直线与圆锥曲线的典型例题
- 格式:doc
- 大小:64.00 KB
- 文档页数:3
直线与圆锥曲线的位置关系1、已知椭圆92x +y 2=1,过左焦点F 作倾斜角为30°的直线交椭圆与A 、B 两点,求弦AB 的长。
2、讨论直线l :y=kx+1与双曲线c:x 2-y 2=1的公共点的个数。
3、直线l :y=kx+1,抛物线c :y=4x 2,当k 为何值时,l 与c 相切、相交、相离。
4、直线l :y=x+1与椭圆Q :ax 2+y 2=2(a >1)交与A 、B 两点,以AB 为直径的圆过原点,求a 的值。
5、设椭圆22a x +22by =1(a >b >0)的左焦点为F 1(-2,0),左准线l 1与x 轴交与点N (-3,0),过点N 倾斜角为30°的直线l 交椭圆于A 、B 两点。
(1)求直线l 和椭圆的方程。
(2)求证:点F 1(-2,0)在以线段AB 为直径的圆上。
6、已知椭圆mx 2+ny 2=1(m >0,n >0)与直线y=x+1相较于点P 和Q ,且OP ⊥OQ ,︱PQ ︱=210,求椭圆方程。
7、已知椭圆x 2+2y 2=4,求以P (1,1)为中点的弦的长度。
8、椭圆221ax by +=221ax by +=与直线x+y-1=0相交与点A 、B ,点C 是AB 的中点,若︱AB ︱=22,OC 的斜率为22,求椭圆的方程。
9、已知椭圆42x +32y =1,试求: (1)过点M (1,1)且被M 点平分的弦所在直线l 的方程。
(2)求斜率为-2的平行弦的中点轨迹方程。
(3)过点(4,2)的直线l ′与椭圆相交,求l ′被截得的弦的中点轨迹方程。
10、设双曲线c :2221(0)x y a a -=>2221(0)x y a a-=>与直线l :x+y=1相交与不同的点A 、B(1)求双曲线的离心率e 的取值范围。
(2)设直线l 与y 轴的交点为P ,且PA =125PB ,求a 的值。
11、一条斜率为1的直线l 与离心率为22的椭圆c :22a x +22b y =1(a >b >0)交于P 、Q 两点,直线l 与y 轴的交于点R ,且OP ·=-3,PR =3,求直线l 与椭圆c 的方程。
内心是三条角平分线的交点,它到三边的距离相等。
外心是三条边垂直平分线的交点,它到三个顶点的距离相等。
重心是三条中线的交点,它到顶点的距离是它到对边中点距离的2倍。
垂心是三条高的交点,它能构成很多直角三角形相似。
(2019年全国一卷理科)19.(12分)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若3AP PB =,求|AB |.19.解:设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-.从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-. (2)由3AP PB =可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=.代入C 的方程得1213,3x x ==.故||AB =. (2019年全国二卷理科)21.(12分)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形;(ii )求PQG △面积的最大值.21.解:(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =.记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uk y k=+. 从而直线PG 的斜率为322212(32)2uk uk k u k ku k-+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =22||2PG k =+,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖.设t =k +1k,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2812tS t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169. 因此,△PQG 面积的最大值为169. (2019年全国三卷理科)21.已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.21.解:(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- . 整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=.所以直线AB 过定点1(0,)2.(2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=. 于是()2121212122,1,121x x t x x y y t x x t +==-+=++=+,()()2222121212||11421AB t x x t x x x x t =+-=+⨯+-=+.设12,d d 分别为点D ,E 到直线AB 的距离,则212221,1d t d t =+=+.因此,四边形ADBE 的面积()()22121||312S AB d d t t =+=++. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+ ⎪⎝⎭.由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.当t =0时,S =3;当1t =±时,42S =. 因此,四边形ADBE 的面积为3或42.(2018年全国三卷理科)20. 已知斜率为的直线与椭圆交于,两点,线段的中点为.(1)证明:;(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.【答案】(1)(2)或【解析】分析:(1)设而不求,利用点差法进行证明。
