东北大学834传热学大纲2020年考研专业课初试大纲
- 格式:pdf
- 大小:263.45 KB
- 文档页数:4
初试传热学科目考试大纲一、考查目标按全国硕士研究生入学考试要求为沈阳建筑大学招收建筑设备与环境、供暖通风与空调专业硕士研究生而设置的专业课程考试科目。
其中,传热学是属招生学校自行命题的性质。
它的考查目标是高等学校优秀本科毕业生能达到的及格或及格以上水平,以保证被录取者具有基本的传热理论知识并有利于招生学校在专业上择优选拔。
传热学考试的目标在于考查考生对传热学基本概念、基本理论的掌握和分析求解基本问题的能力。
考生应能:1. 准确地把握定义的物理量以及它们的量纲;2. 正确理解基本概念和基本规律;3. 正确应用基本理论知识分析和处理实际传热问题;4. 掌握基本计算方法,准确完成传热问题的定量计算。
二、考试形式与试卷结构(一)试卷满分及考试时间传热学满分为150分,考试时间为3小时。
(二)答题方式答题方式为闭卷、笔试。
(三)试卷内容结构传热学各部分内容分数百分比约为:绪论 5%,第一章导热理论基础 5%第二章稳态导热 10%第三章非稳态导热 10%第五章对流换热分析 10%第六章单相流体对流换热 15%第七章凝结与沸腾换热 10%第八章热辐射的基本定律 10%第九章辐射换热计算 15%第十章传热和换热器 5%第十一章质交换 5%(四)试卷题型结构试卷题型主要分为四大部分,各部分分数百分比约为:基本概念题15%,基本理论分析题20%,分析证明题20%,应用计算题45%.三、考查内容及要求应考范围包括:传热学所包含的热传导、对流换热、辐射换热、传热过程与换热器、质交换等五大部分。
具体如下:1.绪论传热的基本方式(包括热导热、热对流、热辐射),传热过程和传热系数计算2.稳态导热基本概念(包括温度场、付立叶定律、导热系数、导热微分方程、定解条件),一维稳态导热(包括平壁导热、圆筒壁导热、内热源问题、肋片导热)。
3.非稳态导热非稳态导热过程,集总参数法,查表法,半无限大物体的工程计算查表法,瞬态和周期性非稳态导热的概念。
东北大学2021年硕士研究生招生考试考试大纲科目代码:834;科目名称:传热学第一部分考试说明一、考试性质传热学是冶金学院动力工程及工程热物理(学科代码:080700)、能源动力专业(专业代码:085800)硕士研究生入学考试初试的专业课。
考试对象为参加冶金学院动力工程及工程热物理、能源动力专业2021年全国硕士研究生招生考试入学考试的准考考生。
二、考试形式与试卷结构(一) 答卷方式:闭卷,笔试(二) 答题时间:180分钟(三) 考试题型及比例:简答题(约占40%),推导分析(约占10%),计算题(约占50%)。
(四) 参考书目:杨世铭,陶文铨编著. 传热学(第四版),高等教育出版社,2006年.或陶文铨编著. 传热学(第五版),高等教育出版社,2018年.三、考查要点(一)传热学的基础理论和基本方法。
(二)对常见的导热、对流、辐射传热及传热过程,掌握传递机理,进行定性分析、定量计算。
(三)对典型的传热现象进行分析,建立合适的数学模型并求解。
四、计算器使用要求本科目需使用计算器、三角板附件1:大纲导语参考1、简答题(共60分,10小题,每题6分)2、推导分析题(共15分,1小题,每题15分)3、计算题(共75分,4小题)附件2:参考书目信息(参考书目的封面)附件3:考试大纲第1章绪论热量传递的三种基本方式,以及由这些基本方式组合而成的传热过程。
涉及的主要内容有:热量传递的基本方式及机理、基本表达式和各物理量的意义、单位;热阻、传热系数等基本概念;传热方式的链接或叠加及其分析和简单计算等。
第2章稳态热传导传导传热的基本定律及数学表达式和定解条件(如稳态导热问题的三类边界条件)、各物理量意义和单位,三种典型几何物体(平板、圆柱体、球体)及变截面物体(如肋片)的热阻、热流量和温度分布计算方法。
熟练掌握一维稳态导热的计算方法,了解多维或含内热源稳态热传导问题的求解。
掌握一些基本概念如:温度场、等温面、等温线,导热系数、热扩散率、形状因子、接触热阻、肋效率等。
东北大学2021年硕士研究生招生考试考试大纲科目代码: 843 ;科目名称:结构力学与土力学综合一、考试性质结构力学和土力学综合是资源与土木工程学院土木工程专业(专业代码:081400)和土木水利专业(专业代码:085900)建筑与土木工程方向硕士生入学考试初试的专业课之一。
考试对象为参加资源与土木工程学院土木工程和土木水利专业建筑与木工工程方向2021年全国硕士研究生招生考试入学考试的准考考生。
