题转化为导数相关的问题,本题将问题转为不等式()k f x ≥恒成立,从而将问题转化为求函数()f x 的最大值.10.C解析:C 【分析】采用三局两胜制,则甲在下列两种情况下获胜:甲净胜二局,前二局甲一胜一负,第三局甲胜,由此能求出甲胜概率,进而求得的最大值. 【详解】采用三局两胜制,则甲在下列两种情况下获胜: 甲净胜二局概率为2p ;前二局甲一胜一负,第三局甲胜概率为12(1)C p p p -⋅22(1)p p =-则22(1)q p p p =+-,得q p -222(1)p p p p =+--3223p p p =-+-(01)p <<, 设3223y p p p =-+-,(01)p <<,则2661y p p '=-+-6(p p =---则函数y 在单调递减,在单调递增,故函数在36p =+处取得极大值,也是最大值. 故选:C. 【点睛】本题考查了概率的求法和应用以及利用导数求函数最值的方法,解题时要认真审题,注意等价转化思想和分类讨论思想的合理运用,属于中档题.11.A解析:A 【分析】求出函数的定义域,然后求出导函数,确定单调性,得值域.【详解】由21020x x ⎧-≥⎨+≠⎩得11x -≤≤,()f x '==当112x -≤<-时,()0f x '>,()f x 递增,112x -<≤时,()0f x '<,()f x 递减, 所以12x =-时,max()22f x ==-+(1)(1)0f f -==, 所以()f x的值域是⎡⎢⎣⎦. 故选:A . 【点睛】本题考查用导数求函数的值域,解题方法是由导数确定函数的单调性,得出最大值和最小值,得值域.12.C解析:C 【详解】分析:函数()3221f x ax x x =+++在()1,2上有最大值无最小值,则极大值在()1,2之间,一阶导函数有根在()1,2,且左侧函数值小于0,右侧函数值大于0,列不等式求解 详解:f ′(x )=3ax 2+4x +1,x ∈(1,2).a =0时,f ′(x )=4x +1>0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去. a ≠0时,△=16﹣12a . 由△≤0,解得43a ≥,此时f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.由△>0,解得a 43<(a ≠0),由f ′(x )=0,解得x1=,x2=.当403a <<时,x 1<0,x 2<0,因此f ′(x )≥0,函数f (x )在x ∈(1,2)内单调递增,无极值,舍去.当a <0时,x 1>0,x 2<0,∵函数f (x )=ax 3+2x 2+x +1在(1,2)上有最大值无最小值,∴必然有f ′(x 1)=0,∴123a-<2,a <0.解得:53-<a 34-<. 综上可得:53-<a 34-<. 故选:C .点睛:极值转化为最值的性质:1、若()[]f x x a,b ∈在上有唯一的极小值,且无极大值,那么极小值为()f x 的最小值;2、若()[]f x x a,b ∈在上有唯一的极大值,且无极小值,那么极大值为()f x 的最大值;二、填空题13.【分析】利用导数求出函数的极大值点和极小值点由题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】则令可得列表如下: 极大值 极小值 所以函数的极大值点为 解析:()3,2--【分析】利用导数求出函数()f x 的极大值点和极小值点,由题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】()32133f x x x =++,则()()222f x x x x x '=+=+,令()0f x '=,可得12x =-,20x =,列表如下:所以,函数f x 的极大值点为2x =-,极小值点为0x =, 由于函数()32133f x x x =++在区间(),3+m m 上存在极大值与极小值, 所以,230m m <-⎧⎨+>⎩,解得32m -<<-.因此,实数m 的取值范围是()3,2--. 故答案为:()3,2--.【点睛】易错点点睛:已知极值点求参数的值,先计算()0f x '=,求得x 的值,再验证极值点.由于导数为0的点不一定是极值点,因此解题时要防止遗漏验证导致错误.14.【分析】首先求函数的导数由条件是函数的唯一极值点说明在无解或有唯一解求实数的取值【详解】∵∴∴x =1是函数f (x )的唯一极值点在上无解或有唯一解x=1①当x=1为其唯一解时k=e 令当时即h(x)的单 解析:(,]e -∞【分析】首先求函数的导数2(1)()()x x e kx f x x'--=,由条件1x =是函数()f x 的唯一极值点,说明0-=x e kx 在()0,x ∈+∞无解,或有唯一解1x =,求实数k 的取值. 