揭阳市中考数学试卷(含答案)
- 格式:doc
- 大小:852.00 KB
- 文档页数:10
广东省揭阳市中考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共14题;共28分)1. (2分)(2017·河北模拟) 实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A . ﹣a<0<﹣bB . 0<﹣a<﹣bC . ﹣b<0<﹣aD . 0<﹣b<﹣a2. (2分)已知某种纸一张的厚度约为0.0089cm,用科学记数法表示这个数为()A . 8.9×10-5B . 8.9×10-4C . 8.9×10-3D . 8.9×10-23. (2分)如图所示的图案是由六个全等的菱形拼成的,它也可以看作是以一个图案为“基本图案”,通过旋转得到的.以下图案中,不能作为“基本图案”的一个是()A .B .C .D .4. (2分)(2020·滨州) 已知一组数据5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A . 1B . 2C . 3D . 45. (2分)(2019·黄浦模拟) 下列运算正确的是()A . (a2)3B .C .D .6. (2分) (2019七下·铜陵期末) 不等式组的解集在数轴上表示为()A .B .C .D .7. (2分)一个直角三角形的模具,量得其中两边长分别为4cm、3cm,则第三条边长为()A . 5cmB . 4cmC . cmD . 5cm或cm8. (2分) (2019八下·鄂城期末) 如图,在△ABC中,∠C=90°,E是CA延长线上一点,F是CB上一点,AE=12,BF=8,点P,Q,D分别是AF,BE,AB的中点,则PQ的长为()A . 2B . 4C . 6D . 39. (2分) (2019七下·东阳期末) 有一个计算器,计算时只能显示1.41421356237十三位(包括小数点),现在想显示出7后面的数字是什么,可以在这个计算器中计算下面哪一个值()A . 10B . 10( -1)C . 100D . -110. (2分) (2019八下·莱州期末) 如图,点的坐标是,若点在轴上,且是等腰三角形,则点的坐标不可能是()A .B .C .D .11. (2分) (2019八下·芜湖期中) 已知一个直角三角形斜边为20,一条直角边长为16,那么它的面积是()A . 160B . 48C . 60D . 9612. (2分)(2020·云南) 如图,正方形的边长为4,以点A为圆心,为半径画圆弧得到扇形(阴影部分,点E在对角线上).若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A .B . 1C .D .13. (2分)(2020·重庆模拟) 如图,点A在反比例函数y= 的图象上,AB⊥x轴于点B,点C在x轴上,且CO:OB=2:1.△ABC的面积为6,则k的值为()A . 2B . 3C . 4D . 514. (2分)(2019·广州模拟) 如图,等腰直角的直角边长为1,正方形MNPQ的边长为2,C、M、A、N在同一条直线上,开始时点A与点M重合,让向右平移,当完全移出正方形MNPQ时停止,设三角形与正方形重合的面积为S,点A平移的距离为x,则S关于x的大致图象是()A .B .C .D .二、填空题 (共3题;共3分)15. (1分) (2019八下·嘉兴期中) 若一个多边形的每个内角都是140°,则这个多边形是________边形.16. (1分)(2018·鹿城模拟) 小红同学5月份各项消费情况的扇形统计图如图所示,其中小红在学习用品上支出100元,则在午餐上支出________元17. (1分) (2017七下·南陵竞赛) 在图中每个小方格内填入一个数,使每一行、每一列都有1、2、3、4、5.那么,右下角的小方格(用粗线围出的方格)内填入的数应是________.三、解答题 (共9题;共75分)18. (1分)(2020·闵行模拟) 七宝琉璃玲珑塔(简称七宝塔),位于上海市七宝古镇的七宝教寺内,塔高47米,共7层.学校老师组织学生利用无人机实地勘测,如果无人机在飞行的某一高度时传回数据,测得塔顶的仰角为60°,塔底的俯角为45°,那么此时无人机距离地面的高度为________米.(结果保留根号)19. (5分)先化简,再求值:÷(2+),其中a=.20. (10分) (2020七下·吴中期中) 如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.( 1 )画出△ABC向右平移4个单位后得到的△A1B1C1;( 2 )图中AC与A1C1的关系是:_▲_.( 3 )画出△ABC的AB边上的高CD;垂足是D;( 4 )图中△ABC的面积是_▲_.21. (6分)(2016·江西) 甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:①将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);②两人摸牌结束时,将所摸牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”;若“点数”之和大于10,则“最终点数”是0;③游戏结束前双方均不知道对方“点数”;④判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两张牌,数字之和都是5,这时桌上还有四张背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一张扑克牌,乙不再摸牌,则甲获胜的概率为________;(2)若甲先从桌上继续摸一张扑克牌,接着乙从剩下的扑克牌中摸出一张牌,然后双方不再摸牌.请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.22. (10分)(2019·鄞州模拟) 某厂制作甲、乙两种环保包装盒。
绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.负数的概念最早出现在我国古代著名的数学专著《九章算术》中.如果把收入5元记作+5元,那么支出5元记作( )A. −5元B. 0元C. +5元D. +10元2.下列出版社的商标图案中,是轴对称图形的为( )A. B.C. D.3.2023年5月28日,我国自主研发的C919国产大飞机商业首航取得圆满成功.C919可储存约186000升燃油,将数据186000用科学记数法表示为( )A. 0.186×105B. 1.86×105C. 18.6×104D. 186×1034.如图,街道AB与CD平行,拐角∠ABC=137°,则拐角∠BCD=( )A. 43°B. 53°C. 107°D. 137°5.计算3a +2a的结果为( )A. 1a B. 6a2C. 5aD. 6a6.我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了( )A. 黄金分割数B. 平均数C. 众数D. 中位数7.某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为( ) A. 18B. 16C. 14D. 128.一元一次不等式组{x −2>1x <4的解集为( )A. −1<x <4B. x <4C. x <3D. 3<x <49.如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =( )A. 20°B. 40°C. 50°D. 80°10.如图,抛物线y =ax 2+c 经过正方形OABC 的三个顶点A ,B ,C ,点B 在y 轴上,则ac 的值为( ) A. −1 B. −2 C. −3 D. −4二、填空题:本题共5小题,每小题3分,共15分。
2022年广东省揭阳市中考数学试卷(真题)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2 B.2 C.D.2.(3分)(2022•广东)计算22的结果是()A.1 B.C.2 D.43.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1 D.26.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC 9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y,y2,y3,y4中最小的是()1A.y1B.y2C.y3D.y410.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.12.(3分)(2022•广东)单项式3xy的系数为.13.(3分)(2022•广东)菱形的边长为5,则它的周长是.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a=.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE ⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x0 2 5y15 19 25 (1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.2022年广东省揭阳市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2022•广东)|﹣2|=()A.