二、考试形式与试卷结构(一)答卷方式:闭卷,笔试(二)答题时间:180分钟(三)考试题型及比例(均为约占)概念解释(15%)、简答题(35%)、计算及应用题(50%)(四)参考书目1.李廉锟,《结构力学》,高等教育出版社,第6版2. 陈希哲、叶青编著,《土力学地基基础》,清华大学出版社,第5版,2013年(5)比例结构力学﹕土力学=3﹕2三、考查要点(一)《结构力学》一绪论1 结构力学的研究对象和任务2 荷载的分类3 结构的计算简图4 支座和结点的类型5 结构的分类二平面体系的机动分析1 概述2 平面体系的计算自由度3 几何不变体系的简单组成规则4 瞬变体系5 机动分析示例6 几何构造与静定性的关系三静定梁与静定刚架1 单跨静定梁2 多跨静定梁3 静定平面刚架4 少求或不求反力绘制弯矩图5 静定结构的特性四静定拱1 概述2 三铰拱的数解法3 三铰拱的图解法4 三铰拱的合理拱轴线五静定平面桁架1 概述(平面桁架的计算简图)2 结点法3 截面法4 截面法和结点法的联合应用5 各式桁架比较6 组合结构的计算六影响线1 概述(影响线的概念)2 用静力法作单跨静定梁的影响线3 间接荷载作用下的影响线4 用机动法作单跨静定梁的影响线5 多跨静定梁的影响线6 桁架的影响线7 利用影响线求量值8 最不利荷载位置9 简支梁的绝对最大弯矩和包络图七结构位移计算1 概述2 变形体系的虚功原理3 位移计算的一般公式4 静定结构在荷载作用下的位移计算5 图乘法6 静定结构温度变化时的位移计算7 静定结构支座移动时的位移计算8 线弹性结构的互等定理八力法1 力法基本概念2 超静定次数的确定3 力法的典型方程4 力法的计算步骤和示例5 对称性的利用6 超静定结构的位移计算7 最后内力图的校核8 温度变化时超静定结构的计算9 支座位移时超静定结构的计算10 连续梁的均布活载最不利位置及包络图11 超静定结构的特性九位移法1 概述2 等截面直杆的转角位移方程3 位移法的基本未知量和基本结构4 位移法的典型方程及计算步骤5 直接由平衡条件建立位移法基本方程6 对称性的利用十渐进法1 概述2 力矩分配法的基本原理3 用力矩分配法计算连续梁和无侧移刚架4 无剪力分配法十一结构的极限荷载1 概述2 极限弯矩和塑性铰及破坏机构3 静定梁极限荷载计算4单跨超静定梁极限荷载计算5 比例加载时有关极限荷载的几个定理6 计算极限荷载的穷举法和试算法7 连续梁的极限荷载计算8 简单刚架的极限荷载计算(二)《土力学》0 绪论1 土力学的研究对象和任务2 岩土工程学科发展一工程地质1 概述2 矿物与岩石3 第四纪沉积层4 不良地质条件5 地下水二土的物理性质及工程分类1 土的生成和特性2土的三相组成3 土的物理性质指标4.土的物理状态指标5.地基土的工程分类三土的压缩性和地基沉降计算1 土的变形特性2 有效应力原理3 侧限条件下土的压缩性4 土的压缩性原位测试5 地基土的应力分布6 地基的最终沉降量7 应力历史对地基沉降的影响8 地基回弹和再压缩变形的计算9 地基沉降与时间的关系四土的抗剪强度与地基承载力1 概述2土的极限平衡条件3 抗剪强度指标的确定4.影响抗剪强度指标的因素5.地基的临塑荷载和临界荷载6 地基的极限荷载五土压力与土坡稳定1 概述2静止土压力3 朗肯土压力理论4.库伦土压力理论5.几种常见情况的土压力6 挡土墙设计7 土坡稳定分析六工程建设的岩土工程勘察1 概述2各阶段勘察的内容与要求3 岩土工程勘察方法4.地基土的野外鉴别与描述5.岩土工程勘察成果报告6 验槽七软弱地基处理1 概述2 机械压实法3 强夯法4.换填垫层法5.预压固结法6.挤密法7 振冲法8 化学加固法9 托换技术10 几种常见问题的处理附件:参考书目信息(参考书目的封面)。
839传热学复习大纲839《传热学》复习大纲一、考试的基本要求∶1.了解传热学的工程应用背景,熟练掌握传热学的基本概念。
2.熟练掌握导热基本定律及导热问题的基本分析方法,对简单几何形状的常物性、无内热源稳态与非稳态导热问题能进行熟练的分析及计算;掌握周期性变化边界条件下非稳态导热问题温度场及热流密度随时间的变化规律;初步掌握导热问题数值解法的基本方法。
3.较深刻地了解对流传热的各种影响因素,熟悉对流传热所遵循的基本原理及相应准则的物理含义;对受迫对流传热和自然对流传热能定性做出正确判断,并能熟练运用准则关联式进行对流传热问题的计算。
4.掌握热辐射的基本概念与基本定律;熟悉角系数及利用辐射传热网络进行黑体与灰体表面间的辐射传热计算;初步了解气体辐射传热的特性。
5.掌握传热过程及复合传热所遵循的基本规律,了解强化传热及削弱传热的基本途径;掌握换热器的两种基本计算方法:平均温压法和传热单元数法。
二、考试方式和考试时间闭卷考试,总分150,考试时间为180 分钟。
三、参考书目(仅供参考)1.章熙民、任泽霈等编著:《传热学》(第六版),中国建筑工业出版社,2014.82.杨世铭、陶文铨编著:《传热学》(第四版),高等教育出版社,2006.8四、试题类型:主要包括名词解释、填空题、选择题、是非题、简答题、计算填空题、计算题等类型,并根据每年的考试要求做相应调整,分值分布:基本概念题与基本理论分析题50%,应用计算题50%。
五、考试内容及要求绪论1.传热学的研究对象及研究内容2.热量传递的三种基本方式3.传热过程及热阻要求:掌握热传导、热对流、热辐射、传热过程、热阻等基本概念,了解热量传递的三种基本方式的定义和机理。