【详解】∵()(ln )x e f x k x x x =+-,∴22(1)1(1)()()(1)x x x e x e kx f x k x x x'---=+-= ∴x =1是函数f (x )的唯一极值点,0x x e k ∴-=在(0,)x ∈+∞上无解,或有唯一解x =1,①当x =1为其唯一解时,k =e ,令()(0)x h x e ex x =->,()xh x e e '=-,当(0,1)x ∈时,()0h x '<,即h (x )的单调递减区间为(0,1), 当(1,)x ∈+∞时,()0h x '>,即()h x 的单调递增区间为(1,)+∞, ∴()h x 在x =1处,取得极小值, ∴k =e 时,x =1是f (x )的唯一极值点;②当xe k x=在(0,)x ∈+∞上无解,设()x e g x x =则2(1)()x e x g x x'-=, 当(0,1)x ∈时,()0g x '<,即g (x )的单调递减区间为(0,1),当(1,)x ∈+∞时,()0g x '>,即()g x 的单调递增区间为(1,)+∞, ∴()g x 在x =1处,取得极小值,也是其最小值,min ()(1)g x g e ==,又k xe x=在(0,)x ∈+∞上无解,e k ∴<,综上k e ≤ 故答案为:(,]e -∞. 【点睛】易错点睛:本题考查根据函数的极值点求参数的取值范围,容易忽略k e =的情况,此时x e ex ≥恒成立.15.【分析】利用图象得出不等式的解集再利用导数可求得函数的单调递减区间【详解】由图象可知不等式的解集为由可得解得因此函数的单调递减区间为故答案为:【点睛】思路点睛:利用导数求函数单调区间的步骤:(1)求解析:()0,1、()4,+∞ 【分析】利用图象得出不等式()()0f x f x '-<的解集,再利用导数可求得函数()()x f x g x e=的单调递减区间. 【详解】由图象可知,不等式()()0f x f x '-<的解集为()()0,14,+∞,()()x f x g x e =,()()()()()()()2x x x x f x e f x e f x f x g x e e ''-⋅'-==', 由()0g x '<,可得()()0f x f x '-<,解得()()0,14,x ∈+∞.因此,函数()()x f x g x e=的单调递减区间为()0,1、()4,+∞. 故答案为:()0,1、()4,+∞. 【点睛】思路点睛:利用导数求函数单调区间的步骤: (1)求函数()f x 的定义域; (2)求导数()f x ';(3)解不等式()0f x '>,并与定义域取交集得到的区间为函数()f x 的单调增区间; (4)解不等式()0f x '<,并与定义域取交集得到的区间为函数()f x 的单调减区间.16.【分析】把不等式恒成立转化为函数的导数小于1在内恒成立进而转化为在内恒成立结合函数的性质即可求解【详解】由题意分式的几何意义为:表示点与连线的斜率因为实数在区间内故和在区间内不等式恒成立所以函数图象解析:1,6⎡⎫-+∞⎪⎢⎣⎭【分析】 把不等式(1)(1)1f m f n m n+-+<-恒成立,转化为函数()f x 的导数小于1在(1,2)内恒成立,进而转化为()121a x ->+在(1,2)内恒成立,结合函数的性质,即可求解.【详解】 由题意,分式(1)(1)f m f n m n+-+-的几何意义为:表示点(1,(1))m f m ++与(1,(1))n f n ++连线的斜率, 因为实数,m n 在区间(0,1)内,故1m + 和1n +在区间(1,2)内, 不等式(1)(1)1f m f n m n+-+<-恒成立,所以函数图象上在区间(1,2)内任意两点连线的斜率小于1,故函数()2ln(1)f x x ax =+-的导数小于1在(1,2)内恒成立, 由函数()2ln(1)f x x ax =+-满足10x +>,即定义域为(1,)-+∞,即()2111f x ax x '=-<+在(1,2)内恒成立,即()121a x ->+在(1,2)内恒成立, 设函数()()121g x x -=+,根据函数的单调性可知函数()()121g x x -=+在(1,2)上是单调增函数,可得()()126g x g <=-,所以16a ≥-, 故答案为:1,6⎡⎫-+∞⎪⎢⎣⎭. 【点睛】对于利用导数研究不等式的恒成立问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,通常要设出导数的零点,难度较大.17.【分析】利用导数研究函数的单调性由此可求得该函数的极大值【详解】定义域为令可得或当或时此时函数单调递增;当时此时函数单调递减所以函数在处取得极大值且极大值为故答案为:【点睛】本题考查利用导数求解函数 解析:427【分析】利用导数研究函数21f x x x 的单调性,由此可求得该函数的极大值.