﹣2 B.2 C.D.【分析】根据绝对值的意义解答即可.【解答】解:根据绝对值的意义:|﹣2|=2,故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的意义是解答本题的关键.2.(3分)(2022•广东)计算22的结果是()A.1 B.C.2 D.4【分析】应用有理数的乘方运算法则进行计算即可得出答案.【解答】解:22=4.故选:D.【点评】本题主要考查了有理数的乘方,熟练掌握有理数的乘方运算法则进行求解是解决本题的关键.3.(3分)(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.【解答】解:三角形具有稳定性,四边形不具有稳定性,故选:A.【点评】本题考查了三角形的稳定性,掌握三角形具有稳定性是解题的关键.4.(3分)(2022•广东)如图,直线a∥b,∠1=40°,则∠2=()A.30°B.40°C.50°D.60°【分析】利用平行线的性质可得结论.【解答】解:∵a∥b,∴∠2=∠1=40°.故选:B.【点评】本题考查了平行线的性质,掌握“两直线平行,同位角角相等”是解决本题的关键.5.(3分)(2022•广东)如图,在△ABC中,BC=4,点D,E分别为AB,AC的中点,则DE=()A.B.C.1 D.2【分析】由题意可得DE是△ABC的中位线,再根据三角形中位线的性质即可求出DE的长度.【解答】解:∵点D,E分别为AB,AC的中点,BC=4,∴DE是△ABC的中位线,∴DE=BC=×4=2,故选:D.【点评】本题考查了三角形中位线定理,熟练掌握三角形中位线的定义和性质是解决问题的关键.6.(3分)(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A.(3,1)B.(﹣1,1)C.(1,3)D.(1,﹣1)【分析】根据平面直角坐标系中点的坐标的平移特点解答即可.【解答】解:将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选:A.【点评】本题主要考查了平面直角坐标系中点的坐标,熟练掌握点的平移规律是解答本题的关键.7.(3分)(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为()A.B.C.D.【分析】应用简单随机事件概率计算方法进行计算即可得出答案.【解答】解:根据题意可得,P(从中任取1本书是物理书)=.故选:B.【点评】本题主要考查了概率公式,熟练掌握简单随机事件概率的计算方法进行求解是解决本题的关键.8.(3分)(2022•广东)如图,在▱ABCD中,一定正确的是()A.AD=CD B.AC=BD C.AB=CD D.CD=BC【分析】根据平行四边形的性质即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,故选:C.【点评】本题考查了平行四边形的性质,熟练掌握平行四边形对边相等的性质是解决问题的关键.9.(3分)(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y,y2,y3,y4中最小的是()1A.y1B.y2C.y3D.y4【分析】根据k>0可知增减性:在每一象限内,y随x的增大而减小,根据横坐标的大小关系可作判断.【解答】解:∵k=4>0,∴在第一象限内,y随x的增大而减小,∵(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,且1<2<3<4,∴y4最小.故选:D.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象的增减性是解答此题的关键.10.(3分)(2022•广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为C=2πr.下列判断正确的是()A.2是变量B.π是变量C.r是变量D.C是常量【分析】根据变量与常量的定义进行求解即可得出答案.【解答】解:根据题意可得,在C=2πr中.2,π为常量,r是自变量,C是因变量.故选:C.【点评】本题主要考查了常量与变量,熟练掌握常量与变量的定义进行求解是解决本题的关键.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)(2022•广东)sin30°=.【分析】熟记特殊角的三角函数值进行求解即可得出答案.【解答】解:sin30°=.故答案为:.【点评】本题主要考查了特殊角三角函数值,熟练掌握特殊角三角函数值进行求解是解决本题的关键.12.(3分)(2022•广东)单项式3xy的系数为 3 .【分析】应用单项式的定义进行判定即可得出答案.【解答】解:单项式3xy的系数为3.故答案为:3.【点评】本题主要考查了单项式,熟练掌握单项式的定义进行求解是解决本题的关键.13.(3分)(2022•广东)菱形的边长为5,则它的周长是20 .【分析】根据菱形的性质即可解决问题;【解答】解:∵菱形的四边相等,边长为5,∴菱形的周长为5×4=20,故答案为20.【点评】本题考查菱形的性质、解题的关键是记住菱形的四边相等,属于中考基础题.14.(3分)(2022•广东)若x=1是方程x2﹣2x+a=0的根,则a= 1 .【分析】把x=1代入方程x2﹣2x+a=0中,计算即可得出答案.【解答】解:把x=1代入方程x2﹣2x+a=0中,得1﹣2+a=0,解得a=1.故答案为:1.【点评】本题主要考查了一元二次方程的解,应用一元二次方程的解的定义进行求解是解决本题的关键.15.(3分)(2022•广东)扇形的半径为2,圆心角为90°,则该扇形的面积(结果保留π)为π.【分析】应用扇形面积计算公式进行计算即可得出答案.【解答】解:S===π.故答案为:π.【点评】本题主要考查了扇形面积的计算,熟练掌握扇形面积的计算方法进行求解即可得出答案.三、解答题(一):本大题共3小题,每小题8分,共24分.16.(8分)(2022•广东)解不等式组:.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:,由①得:x>1,由②得:x<2,∴不等式组的解集为1<x<2.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.(8分)(2022•广东)先化简,再求值:a+,其中a=5.【分析】原式通分并利用同分母分式的加法法则计算,得到最简结果,把a 的值代入计算即可求出值.【解答】解:原式=====2a+1,当a=5时,原式=10+1=11.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(8分)(2022•广东)如图,已知∠AOC=∠BOC,点P在OC上,PD⊥OA,PE ⊥OB,垂足分别为D,E.求证:△OPD≌△OPE.【分析】根据角平分线性质得出PD=PE,即可利用HL证明Rt△OPD≌Rt△OPE.【解答】证明:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PD=PE,在Rt△OPD和Rt△OPE中,,∴Rt△OPD≌Rt△OPE(HL).【点评】此题考查全等三角形的判定与性质,熟记全等三角形的判定定理是解题的关键.四、解答题(二):本大题共3小题,每小题9分,共27分.19.(9分)(2022•广东)《九章算术》是我国古代的数学专著,几名学生要凑钱购买1本.若每人出8元,则多了3元;若每人出7元,则少了4元.问学生人数和该书单价各是多少?【分析】设有x人,该书单价y元,根据“如果每人出8元,则多了3元;如果每人出7元,则少了4元钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设学生有x人,该书单价y元,根据题意得:,解得:.答:学生有7人,该书单价53元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(9分)(2022•广东)物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)满足函数关系y=kx+15.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.x0 2 5y15 19 25 (1)求y与x的函数关系式;(2)当弹簧长度为20cm时,求所挂物体的质量.【分析】(1)把x=2,y=19代入y=kx+15中,即可算出k的值,即可得出答案;(2)把y=20代入y=2x+15中,计算即可得出答案.【解答】解:(1)把x=2,y=19代入y=kx+15中,得19=2k+15,解得:k=2,所以y与x的函数关系式为y=2x+15;(2)把y=20代入y=2x+15中,得20=2x+15,解得:x=2.5.所挂物体的质量为2.5kg.【点评】本题主要考查了函数关系式及函数值,熟练掌握函数关系式及函数值的计算方法进行求解是解决本题的关键.21.(9分)(2022•广东)为振兴乡村经济,在农产品网络销售中实行目标管理,根据目标完成的情况对销售员给予适当的奖励,某村委会统计了15名销售员在某月的销售额(单位:万元),数据如下:10 4 7 5 4 10 5 4 4 18 8 3 5 10 8(1)补全月销售额数据的条形统计图.(2)月销售额在哪个值的人数最多(众数)?中间的月销售额(中位数)是多少?平均月销售额(平均数)是多少?(3)根据(2)中的结果,确定一个较高的销售目标给予奖励,你认为月销额定为多少合适?