直线与圆锥曲线的位置关系时间:45分钟 分值:100分一、选择题(每小题6分,共计36分)1.已知双曲线kx 2-y 2=1的一条渐近线与直线l :2x +y +1=0垂直,则此双曲线的离心率是( )解析:由题知,双曲线的渐近线方程为kx 2-y 2=0,即y =±kx .由题知直线l 的斜率为-2,则可知k =14,代入双曲线方程kx 2-y 2=1,得x 24-y 2=1,于是,a 2=4,b 2=1,从而c =a 2+b 2=5,所以e =52.答案:A (2.抛物线y 2=8x 的焦点到双曲线x 212-y24=1的渐近线的距离为( )A .1解析:由题意可知,抛物线y 2=8x 的焦点为(2,0),双曲线x 212-y24=1的渐近线为y =±33x ,所以焦点到双曲线的渐近线的距离为|2×±3|3+9=1.答案:A3.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )-y 26=1 -y 25=1 -y 23=1 -y 24=1解析:设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0), …由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2)则有:⎩⎨⎧x 21a 2-y 21b 2=1x 22a 2-y22b 2=1,两式作差得: y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=-12b 2-15a 2=4b 25a 2, 又AB 的斜率是-15-0-12-3=1,所以将4b 2=5a 2代入a 2+b 2=9得 a 2=4,b 2=5,所以双曲线标准方程是x 24-y 25=1. 答案:B{4.已知P 为抛物线y 2=4x 上一个动点,Q 为圆x 2+(y -4)2=1上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是( )A .5B .8 -1 +2解析:抛物线y 2=4x 的焦点为F (1,0),圆x 2+(y -4)2=1的圆心为C (0,4),设点P 到抛物线的准线距离为d ,根据抛物线的定义有d =|PF |,∴|PQ |+d =|PQ |+|PF |≥(|PC |-1)+|PF |≥|CF |-1=17-1.答案:C 5.直线3x -4y +4=0与抛物线x 2=4y 和圆x 2+(y -1)2=1从左到右的交点依次为A 、B 、C 、D ,则|AB ||CD |的值为( )A .16 C .4解析:由⎩⎪⎨⎪⎧3x -4y +4=0,x 2=4y .得x 2-3x -4=0,%∴x A=-1,x D=4,直线3x-4y+4=0恰过抛物线的焦点F(0,1),∴|AF|=y A+1=54,|DF|=y D+1=5,∴|AB| |CD|=|AF|-1|DF|-1=116.故选B.答案:B图16.如图1,过双曲线上左支一点A作两条相互垂直的直线分别过两焦点,其中一条与双曲线交于点B,若三角形ABF2是等腰直角三角形,则双曲线的离心率为())解析:设|AF2|=|AB|=x(x>0),则|BF2|=2x.由双曲线定义知,2x-|BF1|=2a①,x-|AF1|=2a②,由①②知x=22a,∴|AF1|=(22a-2a).在Rt△F1AF2中,|AF1|2+|AF2|2=4c2.即(22-2)2a2+(22a)2=4c2,解得e=5-22,故选B.答案:B二、填空题(每小题8分,共计24分)7.斜率为3的直线l过抛物线y2=4x的焦点且与该抛物线交于A,B两点,则|AB|=________.·解析:图2如图2,过A 作AA 1⊥l ,过B 作BB 1⊥l ,抛物线y 2=4x 的焦点为F (1,0),直线l 的倾斜角为60°,所以|AF |=|AA 1|=|A 1M |+|AM |=2+|AF |·cos60°,所以|AF |=4,同理得|BF |=43,故|AB |=|AF |+|BF |=163.答案:1638.已知双曲线x 2-y23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA →1·PF →2的最小值为________. 解析:由题可知A 1(-1,0),F 2(2,0),设P (x ,y )(x ≥1),则PA→1=(-1-x ,-y ),PF →2=(2-x ,-y ),PA →1·PF →2=(-1-x )(2-x )+y 2=x 2-x -2+y 2=x 2-x -2+3(x 2-1)=4x 2-x -5,∵x ≥1,函数f (x )=4x 2-x-5的图象的对称轴为x =18,∴当x =1时,PA →1·PF→2取最小值-2. 答案:-2【9.过抛物线y 2=2px (p >0)的焦点的直线x -my +m =0与抛物线交于A 、B 两点,且△OAB (O 为坐标原点)的面积为22,则m 6+m 4=________.