【详解】()()21f x x x =-,定义域为R ,()()()()()2121311f x x x x x x '=-+-=--.令()0f x '=,可得13x =或1x =. 当13x <或1x >时,()0f x '>,此时,函数21f x x x 单调递增;当113x <<时,()0f x '<,此时,函数21f x x x 单调递减.所以,函数21f xx x 在13x =处取得极大值,且极大值为21114133327f ⎛⎫⎛⎫=⨯-=⎪ ⎪⎝⎭⎝⎭. 故答案为:427. 【点睛】本题考查利用导数求解函数的极值,考查计算能力,属于中等题.18.【分析】利用导数求得在区间上的单调性和最值对分成三种情况进行分类讨论由此求得的取值范围【详解】当时所以在区间上递减最大值为最小值为当时在区间上没有零点在区间上递增而所以在区间上没有零点所以不符合题意解析:1(0,)2【分析】利用导数求得()f x 在区间[]0,1上的单调性和最值,对m 分成0,0,0m m m <=>三种情况进行分类讨论,由此求得m 的取值范围. 【详解】当01x ≤≤时,()()'26661fx x x x x =-=-,所以()f x 在区间[]0,1上递减,最大值为()0f m =,最小值为()11f m =-.当0m <时,()f x 在区间[]0,1上没有零点,在区间()1,+∞上递增, 而2110m -⨯+>,所以()f x 在区间()1,+∞上没有零点.所以0m <不符合题意.当0m =时,3223,01()1,1x x x f x x ⎧-≤≤=⎨>⎩,所以()f x 在区间[)0,+∞上有唯一零点()00f =,所以0m =不符合题意.当0m >时,()f x 在区间[]0,1和区间()1,+∞上递减,要使()f x 的图象与x 轴有且只有两个不同的交点,则需0102110m m m >⎧⎪-≤⎨⎪-⨯+>⎩,解得102m <<.综上所述,m 的取值范围是10,2⎛⎫ ⎪⎝⎭. 故答案为:1(0,)2【点睛】本小题主要考查利用导数研究函数的零点,考查分类讨论的数学思想方法,属于中档题.19.【分析】根据函数求导解的解集即可【详解】因为函数所以令得或当时所以函数在上的递增区间是故答案为:【点睛】本题主要考查导数与函数的单调性还考查了转化问题和运算求解的能力属于中档题解析:5,33ππ⎡⎤⎢⎥⎣⎦【分析】根据函数2sin y x x =-,求导12cos y x '=-,解0y '>的解集即可. 【详解】因为函数2sin y x x =-, 所以12cos y x '=-, 令12cos 0y x '=-=,得3x π=或53x π=, 当533x ππ≤≤时,0y '>, 所以函数2sin y x x =-在[]0,2π上的递增区间是5,33ππ⎡⎤⎢⎥⎣⎦. 故答案为:5,33ππ⎡⎤⎢⎥⎣⎦【点睛】本题主要考查导数与函数的单调性,还考查了转化问题和运算求解的能力,属于中档题.20.【分析】根据在R 上递增结合将不等式恒成立转化为恒成立然后分和两种情况利用导数法求解【详解】因为所以成立所以在R 上递增又成立所以恒成立即恒成立当时转化为恒成立令当时单调递减当时单调递增所以当时求得最小解析:10a e≤≤ 【分析】根据()f x 在R 上递增,结合()01f =,将x R ∀∈不等式()21xf ax e a -+≤恒成立,转化为()2xa x e +≤ ,x R ∀∈恒成立,然后分20x +≤和20x +>两种情况,利用导数法求解. 【详解】因为()321f x x x =++,所以()2320f x x '=+>成立,所以()f x 在R 上递增,又()()01,21xf f ax e a =-+≤x R ∀∈成立,所以20x ax e a -+≤,x R ∀∈ 恒成立,即()2xa x e +≤,x R ∀∈恒成立,当20x +>时,转化为2xe a x ≤+恒成立,令()2xg x ex =+,()()()212x x e g x x +'=+,当21x -<<-时,()0g x '<,()g x 单调递减, 当1x >-时,()0g x '>,()g x 单调递增, 所以当1x =-时,()g x 求得最小值min 1()(1)g x g e=-=, 所以1a e≤, 当20x +≤时,转化为2xe a x ≥+恒成立,(),(,2)a g x x ≥∈-∞-上恒成立,(,2)x ∈-∞-时,()0,()g x g x '<单调递减,又(,2),()0x g x ∈-∞-<,所以0a ≥不等式恒成立, 综上:实数a 的取值范围为10a e≤≤ 故答案为:10a e≤≤ 【点睛】本题主要考查导数与函数的单调性,导数与不等式恒成立,还考查了转化化归的思想,分类讨论思想和运算求解的能力,属于中档题.