第一章导热理论基础1.基本概念------温度场、温度梯度、导热系数2.导热基本定律------傅立叶定律3.导热微分方程式及定解条件要求:掌握温度场、温度梯度、导热系数、导热基本定律、导热微分方程式及定解条件等,了解导热系数的定义和影响因素,以及导热微分方程式的推导和在不同坐标系中的表达形式。
2014年硕士研究生入学考试大纲考试科目名称:834传热学考试时间:180分钟,满分:150分一、考试要求:深刻理解传热学课程的基本原理、基本概念,掌握相关的计算分析方法,具备分析工程传热问题的基本能力,掌握工程传热问题计算的基本方法并具备相应的计算能力二、考试内容:(1):传热学的研究对象、研究方法及其应用a: 热量传递的三种基本方式b: 传热过程和传热系数(2):导热基本定律及稳态导热a: 导热微分方程式b: 通过平壁和圆筒壁的导热c: 通过肋片的导热d:接触热阻,形状因子e:具有内热源的导热(3):非稳态导热a: 非稳态导热的基本概念b: 一维非稳态导热的求解及诺谟图c: 二维及三维非稳态导热的求解,对分析解的讨论d: 集总参数法e: 非稳态导热的正规热状况(4):对流传热a: 对流换热概说b: 对流换热微分方程组,边界层分析及边界层微分方程组c: 边界层积分方程组及求解示例d: 动量传递与热量传递的比拟理论e: 相似原理f: 强制对流换热及其实验关联式g: 自然对流换热及其实验关联式(5):沸腾和凝结传热a: 膜状凝结分析解及实验关联式b: 影响膜状凝结因素的分析c: 沸腾换热现象d: 沸腾换热计算式(6):热辐射及辐射传热a: 热辐射的基本概念b: 黑体辐射c: 实际固体与液体的辐射,灰体d: 黑体间的辐射换热及角系数e: 灰体间的辐射换热f: 气体辐射(7):传热过程与换热器a: 传热过程的分析和计算b: 换热器的型式及平均温压c: 换热器的热计算d: 传热的强化和隔热保温技术三、参考书目:1)传热学(第四版):杨世铭编,高等教育出版社,2006年。
《传热学》考试大纲一、试卷满分及考试时间满分为150分,考试时间为180分钟。
二、答题方式答题方式为闭卷、笔试。
三、试卷题型结构选择,填空(或简答),计算题四、适用学科土木工程五、考核内容一、考试内容及基本要求:0 绪论0.1传热的三种基本方式0.2传热过程要求:掌握热传递的基本方式;掌握传热过程概念及计算。
第一章导热理论基础1.1基本概念及傅立叶定律1.2导热系数1.3导热微分方程式1.4导热过程的单值性条件要求:掌握温度梯度等基本概念及傅立叶定律表达式;理解导热系数定义、性质;理解导热微分方程式的推导;掌握导热过程的四种单值性条件。
第二章稳态导热2.1通过平壁的导热2.2通过复合平壁的导热2.3通过圆筒壁的导热2.4通过肋壁的导热2.5通过接触面的导热2.6二维稳态导热要求:掌握通过平壁、圆筒壁、肋壁的导热计算;理解通过复合平壁的导热计算方法;了解通过接触热阻;理解形状因子和处理稳态导热的解题思路。
第三章非稳态导热3.1非稳态导热的基本概念3.2无限大平壁的瞬态导热3.3其他形状物体的瞬态导热3.4周期性非稳态导热要求:了解非稳态导热现象;掌握瞬态导热计算线图方法和集总参数方法;掌握周期性非稳态导热计算。
第五章对流换热分析5.1对流换热概述5.2对流换热微分方程组5.3边界层换热微分方程组的解5.4动量传递和热量传递的类比5.5相似理论基础要求:掌握对流换热基本概念;理解对流换热微分方程组;掌握边界层概念,理解数量级分析,掌握外掠平板层流换热计算;了解紊流动量传递和热量传递规律,掌握外掠平板紊流换热计算;理解相似的基本概念、相似原理以及实验数据的整理方法。
第六章单相流体对流换热及准则关联式6.1管内受迫流动换热6.2外掠圆管流动换热6.3自然对流换热要求:理解管内换热一般分析,掌握管内受迫流动换热;掌握外掠单管和外掠管束两种流动换热;掌握自然对流换热。
第七章凝结与沸腾换热7.1凝结换热7.2沸腾换热要求:掌握膜状凝结换热计算及影响换热因素及增强措施;掌握大空间沸腾换热。
2020年东北大学考研专业课初试大纲《普通化学》考试大纲 第一部分考试说明一、考试性质普通化学是环境科学与工程硕士研究生入学考试的专业基础课。
考试对象为参加环境科学与工程专业2020年全国硕士研究生入学考试的准考考生。
二、考试形式与试卷结构(一)答卷方式:闭卷,笔试。
(二)答题时间:180分钟。
(三)考试题型及比例:判断题:30%;简答题:20%;计算题:50%。
(四)参考书目普通化学(第二版),马家举主编,化学工业出版社;2012.05。
第二部分考试要点第一章原子结构与分子结构波函数与原子轨道,电子云,量子数,电子原子结构和周期系,多电子原子轨道的能级,核外电子分布,基态原子中电子的分布,元素周期表和元素性质的周期性变化,化学键的类型和价键理论,杂化轨道理论与分子的空间构型,配位共价键与配位化合物,分子间的相互作用。
第二章物质的聚集状态物质的聚集状态,相,理想气体,道尔顿分压定律,液体的蒸气压和沸点,晶体与非晶体,离子键与离子晶体,原子晶体,分子晶体,金属键与金属晶体。