【分析】(1)根据销售成绩统计,即可得出销售4万元和8万元的人数,即可补充完整图形;(2)根据众数,中位数,算术平均数的计算方法进行求解即可得出答案;(3)根据(2)中的结论进行分析即可得出答案.【解答】解:(1)补全统计图,如图,;(2)根据条形统计图可得,众数为:4,中位数为:5,平均数为:=7(3)应确定销售目标为7万元,要让一半以上的销售人员拿到奖励.【点评】本题主要考查了条形统计图,中位数,众数,算术平均数,熟练掌握条形统计图,中位数,众数,算术平均数的计算方法进行求解是解决本题的关键.五、解答题(三):本大题共2小题,每小题12分,共24分.22.(12分)(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB=∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.【分析】(1)根据圆周角定理,等腰直角三角形的判定定理解答即可;(2)根据勾股定理解答即可.【解答】解:(1)△ABC是等腰直角三角形,证明过程如下:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°,∵∠ADB=∠CDB,∴,∴AB=BC,又∵∠ABC=90°,∴△ABC是等腰直角三角形.(2)在Rt△ABC中,AB=BC=,∴AC=2,在Rt△ADC中,AD=1,AC=2,∴CD=.即CD的长为:.【点评】本题主要考查了圆周角定理,等腰直角三角形的判定和性质,勾股定理,熟练掌握相关性质定理是解答本题的关键.23.(12分)(2022•广东)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.(1)求该抛物线的解析式;(2)求△CPQ面积的最大值,并求此时P点坐标.【分析】(1)根据A(1,0),AB=4求出B(﹣3,0),把A、B的坐标代入抛物线y=x2+bx+c,即可求解;(2)过Q作QE⊥x轴于E,设P(m,0),则PA=1﹣m,易证△PQA∽△BCA,利用相似三角形的性质即可求出QE的长,又因为S△CPQ=S△PCA﹣S△PQA,进而得到△CPQ面积和m的二次函数关系式,利用二次函数的性质即可求出面积最大值.【解答】(1)∵抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,∴B(﹣3,0),∴,解得,∴抛物线的解析式为y=x2+2x﹣3;(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F,设P(m,0),则PA=1﹣m,∵y=x2+2x﹣3=(x+1)2﹣4,∴C(﹣1,﹣4),∴OB=3 AB=4,∵PQ∥BC,∴△PQA∽△BCA,∴,即,∴QE=1﹣m,∴S△CPQ=S△PCA﹣S△PQA=PA•CF﹣PA•QE=(1﹣m)×4﹣(1﹣m)(1﹣m)=﹣(m+1)2+2,∵﹣3≤m≤1,∴当m=﹣1时S△CPQ有最大值2,∴△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法求函数解析式,相似三角形的判定和性质,解题的关键是抓住图形中某些特殊的数量关系和位置关系.此题综合性较强,中等难度,是一道很好的试题.。
揭阳中考数学试卷真题2023题目:揭阳中考数学试卷真题2023(正文)题目一:选择题(共15小题,每小题4分,共60分)1. 某公司生产两种型号的电视机,每一台A型电视机的成本是3000元,每一台B型电视机的成本是5000元。
公司计划制造n台电视机(n>0)。
若公司花费的总成本不超过100000元,且A型电视机不能超过B型的1.5倍,求n的取值范围。
2. 已知函数f(x) = 2x + 3。
(1)计算f(5) - f(-3)的值。
(2)求使得f(a) = f(2a)成立的实数a的值。
3. 直角坐标系中,已知点A(3, 4),点B在第三象限且满足AB = 5,求点B的坐标。
4. 已知集合A = {-3, -1, 1, 2},集合B = {-1, 0, 2, 3},求A与B的并集和交集。
5. 若x + y = 7,xy = 12,则x和y的值分别是多少?6. 在平行四边形ABCD中,已知AB = 8,BC = 6。
过点D作MN⊥ AB,交AB于点N,交BC于点M,则DM的长度是多少?7. 若函数y = log2x,求函数y = logx2的导函数。
8. 设一组数据为9, 10, 11, 12, 13,将两个数据分别舍去最左端一位和最右端一位后,得到两个两位数10和12,求这组数据的平均值。
9. 某超市购进一种商品,每件进价20元,商店规定所售出的每件商品的定价都是大于进价的15%,设商品的定价为x元,若商店卖出y 件商品,且总收入z为960元,求x、y、z满足的条件。
10. 若正方形ABCD的边长为6 cm,点E、F分别是AD的延长线上的一点,且AE = 2 cm,CD = BF。
求正方形ABCD与三角形(∆)BDE 的面积之和。
11. 已知函数f(x)的图象为平行于x轴。
(1)求f(x)的解析式。
(2)若f(4) = -3,求f(1)的值。
12. 某地球村每日清晨7时出发的观光游轮以恒定的速度行驶,既定出发点到达旅游景点需要10小时;若游轮每小时增速0.5 km/h出发,则景点到出发点的距离是多少?13. 若点A(-2, 1)关于点B(3, 4)的对称点为C,点D为BC的中点,求线段AD的中点坐标。
2024年中考数学科模拟试卷一、选择题(每小题3分,共30分)1.石墨烯堪称目前世界上最薄的材料,约为0.3纳米(1纳米=0.000000001米).与此同时,石墨烯比金刚石更硬,是世界上最坚硬又最薄的纳米材料.0.3纳米用科学记数法可以表示为( )米A. B. C. D.2.下列运算正确的是( )A. B.D.3.如图是一个正方体的平面展开图,若将其按虚线折叠成正方体后,相对面上的两个数字之和均为6,则的值为( )A.0B.2C.D.204.某班35位同学课外阅读物的数量统计如下表所示,其中有两个数据被遮盖,下列关于课外阅读物的统计量中,与被遮盖的数据无关的是( ).课外阅读物的数量2345678人数■■97932A.平均数,方差B.中位数,方差C.平均数,众数D.中位数,众数5.如图,小明从点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°…照这样走下去,他第一次回到出发点时,共走路程为()A.80米B.96米C.64米D.48米6.已知,是等腰三角形的两边长,且,满足,则此等腰三角形的周长为()8310-⨯90.310-⨯9310-⨯10310-⨯235a a a +=()3322x x -=-+=()()222a b a b a ab b--+=---2x y z -+12-A A a b a b ()2223130a a b -++-=A.8B.6或8C.7D.7或87.如图是由3个边长为2的正方形组成的物件,将它镶嵌在一个圆形的金属框上,使,,三点恰好在金属框上,则该金属框的半径是()B. C. D.48.数学是研究化学的重要工具,数学知识广泛应用于化学邻域,比如在学习化学的醇类化学式中,甲醇化学式为,乙醇化学式为,丙醇化学式为,……,设碳原子的数目为(为正整数),则醇类的化学式可以用下列哪个式子来表示( )A. B. C. D.9.已知二次函数()的图象与轴交于点,点与点关于抛物线的对称轴对称,且点,在该函数图象上.二次函数()中的自变量与函数值的部分对应值如下表:…013……255…下列结论:①抛物线的对称轴是直线;②这个函数的最大值大于5;③点的坐标是;4当,时,,其中正确的是( )( )A.①④B.②④C.③④D.②③④10.如图,菱形中,,与交于点,为延长线上一点,且,连接,分别交,于点、,连接,则下列结论正确的有()个.A B C 3CH OH 25C H OH 37C H OH n n 3C H OH n n 21C H OHn n -21C H OH n n +2C H OHn n 2y ax bx c =++0a ≠y A A B ()11,C x y ()22,D x y 2y ax bx c =++0a ≠x y x 2-1-y1-3-32x =B ()2,2101x <<245x <<12y y >ABCD 60BAD ∠=︒AC BD O E CD CD DE =BE AC AD F G OG①;②由点、、、构成的四边形是菱形;③;④.A.1B.2 C.3 D.4二、填空题(每小题3分,共18分)11.有意义,则的取值范围为______.12.如图,某飞机于空中处探测到目标,此时飞行高度,从飞机上看地平面指挥台的俯角,则飞机与指挥台的距离等于______.(结果保留整数)(参考数据,,)13.已知关于、的方程组的解满足.则的取值范围是______.14.如图,在矩形中,,以点为圆心,为半径的圆弧交于点,交的延长线于点,设.图中阴影部分的面积为______.15.如图,在矩形中,点在边上,连接,将绕点顺时针旋转90°得到,连接.若,,______.16.如图,为等边三角形,点为外的一点,,,则的面积为______.12OG AB =A B D E ABF ODGF S S =△四边形4ACD BOG S S =△△x A C 1200m AC =B 1631α=︒'A B sin16310.28'︒=cos16310.95'︒=tan16310.30'︒=x y 324523x y k x y k+=+⎧⎨+=⎩13x y -<+<k ABCD 2AB DA =A AB DC E AD F 2DA =ABCD P BC PA PA P PA 'CA '9AD =5AB =CA '=BP =ABC △D ABC △60ADC ∠=︒4CD =BCD △三、解答题一(共20分)17.