三、解答题21.(1)2a =;(2)(-∞. 【分析】(1)由题意可得出()11f '=,由此可求得实数a 的值;(2)求出函数()f x 的定义域为()0,∞+,由题意可知,()2210af x x x'=+-≥在()0,∞+上恒成立,利用参变量分离法得出min2a x x ⎛⎫≤+ ⎪⎝⎭,利用基本不等式求出2x x +在()0,∞+上的最小值,由此可得出实数a 的取值范围.【详解】 (1)()2ln f x x a x x =--,()221af x x x'∴=+-,()13f a '∴=-,又()f x 在点()()1,1f 处的切线方程为2y x =-,()131f a '∴=-=,解得2a =; (2)()f x 的定义域为()0,∞+,()f x 在定义域上为增函数,()2210af x x x'∴=+-≥在()0,∞+上恒成立, 2a x x ∴≤+在()0,∞+上恒成立,min 2a x x ⎛⎫∴≤+ ⎪⎝⎭,由基本不等式2x x +=≥x时等号成立,故min2x x ⎛⎫+= ⎪⎝⎭ 故a的取值范围为(-∞. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 上存在异号零点; (4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立. 22.(1)当1a =时,函数()f x 在区间(),1-∞上单调递增;在区间1,上单调递减;(2)当函数()g x 只有1个零点时,实数a 的取值范围是,2e ⎛⎫+∞ ⎪⎝⎭. 【分析】(1)先对函数求导,然后分别由0f x 和0f x 可求出函数的增区间和减区间;(2)由0g x,得1x =,或ln x a =,然后分ln 1a =,ln 1a <和ln 1a >三种情况讨论,当ln 1a =可得()g x 只有1个零点,当ln 1a <时,求出()g x 的单调区间,然后讨论其零点,当ln 1a >时,求出()g x 的单调区间,然后讨论其零点,从而可求出实数a 的取值范围 【详解】解:(1)当1a =时,()xxf x e =,定义域为R , 所以()1xxf x e -'=. 当1x <时,0f x,函数()f x 单调递增;当1x >时,0f x,函数()f x 单调递减.综上所述,当1a =时,函数()f x 在区间(),1-∞上单调递增; 在区间1,上单调递减.(2)因为0a >,函数()212x ax g x e x x =+-, 所以()()()111x xx a x e a g x x x e e -⎛⎫-'=+-=- ⎪⎝⎭. 当0g x时,得1x =,或ln x a =.①若ln 1a =,即a e =,则0g x恒成立,函数()g x 在R 上单调递增,因为()00g =,所以函数()g x 只有1个零点. ②若ln 1a <,即0a e <<, 当ln x a <时,0g x,函数()g x 单调递增; 当ln 1a x <<时,0g x ,函数()g x 单调递减;当1x >时,0g x,函数()g x 单调递增.(Ⅰ)当ln 0a <,即01a <<时,()()()ln 001g a g g >=>, 又因为()2220ag e =>,所以函数()g x 在区间1,2上有1个零点, 故函数()g x 在R 上至少有2个零点,不符合题意. (Ⅱ)当ln 0a =,即1a =时,()()()ln 001g a g g ==>, 又因为()2220g e =>,所以函数()g x 在区间1,2上有1个零点, 故函数()g x 在R 上至少有2个零点,不符合题意.(Ⅲ)当ln 0a >,即1a e <<时,()()()ln 001g a g g >=>, 若函数()g x 只有1个零点,需()1102a e g =->, 解得2ea e <<.③若ln 1a >,即a e >,当1x <时,0g x,函数()g x 单调递增;当1ln x a <<时,0g x ,函数()g x 单调递减; 当ln x a >时,0g x,函数()g x 单调递增.所以()()100g g >=,()21ln ln 02g a a =>所以函数()g x 在R 上只有1个零点.综上所述,当函数()g x 只有1个零点时,实数a 的取值范围是,2e ⎛⎫+∞ ⎪⎝⎭. 【点睛】关键点点睛:此题考查导数的应用,利用导数求函数的单调区间和求函数的零点,第二问解题的关键是由0g x求得1x =或ln x a =,然后分ln 1a =,ln 1a <和ln 1a >三种情况讨论函数的单调性,从而由零点的情况求出参数的取值范围,属于中档题 23.(1)91y x =+;(2)证明见解析. 