解析:设A (x 1,y 1)、B (x 2,y 2),由⎩⎪⎨⎪⎧y 2=2px ,x =my -m 消去x ,得y 2-2mpy +2pm =0,∴y 1+y 2=2pm ,y 1y 2=2pm ,(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=4p 2m 2-8pm .又焦点(p2,0)在x -my +m =0上,∴p =-2m ,∴|y 1-y 2|=4m 4+m 2,∴S △OAB =12×p 2|y 1-y 2|=22,即-m m 4+m 2=2,平方得m 6+m 4=2.答案:2三、解答题(共计40分)10.(10分)已知中心在原点,焦点在x 轴上,离心率为255的椭圆的一个顶点是抛物线y =14x 2的焦点,过椭圆右焦点F 的直线l 交椭圆于A 、B 两点,交y 轴于点M ,且MA→=λ1AF →,MB →=λ2BF →. (1)求椭圆的方程; |(2)证明:λ1+λ2为定值.解:(1)由题易知b =1,e =1-b a 2=255, 解得a 2=5,故椭圆的方程为x 25+y 2=1.(2)证明:设A (x 1,y 1),B (x 2,y 2),M (0,y 0),由F (2,0),MA →=λ1AF →,得⎩⎨⎧x 1=2λ11+λ1y 1=y1+λ1.由MB →=λ2BF →,得⎩⎨⎧x 2=2λ21+λ2y 2=y1+λ2.又A 、B 在椭圆上,将其分别代入椭圆方程整理知, λ1,λ2是方程λ2+10λ+5-5y 20=0的两根, 所以λ1+λ2=-10为定值.}11.(15分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率e =22,短轴长为2.(1)求椭圆的标准方程;(2)过点F 1的直线l 与该椭圆交于M 、N 两点,且|F 2M →+F 2N →|=2263,求直线l 的方程.解:(1)由条件有⎩⎪⎨⎪⎧c a =22,b =a 2-c 2=1,解得a =2,c =1.则椭圆的标准方程为x 22+y 2=1. (2)由(1)知F 1(-1,0)、F 2(1,0).若直线l 的斜率不存在,则直线l 的方程为x =-1. %将x =-1代入椭圆方程得y =±22.不妨设M (-1,22)、N (-1,-22),∴F 2M →+F 2N →=(-2,22)+(-2,-22)=(-4,0).∴|F 2M →+F 2N →|=4,与题设矛盾.∴直线l 的斜率存在.设直线l 的斜率为k ,则直线l 的方程为y =k (x +1), 设M (x 1,y 1)、N (x 2,y 2),则⎩⎨⎧x 22+y 2=1,y =kx +1,消去y 得(1+2k 2)x 2+4k 2x +2k 2-2=0.由根与系数的关系知,x 1+x 2=-4k 21+2k 2,从而y 1+y 2=k (x 1+x 2+2)=2k1+2k 2.[又∵F 2M →=(x 1-1,y 1),F 2N →=(x 2-1,y 2),∴F 2M →+F 2N →=(x 1+x 2-2,y 1+y 2).∴|F 2M →+F 2N →|2=(x 1+x 2-2)2+(y 1+y 2)2=(8k 2+21+2k 2)2+(2k 1+2k 2)2=416k 4+9k 2+14k 4+4k 2+1. ∴416k 4+9k 2+14k 4+4k 2+1=(2263)2,化简得40k 4-23k 2-17=0.解得k 2=1或k 2=-1740(舍去).∴k =±1.∴所求直线l 的方程为y =x +1或y =-x -1.12.(15分)(2011·江苏高考)—图3如图3,在平面直角坐标系xOy中,M、N分别是椭圆x2 4+y22=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C.连结AC,并延长交椭圆于点B.设直线PA的斜率为k.(1)当直线PA平分线段MN时,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意的k>0,求证:PA⊥PB.解:(1)由题设知:a=2,b=2,故M(-2,0),N(0,-2),所以线段MN中点的坐标为(-1,-22).由于直线PA平分线段MN,故直线PA过线段MN的中点,又直线PA过坐标原点,所以k=-22-1=22.图4(2)直线PA的方程为y=2x,代入椭圆方程得x24+4x22=1,#解得x=±23,因此P(23,43),A(-23,-43).于是C(23,0),直线AC的斜率为0+4323+23=1,故直线AB 的方程为x -y -23=0. 因此d =|23-43-23|12+12=223. (3)证法一:将直线PA 的方程y =kx 代入x 24+y 22=1,解得x =±21+2k 2.记μ=21+2k 2,则P (μ,μk ), A (-μ,-μk ).于是C (μ,0).故直线AB 的斜率为0+μk μ+μ=k 2,其方程为y =k2(x -μ),代入椭圆方程得(2+k 2)x 2-2μk 2x -μ2(3k 2+2)=0,解得x =μ3k 2+22+k 2或x =-μ.因此B (μ3k 2+22+k 2,μk 32+k 2).于是直线PB 的斜率k 1=μk 32+k 2-μk μ3k 2+22+k 2-μ=k 3-k 2+k 23k 2+2-2+k 2=-1k .因此k 1k =-1,所以PA ⊥PB .证法二:设P (x 1,y 1),B (x 2,y 2),则x 1>0,x 2>0,x 1≠x 2,A (-x 1,-y 1),C (x 1,0).设直线PB ,AB 的斜率分别为k 1,k 2.因为C 在直线AB上,所以k 2=0--y 1x 1--x 1=y 12x 1=k2.从而k 1k +1=2k 1k 2+1=2·y 2-y 1x 2-x 1·y 2--y 1x 2--x 1+1=2y 22-2y 21x 22-x 21+1=x 22+2y 22-x 21+2y 21x 22-x 21=4-4x 22-x 21=0. 因此k 1k =-1,所以PA ⊥PB .(。