(4分)分解因式:.18.(4分)某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,求八年级有多少个班级.19.(6分)如图,在平面直角坐标系中,,,.(1)以点为旋转中心,把逆时针旋转90°,画出旋转后的图形;(2)若与关于点位似,且位似比为1:2,直接写出坐标______.20.(6分)“英雄花开英雄城”2024广州传承弘扬红色文化系列活动正如火如荼地开展.某社区组织了形式多样的学雷锋志愿服务活动,活动现场设置义诊、科普宣传、普法宣传、消防宣传、交通宣传等多个便民服务摊位,吸引了众多市民前来参与活动.其中,前来参与义诊活动的100位市民的年龄整理可得如下的频数分布表:年龄分组/岁频数15254020(1)参与义诊活动的市民平均年龄为______岁;(2)某医院安排了4名医生前来为市民提供义诊,现要从这4名医生(其中3名女医生,1名男医生)中随机抽调2人到附近养老院为老人义诊,用树状图或列表的方法求抽取的两名医生恰好都是女医生的概率.四、解答题二(共28分)21.(8分)已知是方程组的解.(1)求的值;269x y xy y -+()3,3A ()4,0B ()0,1C -C ABC △A B C ''△12C A B △A B C ''△C 1A 020x ≤<2040x ≤<4060x ≤<6080x ≤<11x y =⎧⎨=-⎩28ax by bx ay +=-⎧⎨-=⎩ab(2)若已知一个三角形的一条边长为4,它的另外两条边的长是方程的解,试判断这个三角形的形状并说明理由.22.(10分)【项目式学习】【项目主题】合理规划,绿色家园【项目背景】某小区有4栋住宅楼:栋,栋,栋,栋,处为小区入口.为方便小区居民传递爱心,物业管理处准备在小区的一条主干道上增设一个“爱心衣物回收箱”(如图1),现需设计“爱心衣物回收箱”的具体位置,使得它到4栋住宅楼的距离之和最短.某数学兴趣小组成员开展了如下探究活动图1任务一 实地测绘小组成员借助无人机航测技术绘制了小区平面图(如图2),并测量出了某些道路的长度(如表格所示),进一步抽象成几何图形(如图3),其中主干道与交于点,.小组成员又借助电子角度仪测得,.图2图3任务二 数学计算根据图3及表格中的相关数据,请完成下列计算:道路长度(米)403030183225(1)求道路的长;(2)道路______米;()20x a b x ab -++=B C D E A BE AC BE F BE CD ∥90BCE ∠=︒CEB CED ∠=∠AE ABBCBF EF DECD AC =①根据以上探究,请你在主干道上画出“爱心衣物回收箱”的具体位置(用点表示),并画出需要增设的小路,;②“爱心衣物回收箱”到4栋住宅楼的距离之和的最小值为______米.(保留根号)23.(10分)综合与实践如图1,某兴趣小组计划开垦一个面积为的矩形地块种植农作物,地块一边靠墙,另外三边用木栏围住,木栏总长为图1【问题提出】小组同学提出这样一个问题:若,能否围出矩形地块?【问题探究】小颖尝试从“函数图象”的角度解决这个问题:设为,为.由矩形地块面积为,得到,满足条件的可看成是反比例函数的图象在第一象限内点的坐标;木栏总长为,得到,满足条件的可看成一次函数的图象在第一象限内点的坐标,同时满足这两个条件的就可以看成两个函数图象交点的坐标.如图2,反比例函数()的图象与直线:的交点坐标为和______,因此,木栏总长为时,能围出矩形地块,分别为:,;或______,______.图2(1)根据小颖的分析思路,完成上面的填空.【类比探究】(2)若,能否围出矩形地块?请仿照小颖的方法,在图2中画出一次函数图象并说明理由.【问题延伸】BE G CG DG 28m ABCD ma 10a =AB m x BC m y 28m 8xy =(),x y 8y x=10m 210x y +=(),x y 210y x =-+(),x y 8y x=0x >1l 210y x =-+()1,810m 1m AB =8m BC =AB =m BC =m 6a =(3)当木栏总长为时,小颖建立了一次函数.发现直线可以看成是直线通过平移得到的,在平移过程中,当直线与反比例函数()的图象有唯一交点时,求出的值,并求出这个交点的坐标.五、解答题三(每小题12分,共24分)24.如图1,是的直径,是上一点,于,是延长线上一点,连接,,是线段上一点,连接并延长交于点.图1图2(1)求证:是的切线;(2)若,求证:;(3)如图2,若,,点是的中点,与交于点,连接.请猜想,,的数量关系,并证明.25.如图1,在平面直角坐标系中,抛物线与轴交于、两点(点在点的左侧),与轴交于点,点为直线上方抛物线上一动点图1图2(1)求直线的解析式;(2)过点作交抛物线于,连接,,,,记四边形的面积为,的面积为,当的值最大时,求点的坐标和的最大值;(3)如图2,将抛物线水平向右平移,使得平移后的抛物线经过点,为平移后的抛物线的对称轴直线上一动点,将线段沿直线平移,平移后的线段记为(线段始终在直线左侧),是否存在以,,为顶点的等腰直角?若存在,请写出满足要求的所有点的坐标并写出其中一种结果的求解过程,若不存在,请说明理由.m a 2y x a =-+2y x a =-+2y x =-2y x a =-+8y x=0x >a AB O C O CD AB ⊥D E BA CE ACE ACD ∠=∠K AO CK O F CE O AD DK =AK AO KB AE ⋅=⋅AE AK =AF BF =G BC AG CF P BP PA PB PF 224233y x x =-++x A B A B y C P BC BC A AD BC ∥D CA CD PC PB ACPB 1S BCD △2S 12S S -P 12S S -O G l AC BC A C ''A C ''l A 'C 'G A C G ''G2024年中考数学科模拟试卷参考答案一、选择题(每小题3分,共30分)1. D2. C3. A4. D5. C6. D7. A8. C9. B 10. D 二、填空题(每小题3分,共18分)11.且 12. 13.14.15.2 16.三、解答题一(共20分)17.18.解:设八年级有个班,解得,(舍),则八年级有6个班,19.(1)利用网格特点和旋转的性质画出、的对应点,即可;(2)或(1)解:如图,即为所求;20.(1)解:参与义诊活动的市民平均年龄为岁,3x ≥5x ≠4286m 22k -<<8π3-269x y xy y-+()269y x x =-+()23y x =-x ()11152x x -=2111522x x -=2300x x --=()()650x x -+=16x =25x =-A B A 'B '()12,0.5A -()2,1-A B C ''△101530255040702043100⨯+⨯+⨯+⨯=故答案为:43(2)解:画树状图如下:由树状图可知,共有12种情况,其中两名医生恰好都是女医生的情况有6种,即抽取的两名医生恰好都是女医生的概率为.21.(1);(2)该三角形是直角三角形.理由见解析.【分析】(1)将与的值代入原方程组即可求出、的值;(2)将(1)中求得、值代入,列出方程,利用因式分解法求得该方程的两根.然后判断该三角形的形状.【详解】解:(1)把代入方程组,得,解得:.所以;(2)该三角形是直角三角形.理由如下:由(1)知,,则,.由题意知,.整理,得.解得,,所以该三角形的三边长分别是3,4,5.因为.所以该三角形是直角三角形.22.(1)根据平行线的性质和已知条件得出,进而根据等角对等边,即可求解;(2)勾股定理的逆定理证明,勾股定理求得,证明,,进而根据等面61122=15ab =x y a b a b 28150x x -+=11x y =⎧⎨=-⎩28ax by bx ay +=-⎧⎨-=⎩28a b b a -=-⎧⎨+=⎩35a b =⎧⎨=⎩3515ab =⨯=35a b =⎧⎨=⎩8a b +=15ab =28150x x -+=()()350x x --=13x =25x =222345+=CED DCE ∠=∠90EAB ∠=︒EC EB AC ⊥FA FC =积法,即可求解.(3)①由(2)可得垂直平分,根据两点之间线段最短可得,的交点到,,,的距离之和最小,又,则到4栋距离最小的点即为点;②先证明,根据①的结论可得,勾股定理,即可求解.【详解】(1)解:,.,.,故道路的长为25米;(2)解:,,,, 又在中,,,,故答案为:48;(3)①由(2)可得垂直平分,根据两点之间线段最短可得,的交点到,,,的距离之和最小,又,则到4栋距离最小的点即为点,如图所示:②解:,在上,即的垂直平分线上,,EB AC AD EB A E D B GA GC =G AC DC ⊥CG DG EG BG AD EB +++=+BE CD ∥BEC DCE ∴∠=∠CEB CED ∠=∠ CED DCE ∴∠=∠25CD DE ∴==CD 40AE = 30AB =32EF =18FB =321850EB =+=∴222AE AB EB +=90EAB ∠=︒∴90ECB ∠=︒ Rt ECB△40EC ==AE EC = AB BC =EB AC ∴⊥FA FC =111222AEB EBC S S AE AB EC BC EB AC+=⨯⨯+⨯⨯=⨯ △△1130403040224850AC ∴⨯⨯+⨯⨯==EB AC AD EB A E D B GA GC =G DC EB ∥EB AC⊥AC DC ∴⊥90ADC ∴∠=︒G EB AC GA GC ∴=GAC GCA∴∠=∠又,,,故答案为:.23.