【分析】(1)求出函数在0x =处的导数后可得切线方程.(2)设函数()1ln g x x x =+-,利用导数可证明在1(,)2+∞上有()()1,1f x g x ≥≥,但等号不同时成立,结合余弦函数的性质可证明()()1ln 2cos x x f x x +->在1()2,x ∈+∞恒成立.【详解】(1)解:2()3129f x x x -'=+,则()09f =,故曲线()y f x =在点()0,1处的切线方程为91y x =+. (2)证明:当1(,1)(3,)2x ∈⋃+∞时,()0f x '>, 则()f x 在1(,1),(3,)2+∞上单调递增;当()1,3x ∈时,()0f x '<,则()f x 在()1,3上单调递减. 因为133()(3)128f f =>=, 所以()f x 在1(,)2+∞上的最小值为()31f =.设函数()1ln g x x x =+-.则1()(0)x g x x x -'=>. 当1(,1)2x ∈时,()0g x '<,则()g x 在1(,1)2上单调递减;当(1,)x ∈+∞时,()0g x '>,则()g x 在(1,)+∞上单调递增. 故()()12g x g ≥=.从而()()1ln 2x x f x +-≥,但由于()1f x ≥与()2g x ≥的取等条件不同, 所以()()1ln 2x x f x +->.因为2cos 2x ≤,所以()()1ln 2cos x x f x x +->对1()2,x ∈+∞恒成立. 【点睛】方法点睛:对于不等式的恒成立的问题,如果该不等式中含有三角函数,那么可以利用三角函数的有界性把前者转化为与三角函数无关的不等式,这样便于问题的讨论与处理. 24.(1)答案见解析;(2)证明见解析. 【分析】 (1)求导()()1'(0)a x f x x x-=>,0a >,0a <,0a =讨论,令()'0f x >求解.(2)结合(1)将问题转化为()min 2f x >-求解. 【详解】(1)根据题意知,()()1'(0)a x f x x x-=>,当0a >时,当()01x ∈,时,()'0f x >,当()1x ∈+∞,时,()'0f x <, 所以()f x 的单调递增区间为()01,,单调递减区间为()1+∞,; 同理,当0a <时,()f x 的单调递增区间为()1+∞,,单调递减区间为()01,;当0a =时,()3f x =-,不是单调函数,无单调区间. (2)证明:当1a =-时,()ln 3f x x x =-+-, 所以12f ,由(1)知()ln 3f x x x =-+-在()1+∞,上单调递增, 所以当()1x ∈+∞,时,()()1f x f >. 即()2f x >-,所以()20f x +>. 【点睛】方法点睛:利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性,或者函数的最值证明函数h (x )>0,其中一个重要技巧就是找到函数h (x )在什么地方可以等于零,这往往就是解决问题的一个突破口. 25.(I )1y x =-;(Ⅱ)1a <. 【分析】(Ⅰ)当0a =时,利用导数的几何意义求切线方程;(Ⅱ)首先求函数的导数,2(1)()10a x a x af x x a x x'-++=+--==时,11x =和2x a =,并讨论a 与0,1的大小关系,求实数a 的取值范围. 【详解】(I )当0a =时,21()12f x x x =-+. 所以()1f x x '=-, 所以(2)1k f '==,因为21(2)22112f =⨯-+=. 所以切线方程为1y x =-.(Ⅱ)函数()f x 的定义域为(0,)+∞. 因为21()ln (1)12f x a x x a x =+-++ 所以2(1)()1a x a x af x x a x x'-++=+--=. 令()0f x '=,即2(1)0x a x a -++=,解得1x =或x a =.(1)当0a 时,当x 变化时,(),()f x f x '的变化状态如下表:所以0a 成立.(2)当01a <<时,当x 变化时,(),()f x f x '的变化状态如下表:所以01a <<成立.(3)当1a =时,()0f x '在(0,)+∞上恒成立,所以函数()f x 在(0,)+∞上单调递增,没有板小值,不成立. (4)当1a >时,当x 变化时,(),()f x f x '的变化状态如下表:所以1a >不成立. 综上所述,1a <. 【点睛】关键点点睛:本题考查根据极值点求a 的取值范围,本题容易求出导函数的零点1和a ,但需讨论a 的范围,这是易错的地方,容易讨论不全面,需注意.26.(1)12a >-;(2)最大值点为36+.36x +=. 