第三章化学热力学初步热力学第一定律的基本概念,能量守恒定律、等容热效应和等压热效应的基本概念,焓的基本概念,热化学方程式,反应热的计算,自发过程的特点,焓变与自发过程,吉布斯函变与化学反应的方向,化学反应的限度——化学平衡,化学平衡与平衡常数,化学平衡的移动。
第四章水溶液与离子平衡稀溶液的依数性(溶液的蒸气压下降、溶液的凝固点下降和沸点上升、溶液的渗透压),酸碱质子理论,酸碱水溶液中pH的计算,多相离子平衡,溶精都考研网(专业课精编资料、一对一辅导、视频网课)。
传热学考研复习纲要第一章1、傅里叶导热定律的概念、公式、单位、物理意义2、导热、对流、辐射的概念;3、传热学的分析方法;4、传热方式的相关分析;5、传热过程以及引入传热过程这一概念的目的;第二章1、导热系数的物理意义(导热图中斜率)、计算公式、影响因素、比较;2、平壁、圆柱、球的导热热阻公式;平壁和圆柱的导热量计算公式;3、导热微分方程的两大定律、各种情况下的公式及各项的物理意义;4、等截面直肋的导热量等系列计算(重点)、测量气体温度的误差及降低方式;5、肋效率的计算公式、物理意义、影响因素(提高肋效率的方法)、是不是肋效率越高越好、肋面总效率的公式及各符号的意义、什么形状的肋效率最高;6、保温材料的概念、利用空气导热系数小这一特点制造保温材料的工程实例及原理;7、导热模型及导热机理;8、定解条件可分为:边界条件和初始条件、三类边界条件的公式及意义;9、热扩散率的公式、物理意义、影响因素、与导热系数的区别和联系;第三章1、集中参数法的概念、物理意义、使用条件(使用这个判据的理由)、两种可以使用集中参数法的特殊情况(无限大平板、表面换热系数趋于零);2、毕渥数的公式、物理意义、毕渥数不同的平壁温度分布图及特点;3、傅里叶数的公式、物理意义;4、集中参数法的计算:时间常数、变温所需时间、特征长度、判断依据、无限大平板(Bi趋于无穷)的计算方法;5、时间常数的公式、影响因素、物理意义,与时间常数大小相关的分析题;第四章1、泰勒公式展开;2、向前差分、向后差分、中心差分;3、公式第五章1、对流换热的概念、影响因素(……四个流体物性)、强制对流以及自然对流的概念;2、对流换热的分析方法(四个);3、流动边界层和温度边界层的概念、厚度、特点(四个)、引入边界层的目的;4、边界层流动状态的判据(为什么用这个判据);5、雷诺数的公式、物理意义、临界值;6、边界层根据雷诺数可分为三个区域;7、雷诺比拟、j因子;8、努赛尔数的公式、物理意义、与毕渥数的区别;9、边界层换热微分方程与第三类边界条件的区别;10、对流换热微分方程、动量微分方程、能量微分方程的公式及利用边界层的条件进行量纲分析后的简化公式、各项的物理意义;11、边界层内对流控制方程的三大定律;12、普朗特数的公式、物理意义、边界层厚度的比较(图)(什么物质大什么小)13、流体强制外掠平板的对流换热准则方程;第六章1、同类现象;2、特征长度、定性温度、特征流速的概念;3、各相似准则数的推导来源(雷诺数、格拉晓夫数、努赛尔数、贝克莱数、普朗特数)4、管内流动与管外流动的区别;5、入口段效应的概念、作用、充分发展段的概念、两个段的换热系数比较(图)6、管内流动层流湍流的临界值;7、管内强制对流的准则方程;8、温差效应修正(温度对流速的影响)、螺旋管效应修正、为什么螺旋管效应修正系数和入口段效应修正系数都大于1而温差效应修正系数小于1?;9、提高对流换热换热系数的方法;10、外掠管束中管子的两种排列方式、叉排与顺排的特点比较、管排修正系数;11、大空间自然对流边界层的温度和速度分布特点(图);12、大空间自然对流与有限空间自然对流的特点;13、温度越低密度越高而自然对流依靠重力实现;14、圆柱和竖壁自然对流的特征长度与横放竖放的区别;15、圆柱和竖壁自然对流准则方程:Nu=C(GrPr)n,n的取值与层湍流的关系;16、瑞利数的公式、自然对流与强制对流的层流湍流的判据的区别;17、有关空气对流换热系数小于水的对流换热系数的分析题;18、横掠单管和纵掠单管的比较、绕流脱体的形成机理(图);第七章1、凝结换热的概念、膜状凝结与珠状凝结的概念、形成机理;2、提高凝结换热换热系数的原则、凝结换热中的主要热阻;3、现代工程中常采用哪种凝结模式?