(1)观察图象或联立解方程组得到另一个交点坐标为;(2)观察图象得到与函数图象没有交点,所以不能围出;(3)平移直线通过,将点代入,解得.解:(1)将反比例函数与直线:联立得,,,,,另一个交点坐标为,为,为,,.故答案为:;4;2;(2)不能围出;的图象,如答案图中所示:90GAC GCD ∠+∠=︒ 90GCA GDC ∠+∠=︒GCD GDC∠=∠∴GD GC∴==CGA GD G ∴=CG DG EG BG+++∴AG GD EG GB=+++AD EB=+AD EB=+EB=+50=(50=(50+()4,22l 8y x=2y x =-()2,4()2,42y x a =-+8a =8y x=1l 210y x =-+8210y x y x ⎧=⎪⎨⎪=-+⎩8210x x=-+∴2540x x ∴-+=11x ∴=24x =∴(4,2)AB m x BC m y 4AB ∴=2BC =()4,226y x =-+2l与函数图象没有交点,不能围出面积为的矩形.(3)令,整理得,,一次函数与反比例函数的图象有唯一交点,,,.解方程,得,,即一次函数与反比例函数的图象有唯一交点时,的值为8,此时交点坐标为.24.(1)连接,先由证明,再由,可证得,即可证明;(2)先证得,,说明,利用相似三角形的性质推得,再由,,判定,利用相似三角形的性质推得,从而可得结论;(3)结论:.连接、,先证得,,从而,由相似三角形的性质推得,再设,则,从而,结合,可得,进而推得,然后运用勾股定理证即可得到结论.【详解】解:(1)证明:连接,如图所示:2l 8y x=∴28m 82y x a x =-+=2280x ax -+= ()24280a ∴∆=--⨯⨯=0a > 8a ∴=22880x x -+=2x =842y ==a ()2,4OC CAD ACO ∠=∠ACE ACD ∠=∠90ECO ∠=︒ACE B ∠=∠CAE BKC ∠=∠CAE BKC △∽△AC KC AE KB ⋅=⋅CAD CKD ∠=∠CAD OCA ∠=∠OCA CAK △∽△AC KC AK AO ⋅=⋅222PA PF PB +=AF BF ACE CBE ∠=∠E E ∠=∠EAC ECB △∽△2BC AC =AC CG GB x ===AG ==PG GB GB AG ==PGB BGA ∠=∠PGB BGA △∽△BP BF AF ==OC图1,,,,又,,即,是的切线;(2)证明:是的直径,,,又,,,,,,,,,,,又,,,,;(3).理由如下:如图,连接、,CD AB ⊥ 90CAD ACD ∴∠+∠=︒OA OC = CAD ACO ∴∠=∠ACE ACD ∠=∠ 90ACE ACO ∴∠+∠=︒90ECO ∠=︒CE ∴O AB O 90ACB ∴∠=︒90CAD B ∴∠+∠=︒90CAD ACD ∠+∠=︒ ACD B ∠=∠ACE B ∴∠=∠AD DK = CD AB ⊥CA CK ∴=CAD CKD ∠=∠CAE BKC ∴∠=∠CAE BKC ∴△∽△AE ACKC KB =∴AC KC AE KB ∴⋅=⋅CAD CKD ∠=∠ CAD OCA ∠=∠OCA CAK ∴△∽△ACAOAK KC=∴AC KC AK AO ∴⋅=⋅AK AO KB AE ∴⋅=⋅222PA PF PB +=AF BF,,,,,,,,,,,,点是的中点,,,,,,设,则,又,,,,即,,在中,,.25.(1);(2)的最大值为,此时,点的坐标为;存在点, AF BF= 4512ACF BCF ACB ∴∠=∠=∠=︒AF BF =45ECK ACK ACE ACE ∴∠=∠+∠=︒+∠45EKC BCK KBC ABC ∠=∠+∠=︒+∠ECK EKC ∴∠=∠2EC EK AE EK AE ∴==+=ACE CBE ∠=∠ E E ∠=∠EAC ECB ∴△∽△12AC AE BC CE ∴==2BC AC ∴= G BC 22BC CG GB ∴==AC CG ∴=ACF BCF ∠=∠CP AG ∴⊥AP PG =AC CG GB x ===AG ==PG GB GB AG ∴==PGB BGA ∠=∠PGB BGA ∴△∽△GBP GAB ∴∠=∠GBP BCF GAB GAC ∴∠+∠=∠+∠BPF BAC BFP ∠=∠=∠BP BF AF ∴== Rt APF △222PA PF AF +=222PA PF PB ∴+=223y x =-+12S S -94P 35,22⎛⎫ ⎪⎝⎭()12,1G,,使得以,,为顶点的等腰直角.【分析】(1)令二次函数,,求出、、的坐标,再求直线的解析式;(2)不能用常规的底和高,借助切割法求面积,再求出最大面积差和点的坐标;(3)等腰直角三角形可以利用“两圆一中垂”确定所有的情况,利用“型全等”求出对应的点的坐标.【详解】解:(1)对抛物线,当时,,,当时,,解得:,,,,设直线的解析式为:(),把点,代入得:,解得:.直线的解析式为:;(2),直线的解析式为:.设的解析式为,,把点代入得:,解得:,的解析式为:由解得:,,,252,3G ⎛⎫- ⎪⎝⎭312,3G ⎛⎫- ⎪⎝⎭A 'C 'G A C G ''△0x =0y =A B C BC P K G 224233y x x =-++0x =2y =()0,2C ∴0y =2240233x x =-++11x =-23x =()1,0A ∴-()3,0B BC y kx b =+0k ≠()0,2C ()3,0B 230b k b =⎧⎨+=⎩232k b ⎧=-⎪⎨⎪=⎩∴BC 223y x =-+AD BC ∥BC 223y x =-+AD 23y x m =-+()1,0A -()2103m -⨯-+=23m =-AD ∴2233y x =--2242332233y x x y x ⎧=-++⎪⎪⎨⎪=--⎪⎩1110x y =-⎧⎨=⎩224103x y ⎧⎪⎨-⎪⎩==104,3D ⎛⎫∴- ⎪⎝⎭直线的解析式为:,当时,,解得:,记直线与轴交于点,则:,,过点作交于点,设,,.,,,∴CD 432y x =-+0y =2430x -+=32x =CD x N 03,2N ⎛⎫ ⎪⎝⎭3 1.523BN -==P PM AB ⊥BC M 223,243P a a a ⎛⎫ ⎪⎝-+⎭+2,23M a a ⎛⎫∴-+ ⎪⎝⎭2224222223333PM a a a a a ⎛⎫∴=-++--+=-+ ⎪⎝⎭1ABC PCM PBMS S S S ∴=++△△△111222P B P AB OC PM x PM x x =⋅⋅+⋅⋅+⋅⋅-()22112124222322323a a a a a a ⎛⎫⎛⎫=⨯⨯+⨯-+⨯+⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭234a a =-++2BNC BNDS S S =+△△1122D BN OC BN y =⋅⋅+⋅⋅131310222223=⨯⨯+⨯⨯131310222223=⨯⨯+⨯⨯4=2221239344324S S a a a a a ⎛⎫∴-=-++-=-+=--+ ⎪⎝⎭当时,的最大值为,此时,点P 的坐标为;(3),抛物线的对称轴为:直线,抛物线向右平移后经过点,即:抛物线向右平移1个单位,直线为:,(ⅰ)当等腰三角形以,时,如图,过点作于点,过点作于点,,,,又,,,,,,设点,,,,,,解得:,,,;∴32a =12S S -9435,22⎛⎫ ⎪⎝⎭4312223b a -=-=⎛⎫⨯- ⎪⎝⎭∴224233y x x =-++1x = O ∴l 2x =190A C G ''∠=︒1A C C G '''=C 'C H l '⊥H A 'A Q C H ''⊥Q 190HC G QC A '''∠+∠=︒ 90QC A QA C ''''∠+∠=︒1HC G QA C '''∴∠=∠190A QC C HG '''∠=∠=︒ 1A C C G '''=1A QC C HG '''∴△≌△QA C H ''∴=1HG QC '=AC A C '' ∥22,33A a a ⎛⎫-- ⎪⎝⎭'241,33C a a ⎛⎫'+-+ ⎪⎝⎭2C H a '∴=-2A Q '=11HG C Q '==()212a ∴-+=1a =-()0,2C '∴()2,2H ()12,1G ∴(ⅱ)当等腰三角形以,时,如图,过点作于点,过点作于点,同(ⅰ)理可证:,设点,,,,,,,;(ⅲ)当等腰三角形以,时,如图,过点作于点,过点作于点,同(i )理可证:,设点,290C A G ''∠=︒2A C A G '''=A 'A F l '⊥F C 'C E A F ''⊥E 2C A E A G F '''△≌△22,33A a a ⎛⎫-- ⎪⎝⎭'241,33C a a ⎛⎫+-+ ⎪⎝⎭'21G F A E '∴==22FA a '=-=0a ∴=20,3A ⎛⎫∴- ⎝'⎪⎭22,3F ⎛⎫∴- ⎪⎝⎭252,3G ⎛⎫∴- ⎪⎝⎭390C G A ''∠=︒33C G A G ''=A 'A Q l '⊥Q C 'C P l '⊥P 33C PG G A Q ''△≌△22,33A a a ⎛⎫-- ⎪⎝⎭'241,33C a a ⎛⎫+-+ ⎪⎝⎭',,,,解得:,,,,综上所述:存在点,,,使得以,,为顶点的等腰直角.32A Q G P a '∴==-31C P QG a '==-2PQ =212a a ∴-+-=0.5a =70.5,6C ⎛⎫'∴ ⎪⎝⎭320.5 1.5G P =-=312,3G ⎛⎫∴- ⎪⎝⎭()12,1G 252,3G ⎛⎫- ⎪⎝⎭312,3G ⎛⎫- ⎪⎝⎭A 'C 'G A C G ''△。