一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+=3.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .64.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .65.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .3⎡⎢⎣B .3⎡⎢⎣C .3⎡⎢⎣D .3⎡⎢⎣ 6.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若1MF =,则E 的离心率为( )A .3B .2C .5D .27.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .128.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .231e <<B .23e >C .3e >D .13e <<9.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .16310.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25411.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .(D .(12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n-=___________. 15.已知拋物线()2:20C y px p =>的焦点为F ,O 为坐标原点,C 的准线为l 且与x 轴相交于点B ,A 为C 上的一点,直线AO 与直线l 相交于E 点,若BOE BEF ∠=∠,6AF =,则C 的标准方程为_____________.16.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.17.在双曲线22221x y a b-=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.18.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点21,A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.23.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.24.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值. 25.已知是抛物线2:2C y px=(0)p >的焦点,(1,)M t 是抛物线上一点,且||2MF =.(1)求抛物线C 的方程;(2)过点O (坐标原点)分别作,OA OB 交抛物线C 于,A B 两点(,A B 不与O 重合),且.2OA OB k k =.求证:直线AB 过定点.26.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线30x y -+=过(,0)F c -,所以030c --+=,得3c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-,又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=, 整理得到2212214y b x a =,即222222244b a c k k a a-=⇒=, 即221k e +=故选:B 【点睛】关键点点睛:本题的关键利用三等分点得到211222x x y y =-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.C解析:C 【分析】设E是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.5.C解析:C【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++,令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以1AB CD y +=∈⎢⎣, 综上AB CD +的取值范围是3⎡⎢⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y , 联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=, 由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△29646464641016k =+=⨯+=. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.8.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=,所以,双曲线的渐近线by xa=的倾斜角α满足30α>,则123tan3bPF Fa>∠=,因此,该双曲线的离心率为2222222313c c a b bea a a a+⎛⎫====+>⎪⎝⎭.故选:B.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.9.D解析:D【分析】由题意作出MD垂直于准线l,然后得2PM MD=,得30∠=︒DPM,写出直线方程,联立方程组,得关于y的一元二次方程,写出韦达定理,代入焦点弦公式计算.【详解】如图,过点M做MD垂直于准线l,由抛物线定义得MF MD=,因为PF FM=,所以2PM MD=,所以30∠=︒DPM,则直线MN方程为3(1)x y=-,联立23(1)4x yx y⎧=-⎪⎨=⎪⎩,,消去x得,231030y y-+=,设()()1122,,,M x y N x y,所以121210,13y y y y+==,得121016||2233MN y y=++=+=.故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.10.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.11.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=, 所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=-故直线()2222:xPA y y x xy-=--化简得:222222y y y x x x-=-+即2222221x x y y x y+=+=同理有33:1PB x x y y+=又,PA PB均过点()11,P x y,有313131311,1x x y y x x y y+=+=故直线11:1MN x x y y+=1111,m nx y==221222111x xm n-=-=故答案为:115.【分析】推导出求出可得出直线的方程联立直线与抛物线的方程求出点的坐标利用抛物线的定义求出的值即可得出抛物线的标准方程【详解】因为即所以则直线的方程为联立直线与抛物线方程解得所以解得因此抛物线标准方程解析:28y x=【分析】推导出OBE EBF△△,求出tan BOE∠,可得出直线AO的方程,联立直线AO与抛物线C的方程,求出点A的坐标,利用抛物线的定义求出p的值,即可得出抛物线C的标准方程.【详解】因为BOE BEF∠=∠,90OBE EBF∠=∠=,OBE EBF∴△△,OB BEBE BF∴=,即2222p pBE OB BF p=⋅=⨯=,2BE p∴=,所以tan 2BEBOE OB∠==,则直线AO 的方程为2y x =, 联立直线OA 与抛物线方程222y xy px⎧=⎪⎨=⎪⎩ 解得(),2A p p , 所以3622p pAF p =+==,解得4p =, 因此,抛物线标准方程为28y x =. 故答案为:28y x =. 【点睛】方法点睛:求抛物线的标准方程的主要方法是定义法与待定系数法:(1)若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可; (2)若题目未给出抛物线的方程:①对于焦点在x 轴上的抛物线的标准方程可统一设为()20y ax a =≠的正负由题设来定;②对于焦点在y 轴上的抛物线的标准方程可统一设为()20x ay a =≠,这样就减少了不必要的讨论.16.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:175【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =,∴离心率5c e a ==.【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5 【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:82-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan bb BAO CFO ac ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =,∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩ ∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)22143xy +=;(2. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;(2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+, 设点()11,M x y 、()22,N x y ,联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>,由韦达定理可得1267y y +=-,1297y y =-,212112277OMNSOF y y =⋅-===⨯=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =,所以轨迹C 的方程:24x y =; (2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+,由241x y y kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=, ∴21224y y k +=+,∴2122428AB y y p k =++=++=, 解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+. 