(原因);4、膜状凝结过程管子横放与竖放的区别;5、膜状凝结的换热准则方程(记住公式中的因子含义和正反比关系即可,尤其是与凝结动力(过冷度)的几次方成正比);6、伽利略数的公式;7、凝结换热中的汽化潜热的相关计算、膜状凝结的层湍流判据;8、影响凝结换热的因素(六个),其中不凝结气体的影响机理;9、沸腾换热、大容器沸腾(池沸腾)、管内沸腾、饱和沸腾、过冷沸腾的概念;10、大容器沸腾各个区域的换热特点(图)、核态沸腾比膜态沸腾换热系数大的相关分析题;11、临界热流密度(CHF)(沸腾危机)的概念、工程中引入临界热流密度的意义(控制热流与控制壁温)、控制壁温条件下不会引起设备烧毁的相关分析题;12、大容器沸腾换热的准则方程各物理量的意义;13、沸腾换热主要受哪两个因素的影响、汽化核心的形成、凹坑处已形成汽化核心的原因相关分析题、汽化核心相关推导(最小半径);14、影响沸腾换热的因素(四个)(其中不凝结气体反而会促进换热);15、提高沸腾换热换热系数的原则;第八章1、黑体概念、性质、小孔形成黑体的原因;2、可见光、太阳光、工业温度下、红外线的波长范围;3、斯忒藩-波尔兹曼定律(公式)、普朗克定律、兰贝特定律(公式及推导)的概念;4、辐射力、光谱辐射力、定向辐射强度的概念;5、维恩位移定律的公式、概念(图);6、立体角、纬度角、辐射量的概念及计算;7、发射率(黑度)、光谱发射率、定向辐射率的概念公式(图);8、物体表面发射率的影响因素;9、灰体的概念、漫射体的概念、漫灰体的概念以及引入这些概念的原因;10、气体辐射的特点、气体辐射分为两种气体的辐射;11、贝尔定律公式、公式各物理量的含义;12、光谱吸收比的概念;13、温室效应的原因及各类相关分析题;14、吸收比与波长有关的相关分析题;15、实际物体的吸收比的影响因素;16、基尔霍夫定律的推导过程、两种表述、适用于灰体的情况、可得出黑体的一种性质;17、吸收比、反射比、穿透比的概念及计算公式、什么物体的反射比为0、什么物体的穿透比为0;第九章1、角系数的概念、计算方法、三个特性(公式);2、有效辐射、投入辐射的概念及物理意义;3、封闭腔内两灰体的辐射换热量的计算公式及三种特殊情况的处理;4、空间辐射热阻、表面辐射热阻的概念及计算;5、封闭腔内三灰体的辐射换热量的计算及网络图、重辐射面的概念、网络法的概念、引入网络图的理由;6、遮热板的概念及降低辐射换热量的原理、材料选择、工程应用;7、抽气遮热罩式测量高温气体温度可降低测温误差的原因及相关分析题;8、通过控制表面辐射热阻和空间辐射热阻来提高或降低辐射换热量的工程应用及相关分析题;第十章1、通过平壁的传热、通过圆管的传热传热量的计算公式、圆管的传热的传热系数、加肋后的传热系数、肋化系数的概念;2、临界热绝缘直径的概念、引入该概念的原因、为什么平壁传热不需要引入、临界热绝缘直径的计算公式、各物理量的意义;3、对数平均温差的概念、计算公式、物理意义、引入对数平均温差的原因、其它流动型式的对数平均温差的计算公式;4、换热器顺流布置和逆流布置的概念、各自的特点、各自优缺点、如何获得最大平均温差、一侧发生相变换热时的情况分析、顺流逆流布置的温度变化图;5、换热器的效能的概念、公式及物理意义;6、换热器的热计算的两种方法、两种类型、传热单元数的概念;7、强化传热的原则、措施、隔热保温技术、保温效率;8、污垢热阻的公式、有污垢热阻时的传热系数;。
传热学课程教学大纲一、引言传热学是热力学的一个重要分支,它研究热量在物质之间传递的规律和方法。
本课程旨在通过深入的理论学习和实验实践,使学生掌握传热学的基本原理和方法,并培养学生分析和解决传热问题的能力。
二、课程目标1. 理解传热学的基本概念和原理;2. 熟悉几种常见的传热模式和传热方式;3. 掌握传热计算的基本方法和步骤;4. 能够分析和解决传热学中的实际问题;5. 培养学生在实验中观察、分析、设计和总结的能力。
三、教学内容1. 传热学基本概念- 传热学的定义和发展历程;- 传热学与热力学、流体力学的关系;- 传热学中的重要概念和基本假设。
2. 传热模式和传热方式- 热传导、对流传热和辐射传热的基本概念和特点;- 传热方式的分类及其特点;- 不同传热方式的应用和实际例子。
3. 传热计算方法- 热传导计算方法:一维热传导方程、对流换热方程、辐射换热方程;- 对流换热计算方法:强迫对流传热、自然对流传热的计算方法;- 辐射换热计算方法:黑体辐射、实物辐射的计算方法。
4. 传热过程分析- 传热过程的热阻和热导率分析;- 热传导问题的一维和二维稳态解法;- 管壳式换热器的换热分析。
5. 传热实验- 传热实验基本原理和实验设计;- 测量传热系数和传热机制的实验方法;- 实验数据处理和结果分析。
四、教学方法1. 理论讲授:通过课堂教学的方式,讲解传热学的基本概念、原理和计算方法;2. 实验实践:设计一系列的传热实验,使学生能够通过实际操作,了解传热学的基本知识和实验技能;3. 讨论与互动:组织学生进行课堂讨论、小组讨论和案例分析,促进学生的思维活跃和合作交流;4. 作业和测验:布置传热学相关的作业和测验,检验学生对教学内容的理解和掌握程度。
五、考核方式1. 平时表现:包括参与课堂讨论、课堂作业和实验报告等;2. 期中考试:对学生对传热学基本概念和计算方法的理解和掌握程度进行考核;3. 期末考试:综合考核学生对传热学理论和实验技能的综合应用能力。
传热学课程教学大纲
一、课程背景简介
传热学是热力学的一个重要分支,研究热量在固体、液体和气体之间的传递过程和规律。
本课程旨在通过理论探讨和实践操作,使学生掌握传热学的基本知识和应用技能,为后续学习和工作提供有力支撑。
二、课程目标
1. 理解传热学的基本概念、原理和基本方程。