【分析】(1)根据()f x 在()0,∞+上存在单调递增区间,由()2220f x x x a =-++>'在()0,∞+上有解求解.(2)由()0G x '=得1x =2x =,根据02a <<,易得10x <,213x <<,则()G x 在[]1,3上的最大值点为2x ,最小值为()1G 或()3G ,然后由()()143143G G a -=-+,分14403a -+<,14403a -+≥确定最小值进而求得a 即可 【详解】(1)∵()f x 在()0,∞+上存在单调递增区间, ∴()2220f x x x a =-++>'在()0,∞+上有解,即()max 0f x '>在()0,∞+上成立, 而()f x '的最大值为()112f a '=+, ∴120a +>, 解得:12a >-. (2)3211()()()2432G x f x g x x x ax =-=-+++, ∴()22G x x x a '=-++,由()0G x '=得:112x =,212x +=,则()G x 在()1,x -∞,()2,x +∞上单调递减,在()12,x x 上单调递增, 又∵当02a <<时,10x <,213x <<,∴()G x 在[]1,3上的最大值点为2x ,最小值为()1G 或()3G , 而()()143143G G a -=-+, 1︒当14403a -+<,即706a <<时,()113623G a =-=-,得136a =,此时,最大值点236x +=; 2︒ 当14403a -+≥,即726a ≤<时,()2511263G a =+=-,得94a =-(舍).综上()G x 在[]1,3 【点睛】方法点睛:(1)求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得; (2)已知函数的最值求参数,一般先用参数表示最值,列方程求解参数.。
电大《数学思想与方法》形考三1案例分析:运用理论知识对数学教学案例的分析答案电大《数学思想与方法》形考三案例分析:运用理论知识对数学教学案例的分析一、前言在数学教学过程中,运用理论知识进行案例分析是提高教学质量和效果的重要手段。
本文将以电大《数学思想与方法》形考三的案例分析为例,运用理论知识对数学教学案例进行分析,以期为数学教师提供一定的参考和启示。
二、案例分析案例一:分数的教学问题描述:在分数的教学过程中,教师遇到了一个问题:许多学生对于分数的理解仅停留在表面上,无法真正理解分数的含义和应用。
理论知识应用:1. 数形结合思想:教师可以利用数形结合的思想,通过绘制图形,使学生直观地理解分数的含义。
例如,将一个圆形分成若干等份,让学生通过割补、拼接等方式,感受分数的实际意义。
2. 情境教学法:创设生活情境,让学生在实际问题中感受分数的应用。
如分水果、分享食物等场景,让学生在实践中理解分数的作用。
分析与解答:1. 数形结合思想的应用:通过数形结合,学生可以更直观地理解分数表示的是整体的一部分,分子表示部分的数量,分母表示整体被分成了几份。
2. 情境教学法的应用:情境教学法可以帮助学生将抽象的分数概念与现实生活联系起来,增强学习的趣味性和实际应用性。
案例二:解二元一次方程组问题描述:在解二元一次方程组的教学中,学生对于如何运用消元法解方程组存在困惑。
理论知识应用:1. 方程思想:引导学生运用方程思想,将实际问题转化为方程组的形式,再通过消元法求解。
2. 代入法与加减法:教师可以引导学生运用代入法和加减法来解二元一次方程组。
分析与解答:1. 方程思想的运用:首先,将实际问题转化为方程组,然后通过消元法,将方程组简化为一元一次方程,从而求解。
2. 代入法和加减法的运用:- 代入法:先解出一个变量,再将其代入另一个方程中,解出另一个变量。
- 加减法:通过相加或相减两个方程,消去一个变量,从而得到另一个变量的值。
一、简答题1. 分别简单叙说算术与代数的解题方法基本思想,并且比较它们的区别。
解答:算术解题方法的基本思想:首先要围绕所求的数量,收集和整理各种已知的数据,并依据问题的条件列出关于这些具体数据的算式,然后通过四则运算求得算式的结果。
代数解题方法的基本思想是:首先依据问题的条件组成内含已知数和未知数的代数式,并按等量关系列出方程,然后通过对方程进行恒等变换求出未知数的值。
它们的区别在于算术解题参与的量必须是已知的量,而代数解题允许未知的量参与运算;算术方法的关键之处是列算式,而代数方法的关键之处是列方程。
2. 比较决定性现象和随机性现象的特点,简单叙说确定数学的局限。
解答:人们常常遇到两类截然不同的现象,一类是决定性现象,另一类是随机现象。
决定性现象的特点是:在一定的条件下,其结果可以唯一确定。
因此决定性现象的条件和结果之间存在着必然的联系,所以事先可以预知结果如何。
随机现象的特点是:在一定的条件下,可能发生某种结果,也可能不发生某种结果。