【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.24.(1)22194x y +=;(2)最大值为.(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点1,3P ⎛⎫⎪ ⎪⎝⎭,所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,1122OMN QMNOMQN S S S MN d =+=⨯=四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛- ⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题25.(1)24y x =;(2)直线AB 过定点(2,0)-,证明见解析. 【分析】(1)由抛物线的定义求得p ,得抛物线方程;(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程,由判别式大于0得参数满足的条件,应用韦达定理得1212,y y y y +,计算由2OA OB k k =可得128y y =,从而求得参数b ,并可得出m 的范围.此时由直线方程可得定点坐标. 【详解】(1)由抛物线定义可知:122p+=,则2p =, 所以抛物线C 的方程为24y x =(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y联立24y x x my b⎧=⎨=+⎩得2440y my b --=,则216160m b ∆=+>即20()m b +>*。
圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。
此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。
此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。
圆锥曲线中的定值、定点问题一、直线恒过定点问题例1. 已知动点E 在直线:2l y =-上,过点E 分别作曲线2:4C x y =的切线,EA EB , 切点为A 、B , 求证:直线AB 恒过一定点,并求出该定点的坐标;解:设),2,(-a E )4,(),4,(222211x x B x x A ,x y x y 214'2=∴=,)(2141121点切线过,的抛物线切线方程为过点E x x x x y A -=-),(21421121x a x x -=--∴整理得:082121=--ax x同理可得:222280x ax --=8,2082,2121221-=⋅=+∴=--∴x x a x x ax x x x 的两根是方程)24,(2+a a AB 中点为可得,又2212121212124442ABx x y y x x a k x x x x --+====-- 2(2)()22a a AB y x a ∴-+=-直线的方程为,2()2ay x AB =+∴即过定点0,2.例2. 已知点是椭圆22:12x E y +=上任意一点,直线l 的方程为0012x xy y +=, 直线0l 过P 点与直线l 垂直,点M (-1,0)关于直线0l 的对称点为N ,直线PN 恒过一定点G ,求点G 的坐标。
解:直线0l 的方程为0000()2()x y y y x x -=-,即000020y x x y x y --=设)0,1(-M 关于直线0l 的对称点N 的坐标为(,)N m n则0000001212022x nm y x n m y x y ⎧=-⎪+⎪⎨-⎪⋅--=⎪⎩,解得320002043200002002344424482(4)x x x m x x x x x n y x ⎧+--=⎪-⎪⎨+--⎪=⎪-⎩∴ 直线PN 的斜率为4320000032000042882(34)n y x x x x k m x y x x -++--==---+ 从而直线PN 的方程为: 432000000320004288()2(34)x x x x y y x x y x x ++---=---+ 即3200043200002(34)14288y x x x y x x x x --+=+++--从而直线PN 恒过定点(1,0)G 二、恒为定值问题例3. 已知椭圆两焦点1F 、2F 在y 轴上,短轴长为22,离心率为22,P 是椭圆在第一象限弧上一点,且121PF PF ⋅=,过P 作关于直线F 1P 对称的两条直线PA 、PB 分别交椭圆于A 、B 两点。
直线与圆锥曲线相切的问题一、创设情景二、复习引入圆的切线的求法引例:求过点)20(,且与圆122=+y x 相切的直线l 的方程。