广东揭阳中考数学试卷真题题目:广东揭阳中考数学试卷真题(正文)一、选择题1. 如图所示,长方形ABCD的长为8 cm,宽为4 cm。
将这个长方形按照如图,先沿着AB边向右折叠,然后再沿着CD边向上折叠,使点C与线段AD重合,并使点B与点A重合。
折叠后的形状是一个长方体,求这个长方体的表面积。
2. 写出下列各数用科学计数法表示时的指数形式。
(1) 0.0000769 (2) 320,0003. 若a^3=125, 则a=?(1) 125 (2) 25 (3) 5 (4) -5二、解答题1. 如图所示,直角三角形ABC中,BC=12 cm,AB=5 cm。
作BH⊥AC于点H,连接BH。
试回答下列问题:(1)计算BH的长度;(2)计算三角形ABC中的正弦值、余弦值和正切值。
2. 即方体ABCDA1B1C1D1,边长为3 cm。
过点A1作平面P,使得P与DB垂直,交于点B2。
求线段BB2的长度。
3. 某村庄种植了一块长方形的果园,长和宽的单位是米(m)。
现在要在这块果园的四边中每个单位长度的两侧各铺一道路,路的宽度和果园的长宽相等。
已知果园的面积是288平方米,求道路的总宽度。
三、应用题1. 某电影院为吸引观众,在周末举办了一场电影放映活动。
参与活动的人数与电影票价格的关系如下表所示:(表格省略)根据以上数据,回答以下问题:(1)如果电影票的价格为20元,预计会有多少人参加放映活动?(2)要想吸引400人观看电影,电影票的价格应定为多少?2. 球队A和球队B进行了一场篮球比赛,规定胜方为先得10分的球队。
比赛规定,A队每进一球加3分,B队每进一球加2分。
最终,A队以10∶7获胜。
求出这场比赛中,A队和B队各进多少球?3. 如图,是一条长600米的马路,有一辆汽车要从A点向B点行驶,已知汽车走路每分钟行驶的速度是10米,而红绿灯以每2分钟红灯亮两次、每次红灯亮30秒,绿灯亮90秒的周期交替工作。
问:这辆汽车从A点到达B点最短需要多长时间?(正文结束)。
揭阳中考真题试卷数学一、选择题(每题3分,共30分)1. 下列哪个数是正整数?A. -1B. 0C. 1D. -22. 如果一个直角三角形的两条直角边分别为3和4,那么它的斜边长是多少?A. 5B. 6C. 7D. 83. 已知一个圆的半径为5,那么它的面积是多少?A. 25B. 50C. 75D. 1004. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 25. 一个数的绝对值是5,这个数可以是?A. -5B. 5C. -5或5D. 以上都不是6. 一个数的倒数是1/3,这个数是多少?A. 3B. 1/3C. 1/9D. 3/17. 一个长方体的长、宽、高分别为2米、3米和4米,它的体积是多少?A. 24B. 12C. 8D. 68. 一个数的立方是-27,这个数是多少?A. -3B. 3C. -9D. 99. 一个数的1/4加上它的1/2等于1,这个数是多少?A. 4B. 2C. 1D. 310. 一个数的1/3与另一个数的1/2相等,如果后者是6,前者是多少?A. 4B. 3C. 2D. 1二、填空题(每题3分,共15分)11. 一个数的平方是36,这个数可以是_________。
12. 一个数的立方根是2,这个数是_________。
13. 一个数除以5的商是10,这个数是_________。
14. 一个数的1/5与它的1/3的和是2,这个数是_________。
15. 一个数的2倍加上3等于15,这个数是_________。
三、计算题(每题5分,共20分)16. 计算下列表达式的值:(3+2) × (5-1)17. 计算下列表达式的值:(48 ÷ 8) + √9 - 218. 计算下列表达式的值:(2/3) × (3/4) ÷ (1/2)19. 计算下列表达式的值:(5 - 3)² + 4 × 2 - 3四、解答题(每题10分,共35分)20. 已知一个直角三角形的斜边长为13,一条直角边长为5,求另一条直角边的长度。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==揭阳中考篇一:201X年揭阳市中考数学试卷(含答案)201X年广东省初中毕业生学业考试数学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. ?2?A.2B.?2C.12D.?122. 据国家统计局网站201X年12月4日发布消息,201X年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为()A.1.3573?106B.1.3573?107C.1.3573?108D.1.3573?1093. 一组数据2,6,5,2,4,则这组数据的中位数是()A.2B.4C.5D.64. 如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75°B.55°C.40°D.35°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是()A.矩形 6. (?4x)2?A.?8x2B.8x2C.?16x2D.16x2B.平行四边形C.正五边形D.正三角形7. 在0,2,(?3)0,?5这四个数中,最大的数是()A.0B.294C.(?3)0D.?58. 若关于x的方程x2?x?a??0有两个不相等的实数根,则实数a的取值范围是()A.a≥2B.a≤2C.a>2D.a<29. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为()A.6B.7C.8D.910. 如题10图,已知正△ABC的边长为2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是()二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上.11. 正五边形的外角和等于(度)..12. 如题12图,菱形ABCD的边长为6,∠ABC=60°,则对角线AC的长是13. 分式方程32?的解是 x?1x..14. 若两个相似三角形的周长比为2:3,则它们的面积比是 15. 观察下列一组数:,,,,是.132537495,…,根据该组数的排列规律,可推出第10个数1116. 如题16图,△ABC三边的中线AD,BE,CF的公共点G,若S△ABC?12,则图中阴影部分面积是.三、解答题(一)(本大题3小题,每小题6分,共18分). 17. 解方程:x2?3x?2?0.18. 先化简,再求值:19. 如题19图,已知锐角△ABC.(1) 过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法); (2) 在(1)条件下,若BC=5,AD=4,tan∠BAD=,求DC的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题20图是小明同学所画的正确树状图的一部分.34x1?(1?),其中x?1. 2x?1x?。
2022年广东省揭阳市中考数学真题汇总 卷(Ⅱ)考试时间:90分钟;命题人:数学教研组考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟 2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分) 1、根据表中的信息判断,下列语句中正确的是( )A 1.59=B .235的算术平方根比15.3小C .只有3个正整数n 满足15.515.6<<D .根据表中数据的变化趋势,可以推断出216.1将比256增大3.192(约为0.618),就称这个矩形为黄金矩形.若矩形ABCD 为黄金矩形,宽AD 1,则长AB 为( )A .1B .﹣1C .2D .﹣2·线○封○密○外3、已知二次函数()2625y x =-+,则关于该函数的下列说法正确的是( )A .该函数图象与y 轴的交点坐标是()0,5B .当2x >时,y 的值随x 值的增大而减小C .当x 取1和3时,所得到的y 的值相同D .将26y x =的图象先向左平移两个单位,再向上平移5个单位得到该函数图象 4、下列问题中,两个变量成正比例的是( ) A .圆的面积S 与它的半径rB .三角形面积一定时,某一边a 和该边上的高hC .正方形的周长C 与它的边长aD .周长不变的长方形的长a 与宽b 5、下列命题,是真命题的是( ) A .两条直线被第三条直线所截,内错角相等 B .邻补角的角平分线互相垂直 C .相等的角是对顶角 D .若a b ⊥,b c ⊥,则a c ⊥6、如图,要在二次函数()y x 2x =-的图象上找一点(),M a b ,针对b 的不同取值,所找点M 的个数,有下列三种说法:①如果3b =-,那么点M 的个数为0;②如果1b =.那么点M 的个数为1;③如果3b =,那么点M 的个数为2.上述说法中正确的序号是( )A .①B .②C .③D .②③7、如图,线段8AB =,延长AB 到点C ,使2BC AB =,若点M 是线段AC 的中点,则线段BM 的长为( )A .3B .4C .5D .128、筹算是中国古代计算方法之一,宋代数学家用白色筹码代表正数,用黑色筹码代表负数,图中算式一表示的是(2)(4)2++-=-,按照这种算法,算式二被盖住的部分是( )A .B .C .D .9、下列说法中,正确的是( ) A .东边日出西边雨是不可能事件. B .抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7. C .投掷一枚质地均匀的硬币10000次,正面朝上的次数一定为5000次. D .小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一·线○封○密○外定的稳定性,可以估计“钉尖向上”的概率是0.618. 10、若42x y +=,则代数式2244x xy y -+的值为( ) A .6B .8C .12D .16第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分) 1、如图,直线AA ∥AA ∥AA ,如果AA AA=13,AA =2,AA =6,那么线段BE 的长是_____________.2、如图,一次函数A =AA −3的图像与A 轴交于点A ,与正比例函数A =AA 的图像交于点A ,点A 的横坐标为1.5,则满足AA −3<AA <AA +6的A 的范围是______.3、已知某函数的图象经过A (3,2),A (−2,−3)两点,下面有四个推断: ①若此函数的图象为直线,则此函数的图象与直线A =A 平行;②若此函数的图象为双曲线,则(−6,−1)也在此函数的图象上; ③若此函数的图象为抛物线,且开口向下,则此函数图象一定与y 轴的负半轴相交; ④若此函数的图象为抛物线,且开口向上,则此函数图象对称轴在直线A =12左侧. 所有合理推断的序号是______. 4、在工地一边的靠墙处,用120米长的铁栅栏围一个占地面积为2000平方米的长方形临时仓库,铁栅栏只围三边,设垂直于墙的一边长为x 米.根据题意,建立关于x 的方程是 ___. 5、底面圆的半径为3,高为4的圆锥的全面积是______. 三、解答题(5小题,每小题10分,共计50分)1、阅读下面材料:小钟遇到这样一个问题:如图1,()090AOB αα∠=︒<<︒,请画一个AOC ∠,使AOC ∠与BOC ∠互补.小钟是这样思考的:首先通过分析明确射线OC 在AOB ∠的外部,画出示意图,如图2所示;然后通过构造平角找到AOC ∠的补角COD ∠,如图3所示;进而分析要使AOC ∠与BOC ∠互补,则需BOC COD ∠=∠;因此,小钟找到了解决问题的方法:反向延长射线OA 得到射线OD ,利用量角器画出BOD ∠的平分线OC ,这样就得到了BOC ∠与AOC ∠互补.(1)请参考小钟的画法;在图4中画出一个AOH ∠,使AOH ∠与BOH ∠互余.并简要介绍你的作法; (2)已知()4560EPQ EPQ ∠︒<∠<︒和FPQ ∠互余,射线PA 在FPQ ∠的内部,12APF FPQ ∠=∠且EPA ∠比APQ ∠大β,请用β表示APQ ∠的度数.2、在平面直角坐标系xOy 中二次函数2(3)4y a x =--的图象与x 轴交于A 、B 两点(点A 在点B 的左·线○封○密○外侧),与y 轴交于点()0,5C .(1)求A 、B 两点的坐标;(2)已知点D 在二次函数2(3)4y a x =--的图象上,且点D 和点C 到x 轴的距离相等,求点D 的坐标.3、已知正比例函数y =mx 与反比例函数y =nx交于点(3,2)和点(3a ﹣1,2﹣b ). (1)求正比例函数和反比例函数的解析式. (2)求a 、b 的值.4、 “双减”政策实施以来,我校积极探寻更为合理的学生评价方案.班主任石老师对班级学生的学习生活等采取的是量化积分制.下面统计的是博学组和笃行组连续八周的量化积分,并将得到的数据制成如下的统计表: 量化积分统计表(单位:分)(1)请根据表中的数据完成下表-参考答案-一、单选题1、C【分析】根据算术平方根的定义及表格中信息逐项分析即可.【详解】A15.9=,1.59,故选项不正确;B15.3=<∴235的算术平方根比15.3大,故选项不正确;C.根据表格中的信息知:22=<<=,15.5240.2515.6243.36n∴正整数241n=或242或243,∴只有3个正整数n满足15.515.6<,故选项正确;D.根据表格中的信息无法得知216.1的值,∴不能推断出216.1将比256增大3.19,故选项不正确.故选:C.【点睛】本题是图表信息题,考查了算术平方根,关键是正确利用表中信息.2、C【分析】根据黄金矩形的定义,得出宽与长的比例即可得出答案.【详解】解:,ADAB ∴=1)2AB∴==.故选:C.【点睛】本题考查新定义题型,给一个新的定义,根据定义来解题,对于这道题是基础题型.3、C【分析】把0x=,代入()2625y x=-+,即可判断A,由二次函数()2625y x=-+的图象开口向上,对称轴是直线2x=,即可判断B,当x取1和3,代入()2625y x=-+,即可判断C,根据函数图象的平移规律,即可判断D.【详解】∵二次函数()2625y x=-+的图象与y轴的交点坐标是()0,29,∴A选项错误;∵二次函数()2625y x=-+的图象开口向上,对称轴是直线2x=,∴当2x>时,y的值随x值的增大而增大,∴B选项错误;∵当x取1和3时,所得到的y的值都是11,∴C选项正确;·线○封○密○外∵将26y x =的图象先向左平移两个单位,再向上平移5个单位得到()26+25y x =+的图象, ∴D 选项错误. 故选:C . 【点睛】本题主要考查二次函数的图象和性质,理解二次函数的性质是解题的关键. 4、C 【分析】分别列出每个选项两个变量的函数关系式,再根据函数关系式逐一判断即可. 【详解】 解:2,Sr 所以圆的面积S 与它的半径r 不成正比例,故A 不符合题意;1,2Sah 2,Sa h所以三角形面积一定时,某一边a 和该边上的高h 不成正比例,故B 不符合题意;=4,C a 所以正方形的周长C 与它的边长a 成正比例,故C 符合题意; 22,C a b 长方形2,2C ba长方形 所以周长不变的长方形的长a 与宽b 不成正比例,故D 不符合题意; 故选C 【点睛】本题考查的是两个变量成正比例,掌握“正比例函数的特点”是解本题的关键. 5、B 【分析】利用平行线的性质、邻补角的定义及性质、对顶角的定义等知识分别判断后即可确定正确的选项.【详解】 解:A 、两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,不符合题意;B 、邻补角的角平分线互相垂直,正确,是真命题,符合题意;C 、相等的角不一定是对顶角,故错误,是假命题,不符合题意;D 、平面内,若a b ⊥,b c ⊥,则//a c ,故原命题错误,是假命题,不符合题意,故选:B .【点睛】考查了命题与定理的知识,解题的关键是了解平行线的性质、邻补角的定义及性质、对顶角的定义等知识,难度不大. 6、B 【分析】 把点M 的坐标代入抛物线解析式,即可得到关于a 的一元二次方程,根据根的判别式即可判断. 【详解】 解:∵点M (a ,b )在抛物线y =x (2-x )上, ()2b a a ∴=- 当b =-3时,-3=a (2-a ),整理得a 2-2a -3=0, ∵△=4-4×(-3)>0, ∴有两个不相等的值, ∴点M 的个数为2,故①错误; 当b =1时,1=a (2-a ),整理得a 2-2a +1=0, ∵△=4-4×1=0, ∴a 有两个相同的值, ·线○封○密○外∴点M 的个数为1,故②正确;当b =3时,3=a (2-a ),整理得a 2-2a +3=0,∵△=4-4×3<0,∴点M 的个数为0,故③错误;故选:B .【点睛】本题考查了二次函数图象上点的坐标特征,一元二次方程根的判别式,熟练掌握二次函数与一元二次方程的关系是解题的关键.7、B【分析】先求出24AC =,再根据中点求出12AM =,即可求出BM 的长.【详解】解:∵8AB =,∴216BC AB ==,16824AC BC AB =+=+=,∵点M 是线段AC 的中点, ∴1122AM AC ==,4BM AM AB =-=, 故选:B .【点睛】本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.8、A【分析】参考算式一可得算式二表示的是(4)(3)1++-=+,由此即可得. 【详解】解:由题意可知,图中算式二表示的是(4)(3)1++-=+,所以算式二为所以算式二被盖住的部分是选项A ,故选:A . 【点睛】 本题考查了有理数的加法,理解筹算的运算法则是解题关键. 9、D 【分析】 根据概率的意义进行判断即可得出答案. 【详解】 解:A 、东边日出西边雨是随机事件,故此选项错误;. B 、抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7,错误;有7次正面朝上,不能说明正面朝上的概率是0.7,随着实验次数的增多越来越接近于理论数值0.5,故C 选项错误; C 、投掷一枚质地均匀的硬币10000次,正面朝上的次数可能为5000次,故此选项错误; D 、小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618,此选项正确. 故选:D【点睛】·线○封○密○外此题主要考查了概率的意义,正确理解概率的意义是解题关键.10、D【分析】对已知条件变形为:24-=-x y ,然后等式两边再同时平方即可求解.【详解】解:由已知条件可知:24-=-x y ,上述等式两边平方得到:2(2)16-=x y ,整理得到:224416-+=x xy y ,故选:D .【点睛】本题考查了等式恒等变形,完全平方公式的求值等,属于基础题,计算过程中细心即可.