对于这类现象,由于条件和结果之间不存在必然性联系。
在数学学科中,人们常常把研究决定性现象数量规律的那些数学分支称为确定数学。
用这些的分支来定量地描述某些决定性现象的运动和变化过程,从而确定结果。
但是由于随机现象条件和结果之间不存在必然性联系,因此不能用确定数学来加以定量描述。
同时确定数学也无法定量地揭示大量同类随机现象中所蕴涵的规律性。
这些是确定数学的局限所在。
二、论述题1. 论述社会科学数学化的主要原因。
解答:从整个科学发展趋势来看,社会科学的数学化也是必然的趋势,其主要原因可以归结为有下面四个方面:第一,社会管理需要精确化的定量依据,这是促使社会科学数学化的最根本的因素。
第二,社会科学的各分支逐步走向成熟,社会科学理论体系的发展也需要精确化。
第三,随着数学的进一步发展,它出现了一些适合研究社会历史现象的新的数学分支。
第四,电子计算机的发展与应用,使非常复杂社会现象经过量化后可以进行数值处理。
2. 论述数学的三次危机对数学发展的作用。
解答:第一次数学危机促使人们去认识和理解无理数,导致了公理几何与逻辑的产生。
第二次数学危机促使人们去深入探讨实数理论,导致了分析基础理论的完善和集合论的产生。
第三次数学危机促使人们研究和分析数学悖论,导致了数理逻辑和一批现代数学的产生。
由此可见,数学危机的解决,往往给数学带来新的内容,新的进展,甚至引起革命性的变革,这也反映出矛盾斗争是事物发展的历史动力这一基本原理。
整个数学的发展史就是矛盾斗争的历史,斗争的结果就是数学领域的发展。
三、分析题1. 分析《几何原本》思想方法的特点,为什么?(1)封闭的演绎体系因为在《几何原本》中,除了推导时所需要的逻辑规则外,每个定理的证明所采用的论据均是公设、公理或前面已经证明过的定理,并且引入的概念(除原始概念)也基本上是符合逻辑上对概念下定义的要求,原则上不再依赖其它东西。
因此《几何原本》是一个封闭的演绎体系。
另外,《几何原本》的理论体系回避任何与社会生产现实生活有关的应用问题,因此对于社会生活的各个领域来说,它也是封闭的。
所以,《几何原本》是一个封闭的演绎体系。
(2)抽象化的内容《几何原本》中研究的对象都是抽象的概念和命题,它所探讨的是这些概念和命题之间的逻辑关系,不讨论这些概念和命题与社会生活之间的关系,也不考察这些数学模型所由之产生的现实原型。
因此《几何原本》的内容是抽象的。
(3)公理化的方法《几何原本》的第一篇中开头5个公设和5个公理,是全书其它命题证明的基本前提,接着给出23个定义,然后再逐步引入和证明定理。
定理的引入是有序的,在一个定理的证明中,允许采用的论据只有公设和公理与前面已经证明过的定理。
以后各篇除了不再给出公设和公理外也都照此办理。
这种处理知识体系与表述方法就是公理化方法。
2. 分析《九章算术》思想方法的特点,为什么?解答:(1)开放的归纳体系从《九章算术》的内容可以看出,它是以应用问题解法集成的体例编纂而成的书,因此它是一个与社会实践紧密联系的开放体系。
在《九章算术》中通常是先举出一些问题,从中归纳出某一类问题的一般解法;再把各类算法综合起来,得到解决该领域中各种问题的方法;最后,把解决各领域中问题的数学方法全部综合起来,就得到整个《九章算术》。
另外该书还按解决问题的不同数学方法进行归纳,从这些方法中提炼出数学模型,最后再以数学模型立章写入《九章算术》。
因此,《九章算术》是一个开放的归纳体系。
(2)算法化的内容《九章算术》在每一章内先列举若干个实际问题,并对每个问题都给出答案,然后再给出“术”,作为一类问题的共同解法。
因此,内容的算法化是《九章算术》思想方法上的特点之一。
(3)模型化的方法《九章算术》各章都是先从相应的社会实践中选择具有典型意义的现实原型,并把它们表述成问题,然后通过“术”使其转化为数学模型。
当然有的章采取的是由数学模型到原型的过程,即先给出数学模型,然后再举出可以应用的原型。
数学思想与方法作业参考解答(2)一、简答题1.叙述抽象的含义及其过程。
解答:抽象是指在认识事物的过程中,舍弃那些个别的、偶然的非本质属性,抽取普遍的、必然的本质属性,形成科学概念,从而把握事物的本质和规律的思维过程。
人们在思维中对对象的抽象是从对对象的比较和区分开始的。
所谓比较,就是在思维中确定对象之间的相同点和不同点;而所谓区分,则是把比较得到的相同点和不同点在思维中固定下来,利用它们把对象分为不同的类。
然后再进行舍弃与收括,舍弃是指在思维中不考虑对象的某些性质,收括则是指把对象的我们所需要的性质固定下来,并用词表达出来。
这就形成了抽象的概念,同时也就形成了表示这个概念的词,于是完成了一个抽象过程。
2.叙述概括的含义及其过程。
解答:概括是指在认识事物属性的过程中,把所研究各部分事物得到的一般的、本质的属性联系起来,整理推广到同类的全体事物,从而形成这类事物的普遍概念的思维过程。