方法一:设直线l 的方程为2+=kx y 直线l 与圆相切,即1122=+k∴ 直线l 的方程为23+=x y 或23+-=x y方法二:设直线l 的方程为2+=kx y直线l 与圆相切∴ 直线l 与圆只有一个公共点∴⎩⎨⎧=++=1222y x kx y 则034)1(22=+++kx x k ∴)1(121622k k +-=∆令0=∆,则3±=k∴ 直线l 的方程为23+=x y 或23+-=x y三、例题讲解例1、求过点A )20(,且与椭圆1422=+y x 相切的直线l 的方程。
分析:能否用圆的切线的求法来求解呢?解: 1 若直线l 的斜率不存在,则显然直线l 与椭圆有两个公共点,不符合题意。
2 若直线l 的斜率存在,设为k ,则直线l 的方程为2+=kx y直线l 与椭圆相切∴ 直线l 与椭圆只有一个公共点∴⎩⎨⎧=++=14222y x kx y 则034)4(22=+++kx x k ∴484)4(1216222-=+-=∆k k k 令0=∆,则32±=k∴ 直线l 的方程为232+=x y 或232+-=x y小结:研究直线与圆、椭圆只有一个公共点的时候,设直线方程、联立方程组、化简为一元二次方程、令0=∆即可;但要注意若直线的斜率k 不存在时的特殊情况,此时0=∆的方法不适用。
从上面的两个例子,可以看出利用0=∆可以解决直线与曲线相切的问题。
问题:直线与曲线相切,它们只有一个公共点,那么直线与曲线只有一个公共点,它们一定相切吗?例2、求过点)01(,P 且与抛物线y x 82=仅有一个公共点的直线l 的方程。
(给出网格图,学生先探究)解:设过点P 且与抛物线仅有一个公共点的直线l 的方程为)1(-=x k y 令⎩⎨⎧=-=yx x k y 8)1(2 则0882=+-k kx x ∴k k 32642-=∆令0=∆,则0=k 或21=k ∴ 直线l 的方程为0=y 或2121-=x y ∴ 直线l 的方程为1=x ,0=y 或2121-=x y (提醒学生注意考虑图形)小结:“仅有一个公共点”的情况,除了考虑相切的情形,还要结合图形进行分析。
圆锥曲线典型例题例1:已知一条直线l 和它上方的一个点F ,点F 到l 的距离是2,一条曲线也在l 的上方,它上面的每一点到F 的距离减去到l 的距离的差都是2,建立适当的坐标系,求这条曲线的方程.解:取直线l 为x 轴,过点F 且垂直于直线l 的直线为y 轴,建立坐标系xOy, 设点M(x,y)是曲线上任意一点,MB ⊥x 轴,垂足是B ,因为曲线在x 轴的上方,所以y >0, 所以曲线的方程是例2:已知线段AB 的端点B 的坐标是(4,3),端点A在圆4)1(22=++y x 上运动,求线段AB 的中点M 的轨迹方程。
解:设点M 的坐标是(x,y ),点A 的坐标是),(00y x 。
由于点B 的坐标是(4,3),且点M 是线段AB 的中点,所以,23,2400+=+=y y x x于是有.32,4200-=-=y y x x因为点A 在圆上,所以点A 的坐标满足方程4)1(22=++y x 即4)1(2020=++y x 1)23(234)32()142(2222=-+-=-++-∴y x y x )整理得(2MA MB ∴-=2y =218y x ∴=21(0)8y x x =≠所以,点M 的轨迹是以)23,23(为圆心,半径长是1的圆。
例3:在△ABC 中,BC =24,AC 、AB 的两条中线之和为39,求△ABC 的重心轨迹方程.解:以BC 所在直线为x 轴,BC 的中垂线为y 轴建立如图所示的平面直角坐标系,M 为重心,则|MB |+|MC |=32×39=26. 根据椭圆定义可知,点M 的轨迹是以B 、C 为焦点的椭圆,故所求椭圆方程为12516922=+y x (y ≠0)例4:已知F 1为椭圆的左焦点,A ,B 分别为椭圆的右顶点与上顶点,P 为椭圆上的点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆中心)时,求椭圆的离心率解:设椭圆方程为12222=+by a x (a >b >0),22b a c -=, F 1(-c ,0),则点),(2a b c P -,由PO ∥AB 得k AB =k OP 即ac b a b 2-=-,∴b=c ,故22=e 。
1
直线与圆锥曲线的位置关系
1.直线与圆锥曲线的位置关系
直线与圆锥曲线的位置关系有相交、相切、相离;相交有两个交点(特殊情况除外),相切只有一个交点,相离无交点.判断直线与圆锥曲线的位置关系,通常是将直线方程与曲线方程联立,消去变量y (或x )得变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0) 若a ≠0,可考虑一元二次方程的判别式Δ,有:
Δ>0 直线与圆锥曲线相交;Δ=0 直线与圆锥曲线相切;Δ<0 直线与圆锥曲线相离. 若a =0,则直线与圆锥曲线相交,且有一个交点.若曲线为双曲线,则直线与双曲线的渐近线平行;若曲线为抛物线,则直线与抛物线的对称轴平行.
2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),求弦长。
练习题
一、选择题
1.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l
的斜率的取值范围是 ( )
A .[-12,1
2
] B .[-2,2] C .[-1,1] D .[-4,4]
2.已知椭圆x 2a 2+y 2
b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,过F 1作倾斜角为30°的直线与椭
圆有一个交点P ,且PF 2⊥x 轴,则此椭圆的离心率e 为 ( ) A.