2. 掌握传热过程中的传热量计算和传热速率计算方法。
3. 熟悉传热过程中的传热机制和传热方式。
4. 能够应用传热学知识解决传热问题。
三、教学内容和安排
1. 传热学的基本概念和原理
a. 传热学的定义和研究对象。
b. 热量和温度的基本概念。
c. 传热机制和传热方式的分类和特点。
d. 传热方程和传热速率的计算方法。
2. 热传导
a. 热传导的基本概念和特点。
b. 热传导方程和气体、液体和固体的传热模型。
c. 热传导的计算方法和相关应用。
3. 对流传热
a. 对流传热的基本概念和原理。
b. 自然对流和强制对流的区别和特点。
c. 对流传热的计算方法和相关应用。
4. 辐射传热
a. 辐射传热的基本概念和原理。
b. 黑体辐射和实物体辐射的特点和计算方法。
c. 辐射传热的影响因素和相关应用。
2020年东北大学考研专业课初试大纲
2020年硕士研究生统一入学考试
《大学物理》考试大纲
第一部分考试说明
一、考试性质
大学物理是材料科学与工程硕士生入学的专业基础课。
考试对象为参加材料科学与工程学科2020年全国硕士研究生入学考试的准考考生。
二、考试形式与试卷结构
(一)答卷方式:闭卷,笔试
(二)答题时间:180分钟
(三)满分分值:150分
(四)考试题型及比例
基本概念和简答题 40%
单项选择题 20%
计算题 30%
论述题 10%
三、参考书目
马文蔚等,《物理学》(第六版),高等教育出版社,2014年。
第二部分考查要点
(一〕力学
·质点运动的描述、相对运动
·牛顿运动定律及其应用、变力作用下的质点动力学基本问题
·非惯性系和惯性力
·质点与质点系的动量定理和动量守恒定律
·质心
·变力的功、动能定理、保守力的功、势能、机械能守恒定律
·刚体定轴转动定律、转动惯量
·刚体转动中的功和能
·质点、刚体的角动量、角动量守恒定律
1
精都考研网(专业课精编资料、一对一辅导、视频网课)。
东北大学2021年硕士研究生招生考试考试大纲(839)考试大纲-自动控制原理东北大学2021年硕士研究生招生考试考试大纲科目代码:839;科目名称:自动控制原理一、考试性质自动控制原理是信息科学与工程学院控制科学与工程专业(专业代码:081100)、电子信息专业(专业代码:085400)控制工程、人工智能方向硕士生入学考试的专业基础课。
考试对象为参加信息科学与工程学院控制科学与工程专业、电子信息专业控制工程、人工智能方向2021年全国硕士研究生入学考试的准考考生。
二、考试形式与试卷结构(一)考试形式:闭卷,笔试。
(二)考试时间:180分钟。
(三)考试题型及比例:简答题(约占20%),综合题(约占80%)。
(四)参考书目:王建辉,自动控制原理,清华大学出版社,2007年4月。
三、考查要点(一)自动控制系统的基本概念1.自动控制系统的组成2.自动控制系统的工作原理3.自动控制系统的类型4.自动控制系统的性能指标(二)系统模型的建立1.传递函数的定义及典型环节的传递函数2.根据物理定律写出描写系统动态的微分方程并求传递函数3.画出系统的动态结构图并通过化简求出传递函数4.画出系统的信号流图并通过化简求出传递函数(三)自动控制系统的时域分析法1.根据系统的微分方程或传递函数求出系统输出随时间变化的解(主要考虑系统输入为阶跃信号,被控对象为一阶和二阶系统),并分析系统的性能。
2.根据系统的特征方程判断系统的稳定性3.稳态误差的定义及计算(四)自动控制系统的根轨迹分析法1.根轨迹的概念2.根轨迹的绘制3.利用根轨迹分析系统的性能(五)自动控制系统的频率分析法1.频率特性的概念及表示方法2.典型环节及开环系统频率特性的绘制3.利用系统的开环频率特性分析系统的性能4.闭环频率特性及与系统的动态性能的关系(六)控制系统的校正及综合1.控制系统校正的基本概念2.串联校正3.并联校正4.复合校正(七)非线性系统分析1.非线性系统的特点2.典型的非线性系统3.利用描述函数法分析非线性系统4.相平面法(八)线性离散系统的理论基础1.离散系统的基本概念及基础知识2.脉冲传递函数的定义及推导3.采样控制系统的时域分析四、计算器使用要求本科目需使用计算器、三角板附件1:大纲导语参考一、简答题(概念解释,共10分,2小题,每题5分)二、综合题(共140分,7大题,每题20分;其中部分大题中包括简答题,共20分,2小题,每题10分)附件2:参考书目信息(参考书目的封面)样题:。
2020年东北大学考研专业课初试大纲
2020年硕士研究生统一入学考试《高等代数》考试大纲
第一部分考试说明
一、考试性质
高等代数是理学院数学一级学科硕士招生专业入学考试课程之一。
考试对象为参加理学院2020年全国硕士研究生入学考试的准考考生。
二、考试形式及参考书目
1. 答卷方式:闭卷,笔试
2. 答题时间:180分钟
3.考试题型及比例
计算40%
证明60%
4. 参考书目:
北京大学数学系前代数小组编,王萼芳,石生明修订,高等代数(第四版),高等教育出版社,2013年8月.