概括通常可分为经验概括和理论概括两种。
经验概括是从事实出发,以对个别事物所做的观察陈述为基础,上升为普遍的认识——由对个体特性的认识上升为对个体所属的种的特性的认识。
理论概括则是指在经验概括的基础上,由对种的特性的认识上升为对种所属的属的特性的认识,从而达到对客观世界的规律的认识。
在数学中经常使用的是理论概括。
一个概括过程包括比较、区分、扩张和分析等几个主要环节。
3.简述公理方法历史发展的各个阶段。
解答:公理方法经历了具体的公理体系、抽象的公理体系和形式化的公理体系三个阶段。
第一个具体的公理体系就是欧几里得的《几何原本》。
非欧几何是抽象的公理体系的典型代表。
希尔伯特的《几何基础》开创了形式化的公理体系的先河,现代数学的几乎所有理论都是用形式公理体系表述出来的,现代科学也尽量采用形式公理法作为研究和表述手段。
4.简述化归方法并举例说明。
解答:所谓“化归”,从字面上看,应可理解为转化和归结的意思。
数学方法论中所论及的“化归方法”是指数学家们把待解决或未解决的问题,通过某种转化过程,归结到一类已经能解决或者比较容易解决的问题中去,最终求获原问题之解答的一种手段和方法。
例如:要求解四次方程04524xx可以令2x u ,将原方程化为关于u 的二次方程0452u u这个方程我们会求其解:11u 和42u ,从而得到两个二次方程:12x和42x这也是我们会求解的方程,解它们便得到原方程的解:11x ,12x ,23x ,24x .这里所用的就是化归方法。
二、论述题1.叙述不完全归纳法的推理形式,并举一个应用不完全归纳法的例子。
解答:不完全归纳法的一般推理形式是:设S=,,,,n A A A A 321;由于1A 具有属性p ,2A 具有属性p ,……n A 具有属性p ,因此推断:S 类事物中的每一个对象都可能具有属性p 。
例如:记},12,10,8,6{S,由于6=3+3,8=3+5,10=3+7,12=5+7,这里3,5,7都是奇素数,因此推断:S 中的数,即大于4的偶数都可以表示成两个奇素数之和。
2.叙述类比推理的形式。
如何提高类比的可靠性?解答:类比推理通常可用下列形式来表示:A 具有性质;及,,,d a a a n 21B 具有性质;,,,n a a a 21因此,B 也可能具有性质d 。
其中,d d a a a a a a n n 与,与,,与,与2211分别相同或相似。
欲提高类比的可靠性,应尽量满足条件:(1)A 与B 共同(或相似)的属性尽可能地多些;(2)这些共同(或相似)的属性应是类比对象A 与B 的主要属性;(3)这些共同(或相似)的属性应包括类比对象的各个不同方面,并且尽可能是多方面的;(4)可迁移的属性d 应该是和n a a a ,,,21属于同一类型。
符合上述条件的类比,其结论的可靠性虽然可以得到提高,但仍不能保证结论一定正确。
3.试比较归纳猜想与类比猜想的异同。
解答:归纳猜想与类比猜想的共同点是:他们都是一种猜想,即一种推测性的判断,都是一种合情推理,其结论具有或然性,或者经过逻辑推理证明其为真,或者举出反例予以反驳。
归纳猜想与类比猜想的不同点是:归纳猜想是运用归纳法得到的猜想,是一种由特殊到一般的推理形式,其思维步骤为“特例—归纳—猜测”。
类比猜想是运用类比法得到的猜想,是一种由特殊到特殊的推理形式,其思维步骤为“联想—类比—猜测”。
三、设计题设计运用“猜想”进行数学教学的一个片断。
解答:以“认识长方形的对边相等”为内容,设计一个教学片断。
将教学过程设计成四个层次:①让学生说一说:我们周围有哪些长方形物体?学生会举出黑板、桌面、教室的门、课本的封面等例子。
②要求学生仔细观察:看一看、想一想,这些长方形的四条边的长短有什么关系?学生经过观察后,会猜想:长方形相对的两条边长度相等。
③教师进一步提出问题:同学们敢于大胆猜想的精神值得鼓励!我们怎样才能验证长方形相对的两条边的长短相等呢?这时,学生会想出许多办法,如:用尺量、将图形对折等方法。
教师顺势引导学生通过量量、折折的具体操作,确信长方形相对的两条边长短相等。
教师板书:长方形对边相等。
接着,师生讨论长方形“对边”的含义,以及一个长方形有几组对边的问题。
④巩固长方形对边相等的认识。
利用多媒体展示下面的长方形:教师提问:如何填写括号内的数字?为什么?要求学生会用“因为…所以…”句式回答。
如“因为长方形的对边相等,已知长方形的一条边是3厘米,所以它的对边也是3厘米。
”数学思想与方法作业参考解答(3)一、简答题1.简述计算和算法的含义。
解答:计算是指根据已知数量通过数学方法求得未知数的过程,是一种最基本的数学思想方法。
随着电子计算机的广泛应用,计算的重要意义更加凸现,主要表现在以下几个方面:(1)推动了数学的应用;(2)加快了科学的数学化进程;(3)促进了数学自身的发展。