33 B.32 C.22 D.23
3.过抛物线y 2=4x 的焦点F 作两条弦AB 和CD ,且AB ⊥x 轴,|CD |=2|AB |,则弦CD 所在直线的方程是 ( ) A .x -y -1=0 B .x -y -1=0或x +y -1=0 C .y =2(x -1) D .y =2(x -1)或y =-2(x -1) 4.斜率为1的直线l 与椭圆x 2
4
+y 2
=1相交于A 、B 两点,则|AB |的最大值为( )
A .2 B.455 C.4105 D.810
5
2
5. 直线过点(2,4)与抛物线y 2=8x 只有一个公共点,这样的直线共有( )
A.1条
B.2条
C.3条
D.4条 二、填空题
6.已知直线l 与抛物线y 2
=8x 交于A 、B 两点,且l 经过抛物线的焦点F ,A 点的坐标为(8,8),则线段AB 的中点到准线的距离是 ________.
7.过抛物线y 2=4x 的焦点,且倾斜角为135 的直线交抛物线于P ,Q 两点,O 为坐标原点,则△OPQ 的面积是 .
三、解答题
8.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),且它的离心率与双曲线x 23
-y 2
=1的
离心率互为倒数. 求椭圆的方程;
9.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0).
求双曲线C 的方程;
3
1.解析:设直线方程为y =k (x +2),与抛物线联立方程组,整理得ky 2-8y +16k =0.当k =0时,直线与抛物线有一个交点.当k ≠0时,由Δ=64-64k 2
≥0,解得-1≤k ≤1.所以-1≤k ≤1. c
2.解析:在Rt△PF 2F 1中,∠PF 1F 2=30°,|F 1F 2|=2c ,|PF 1|=2|PF 2|,根据椭圆的定义得|PF 2|=2
3a ,|PF 1|
=43a ,又|PF 1|2-|PF 2|2=|F 1F 2|2,即169a 2-49a 2=4c 2,∴e =c a =3
3
. 答案:A 3解析:依题意知AB 为抛物线的通径,|AB |=2p =4,|CD |=2|AB |=8,显然满足条件的直线CD 有两条,
验证选项B ,由⎩
⎪⎨
⎪⎧
y 2
=4x ,
y =x -1得:x 2
-6x +1=0,x 1+x 2=6,此时|CD |=x 1+x 2+p =8,符合题意.同理,x
+y -1=0也符合题意.答案:B
4解析:设直线l 的方程为y =x +t ,代入x 2
4+y 2=1,消去y 得54x 2+2tx +t 2-1=0,由题意得Δ=(2t )
2
-5(t 2
-1)>0,即t 2
<5.弦长|AB |=42×5-t 25≤410
5
. 答案:C
5..因为点(2,4)在曲线上,所以当直线与抛物线相切时只有一条,而当直线与抛物线的对称轴平行时也有一条,故共有2条,故选B.
6解析:由y 2=8x 知2p =8,p =4.设B 点坐标为(x B ,y B ),由AB 直线过焦点F ,
∴直线AB 方程为y =43(x -2),把点B (x B ,y B )代入上式得:y B =43(x B -2)=43(y 2B
8-2),解得y B =-2∴x B
=12,∴线段AB 中点到准线的距离为8+
1
22+2=254.答案:254
7因为直线方程为x +y -1=0,即x =1-y .代入y 2=4x ,得:y 2+4y -4=0,设P (x 1,y 1),Q (x 2,y 2),所以
y 1+y 2=-4,y 1·y 2=-4,所以 8解:(1)∵双曲线x 2
3-y 2=1的离心率为23
3
,
∴椭圆的离心率为
3
2
. 又∵b =1,∴a =2. ∴椭圆的方程为x 2
4
+y 2=1.
9解析:(1)设双曲线方程为x 2a 2-y 2
b
2=1(a >0,b >0).
由已知a =3,c =2,又a 2+b 2=c 2,得b 2=1.
故双曲线C 的方程为x 23
-y 2
=1.
2
121212
4y y y y y y -=+-⋅()。