第二部分考试要点
高等代数部分
一、行列式
1.行列式基本性质
2.展开定理
1
精都考研网(专业课精编资料、一对一辅导、视频网课)。
2020年硕士研究生招生考试初试考试大纲科目代码:804科目名称:物理化学适用专业:环境科学与工程、环境工程、材料科学与工程、材料工程考试时间:3小时考试方式:笔试总分:150分考试范围:一、概述物理化学课程主要包括化学热力学、电化学、化学动力学、界面现象、胶体化学和统计热力学等六个部分。
其中前四部分为主要内容。
考生应比较牢固地掌握物理化学基本概念及计算方法,同时还应掌握物理化学一般方法,及结合具体条件应用理论解决实际问题的能力。
在有关的物理量计算和表述中,注意采用国家标准单位制(SI制)及遵循有效数运算规则。
二、课程考试的基本要求下面按化学热力学、统计热力学初步、电化学、化学动力学、界面现象和胶体化学六个部分列出基本要求。
基本要求按深入程度分“了解”、“理解”和“掌握”三个层次。
1、化学热力学(1)热力学基础理解下列热力学基本概念:平衡状态,状态函数,可逆过程,热力学标准态。
理解热力学第一、第二定律的叙述及数学表达式,掌握热力学能、焓、熵、Helmholtz函数和Gibbs函数等热力学函数及标准燃烧焓、标准生成焓、标准摩尔熵、标准生成Gibbs函数等概念。
掌握在物质P、V、T变化、相变化和化学变化过程中计算热、功和各种状态函数变化值的原理和方法。
在将热力学一般关系式应用于特定系统的时候,会应用状态方程(主要是理想气体状态方程,其次是Van der Waals方程)和物性数据(热容、相变热、蒸汽压等)。
掌握熵增原理和各种平衡判据。
理解热力学公式的适用条件。
理解热力学基本方程和Maxwell关系式。
掌握用热力学基本方程和Maxwell关系式推导重要热力学公式的演绎方法。
(2)溶液与相平衡理解偏摩尔量和化学势的概念。
掌握Raoult定律和Henry定律以及它们的应用。
理解理想系统(理想溶液及理想稀溶液)中各组分化学势的表达式。
理解逸度和活度的概念。
了解逸度和活度的标准态。
会从相平衡条件推导 Clapeyron和Clapeyron—Clausius方程,并能应用这些方程进行有关计算。
2020年硕士研究生统一入学考试《电路原理》第一部分考试说明一、考试性质电路原理是电气工程一级学科、电气工程专业学位硕士生入学考试的专业基础课。
考试对象为参加东北大学信息学院2020年全国硕士研究生入学考试的准考考生。
二、考试形式与试卷结构(一)答卷方式:闭卷,笔试(二)答题时间:180分钟(三)考试题型:计算综合题(四)参考书目电路原理(第3版),李华、吴建华,机械工业出版社,2016年8月。
第二部分考查要点(一)电路基本定律1.电路基本变量2.耗能元件与储能元件3.独立电源和受控电源4.基尔霍夫定律5.电阻的联结及等效变换6.电源的联结及等效变换(二)电路一般分析方法及电路定理1.支路电流法2.回路电流法3.节点电压法4.叠加定理5.等效电源定理6.互易定理(三)正弦稳态电路分析1.正弦量的相量表示2.RLC元件伏安特性的相量形式3.基尔霍夫定律的相量形式及电路的相量模型4.阻抗与导纳5.正弦稳态电路的分析计算6.正弦交流电路的功率7. 传输最大功率(四)三相电路1.对称三相电路的特点2. 对称三相电路的计算3.不对称三相电路的分析4.三相电路的功率(五)互感电路与谐振电路1.含互感电路的分析计算2.空心变压器和理想变压器3.串联谐振电路的分析计算4.并联谐振电路的分析计算(六)周期性非正弦稳态电路分析1.非正弦周期量的有效值和平均功率2.非正弦周期电流电路的分析计算(七)线性动态网络时域分析1.一阶电路的零输入响应和零状态响应2.一阶电路的全响应3.一阶电路的阶跃响应和冲激响应4.一阶电路对正弦激励的响应5.线性动态网络对任意激励的响应(八)线性动态网络复频域分析1.拉普拉斯变换及其重要性质2.拉普拉斯反变换的部分分式法3.两类约束的复频域形式4.复频域分析法5.网络函数及其应用(九)双口网络1.双口网络的Y参数、Z参数、A参数和H参数计算2.双口网络的转移函数3.双口网络的特性阻抗4.双口网络的等效电路5.双口网络的联结(十)非线性电路1.非线性电阻元件特性2.非线性电阻电路的解析分析法3.非线性电阻电路的图解分析法4.非线性电阻电路的小信号分析法样题:。
《传热学》考试大纲一、学习目的传热学是一门技术基础课,具有基础科学和技术科学的二重性,它不仅是热能与动力及建筑环境工程等专业后继课程学习的基础,也直接为解决热能与动力及建筑环境工程中的实际问题服务。
通过本课程的学习,使学生掌握传热学理论的基本知识和概念,培养学生利用传热学原理分析和解决实际问题的能力。
二、参考教材杨世铭,陶文铨编著.《传热学》第四版. 北京:高等教育出版社,2006.8三、课程基本内容第一章绪论学习内容:传热学在工程和科学技术中的应用,导热、对流和热辐射、传热过程及热阻概念。
重点掌握:导热、对流传热和热辐射形成的机理及其传热过程中传热量基本计算公式。
第二章稳态热传导学习内容:傅里叶定律及导热系数,导热微分方程及定解条件,无限大平板、无限长圆筒壁、球壳稳态导热问题的解析解,通过肋片的稳态导热、具有内热源的一维导热。
重点掌握:利用傅里叶定律判断物体内部温度及导热系数变化规律的方法;导热问题微分方程的建立及定解条件的确定,多层无限大平板、无限长圆筒壁间的温度及其传热量的计算,对等截面直肋肋端温度的计算及其解的应用,对肋效率的理解,具有内热源平板导热问题的求解。
第三章非稳态热传导学习内容:非稳态热传导的基本概念与特点,集中参数法,典型一维非稳态热传导的分析解,半无限大物体的非稳态热传导。
重点掌握:在非稳态导热过程中出现非正规状况阶段和正规状况阶段的特点,热扩散率、吸热系数、导热系数的物理意义及其相互的联系,影响时间常数的因素,集中参数法的适用条件及解题方法,从几何位置和时间角度对半无限大物体概念的理解及其工程应用。
第四章热传导问题的数值解法学习内容:导热问题数值求解的基本思想,内节点离散方程的建立方法,内节点离散方程的建立及代数方程的求解,非稳态导热问题的数值解法。
重点掌握:利用热平衡方法对各类节点离散方程的建立,利用判据判别利用高斯—赛德尔迭代法解题的收敛性和解题过程。
第五章对流传热的理论基础学习内容:对流传热概说,对流传热问题的数学描写,边界层型对流传热问题的数学描写,流体外掠平板传热层流分析解及比拟理论。
2020年硕士研究生统一入学考试《信号与系统》第一部分考试说明一、考试性质信号与系统是信息与通信工程(一级学科)、电子与通信工程领域硕士研究生入学考试的专业基础课。
考试对象为参加东北大学计算机科学与工程学院2020年全国硕士研究生入学考试的准考考生。
二、考试形式与试卷结构(一)答卷方式:闭卷,笔试(二)答题时间:180分钟(三)考试题型及比例基本概念解释15%选择填空 25%计算题30%应用题 30%(四)参考书目郑君里、应启珩、杨为理《信号与系统》 (第三版) 上、下册高等教育出版社 2011.03第二部分考查要点(一)基本概念1、信号的描述、分类和典型示例2、阶跃信号与冲激信号3、信号的分解4、系统的模型及分类(二)连续时间系统的时域分析1、微分方程式的建立与求解2、零输入响应和零状态响应3、冲激响应与阶跃响应4、卷积5、卷积的性质(三)连续时间系统的频域分析1、周期信号的傅立叶分解2、典型周期信号的傅立叶级数3、傅立叶变换4、典型非周期信号的傅立叶变换5、冲激函数和阶跃函数傅立叶变换6、傅立叶变换的基本性质7、卷积特性8、周期信号的傅立叶变换9、抽样信号的傅立叶变换10、抽样定理(四)拉普拉斯变换、连续时间系统的S域分析1、拉普拉斯变换的定义、收敛域2、拉普拉斯变换的性质3、拉普拉斯反变换4、用拉普拉斯变换分析电路、S域元件模型5、系统函数H(s)6、由系统函数的零极点分布决定时域特性7、由系统函数零极点分布决定濒响特性8、连续系统稳定性9、双边拉氏变换10、拉氏变换与付氏变换的关系(五)付里叶变换应用于通信系统1、利用系统函数H(jw)求响应2、无失真传输3、理想低通滤波器4、调制与解调(六)离散系统时域分析1、离散时间信号2、离散时间系统数学模型-差分方程3、常系数线性差分方程的求解4、离散时间系统的单位样值响应5、离散时间系统卷积和(七)Z变换、离散时间系统的Z域分析1、Z变换的定义、典型序列的Z变换2、Z变换的收敛域3、反Z变换4、Z变换的基本性质5、Z变换与拉拉氏变换的关系6、利用Z变换解差分方程7、离散系统函数H(Z)样题:。
2020年东北大学考研专业课初试大纲
2020年硕士研究生统一入学考试
《传热学》
第一部分考试说明
一、考试性质
传热学是动力工程及工程热物理和动力工程领域硕士研究生入学考试的专业基础课。
二、考试形式与试卷结构
(一) 答卷方式:闭卷,笔试,需考生自备计算器
(二) 答题时间:180分钟
(三) 题型及比例
基本概念25%
理论分析与推导15%
计算题60%
( 包括简单传热学问题计算和工程应用计算)
(四) 满分分值:150分
(五) 参考书目
杨世铭,陶文铨. 传热学(第四版). 高等教育出版社.2006年。
第二部分考试大纲
第1章绪论
热量传递的三种基本方式,以及由这些基本方式组合而成的传热过程。
涉及的主要内容有:热量传递的基本方式及机理、基本表达式和各物理量的意义、单位;热阻、传热系数等基本概念;传热方式的链接或叠加及其分析和简单计算等。
1
精都考研网(专业课精编资料、一对一辅导、视频网课)。