二、填空题1、3【分析】过点D 作DG ∥AC 交CF 于点G ,交BE 于点H ,根据AA ∥AA ∥AA ,可得AA AA =AA AA =13,四边形ABHD 和四边形ACGD 是平行四边形,从而得到BH =AD =CG =2,AA AA =14 ,进而得到FG =4,再由BE ∥CF ,得到△DEH ∽△DFG ,从而得到HE =1,即可求解.【详解】解:如图,过点D 作DG ∥AC 交CF 于点G ,交BE 于点H ,∵AA ∥AA ∥AA ,∴AA AA =AA AA =13,四边形ABHD 和四边形ACGD 是平行四边形, ∴BH =AD =CG =2,AA AA =14, ∵AA =6,∴FG =4,∵BE ∥CF ,∴△DEH ∽△DFG ,∴AA AA =AA AA =14 , ∴HE =1, ∴BE =BH +HE =3. 故答案为:3【点睛】本题主要考查了平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定,熟练掌握平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定是解题的关键. 2、−3<A <1.5x >-3【分析】根据图象得出P 点横坐标为1.5,联立y =kx -3和y =mx 得m =k -2,再联立y =kx +6和y =(k -2)x 解得·线○封○密○外x =-3,画草图观察函数图象得解集为−3<A <1.5.【详解】∵P 是y =mx 和y =kx -3的交点,点P 的横坐标为1.5,∴{A =1.5A A =1.5A −3解得m =k -2联立y =mx 和y =kx +6得{A =(A −2)A A =AA +6解得x =-3即函数y =mx 和y =kx +6交点P ’的横坐标为-3,观察函数图像得,满足kx −3<mx <kx +6的x 的范围为:−3<A <1.5故答案为:−3<A <1.5 【点睛】 本题主要考查对一次函数与一元一次不等式的理解和掌握,解题的关键在于将不等式kx −3<mx <kx+6·线解集转化为直线y=mx与直线y=kx-3,直线y=kx+6相交的横坐标x的范围.3、①②④【分析】分别根据过A、B两点的函数是一次函数、二次函数时,相应的函数的性质进行判断即可.【详解】解:①过A(3,2),A(−2,−3)两点的直线的关系式为y=kx+b,则{3A+A=2−2A+A=−3,解得{A=1A=−1,所以直线的关系式为y=x-1,直线y=x-1与直线y=x平行,因此①正确;②过A(3,2),A(−2,−3)两点的双曲线的关系式为A=AA,则A=2×3=(−2)×(−3)=6,所以双曲线的关系式为A=6A当A=−6时,A=6−6=−1∴(−6,−1)也在此函数的图象上,故②正确;③若过A(3,2),A(−2,−3)两点的抛物线的关系式为y=ax2+bx+c,当它经过原点时,则有{9A+3A=24A−2A=−3解得,{A =−16A =76 对称轴x =-762×(−16)=72,∴当对称轴0<x =-A 2A <72时,抛物线与y 轴的交点在正半轴,当-A 2A >72时,抛物线与y 轴的交点在负半轴,因此③说法不正确;④当抛物线开口向上时,有a >0,而a +b =1,即b =-a +1,所以对称轴x =-A 2A =-−A +12A =12-12A <12,因此函数图象对称轴在直线x =12左侧,故④正确,综上所述,正确的有①②④,故答案为:①②④.【点睛】本题考查一次函数、二次函数的图象和性质,待定系数法求函数的关系式,理解各种函数的图象和性质是正确判断的前提.4、A (120−2A )=2000【分析】设垂直于墙的一边长为x 米,根据题意用x 表示平行于墙的一边长,再根据面积公式列出方程即可.【详解】解:设垂直于墙的一边长为x 米,则平行于墙的一边长为(120-2x )米,根据题意得,A (120−2A )=2000故答案为:A (120−2A )=2000【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,是正确列出一元二次方程的关键. 5、24A【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥的底面积和侧面积公式代入求出即可.【详解】 ∵圆锥的底面半径为3,高为4, ∴母线长为5, ∴圆锥的底面积为:AA 2=9A ,圆锥的侧面积为:AAA =A ×3×5=15A , ∴圆锥的全面积为:9A +15A =24A 故答案为:24A . 【点睛】 本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键. 三、解答题 1、 (1)图见解析,作法见解析 (2)1452β︒-或122.54β︒- 【分析】(1)先通过分析明确射线OH 在AOB ∠的外部,作OA (或OB )的垂线OC ,再利用量角器画出BOC ∠(或AOC ∠)的平分线OH 即可得;(2)分①射线PF 在EPQ ∠的外部,②射线PF 在EPQ ∠的内部两种情况,先根据互余的定义可得·线○封○密○外90EPQ FPQ ∠+∠=︒,再根据角平分线的定义可得12APQ APF FPQ ∠=∠=∠,然后根据角的和差即可得.(1)解:AOH ∠与BOH ∠互余,90BOH AOH ∴+∠=∠︒,()090AOB αα∠=︒<<︒,∴射线OH 在AOB ∠的外部,先作OA (或OB )的垂线OC ,再利用量角器画出BOC ∠(或AOC ∠)的平分线OH ,如图所示:或(2)解:由题意,分以下两种情况:①如图,当射线PF 在EPQ ∠的外部时,EPQ ∠和FPQ ∠互余,90EPQ FPQ ∴∠+∠=︒,EPA ∠比APQ ∠大β,AP EPA Q β∴∠-=∠,即EPQ β∠=,9090FPQ EPQ β∴∠=︒-∠=︒-,射线PA 在FPQ ∠的内部,12APF FPQ ∠=∠, 114522APQ APF FPQ β∴∠=∠=∠=︒-; ②如图,当射线PF 在EPQ ∠的内部时, 射线PA 在FPQ ∠的内部,12APF FPQ ∠=∠, 12APQ APF FPQ ∴∠=∠=∠, EPQ ∠和FPQ ∠互余, 90EPQ FPQ ∴∠+∠=︒, 90902EPQ FPQ APQ ∴∠=︒-∠=︒-∠, EPA ∠比APQ ∠大β, AP EPA Q β∴∠-=∠, APQ PQ P E A Q β∠--∴∠∠=,即2P EPQ A Q β=+∠∠, 9022APQ APQ β∴︒-∠=+∠, 解得122.54APQ β∠=︒-, 综上,APQ ∠的度数为1452β︒-或122.54β︒-. 【点睛】·线○封○密·○外本题考查了作垂线和角平分线、与角平分线有关的计算,较难的是题(2),正确分两种情况讨论是解题关键.2、(1)A (1,0),B (5,0)(2)(6,5)【分析】(1)先将点C 的坐标代入解析式,求得a ;然后令y =0,求得x 的值即可确定A 、B 的坐标;(2)由2(3)4y a x =--可知该抛物线的顶点坐标为(3,-4),又点D 和点C 到x 轴的距离相等,则点D 在x 轴的上方,设D 的坐标为(d ,5),然后代入解析式求出d 即可.(1)解:∵二次函数2(3)4y a x =--的图象与y 轴交于()0,5C∴25(03)4a =--,解得a =1∴二次函数的解析式为2(3)4y x =--∵二次函数2(3)4y x =--的图象与x 轴交于A 、B 两点∴令y =0,即20(3)4x =--,解得x =1或x =5∵点A 在点B 的左侧∴A (1,0),B (5,0).(2)解:由(1)得函数解析式为2(3)4y x =--∴抛物线的顶点为(3,-4)∵点D 和点C 到x 轴的距离相等,即为5∴点D 在x 轴的上方,设D 的坐标为(d ,5) ∴25(3)4d =--,解得d =6或d =0 ∴点D 的坐标为(6,5). 【点睛】 本题主要考查了二次函数与坐标轴的交点、二次函数抛物线的顶点、点到坐标轴的距离等知识点,灵活运用相关知识成为解答本题的关键. 3、 (1)正比例函数为:2,3y x 反比例函数为:6y x =. (2)2.34a b【分析】 (1)把点(3,2)代入两个函数解析式,利用待定系数法求解解析式即可; (2)由正比例函数y =mx 与反比例函数y =n x交于点(3,2)和点(3a ﹣1,2﹣b ),可得,A B 关于原点成中心对称,再列方程组解方程即可得到答案. (1) 解: 正比例函数y =mx 与反比例函数y =n x交于点(3,2), 32,236,m n 解得:2,6,3m n 所以正比例函数为:2,3y x 反比例函数为:6y x =. (2)·线○封○密·○外解: 正比例函数y =mx 与反比例函数y =n x交于点(3,2)和点(3a ﹣1,2﹣b ),,A B ∴关于原点成中心对称, 313,22a b 解得:234a b ,【点睛】本题考查的是利用待定系数法求解正比例函数与反比例函数的解析式,反比例函数的中心对称性,掌握“正比例函数y =mx 与反比例函数y =n x的交点关于原点成中心对称”是解本题的关键. 4、(1)见解析(2)见解析(3)博学组的学生学习生活更好【分析】(1)根据平均数,中位数,众数,方差的定义求解即可;(2)根据题目所给数据画出对应的折线统计图即可;(3)可从众数和方差的角度作评价即可.(1)解:由题意得博学组的平均数12131441516==148++⨯++, ∴博学组的方差()()()()()222221=121413144141415141614=1.258⎡⎤-+-+⨯-+-+-⎣⎦ 把笃行组的积分从小到大排列为:9、11、13、13、15、16、17、18,∴笃行组的中位数1315==142 , ∵笃行组中13出现的次数最多, ∴笃行组的众数为13, ∴填表如下:(2)解:如图所示,即为所求;(3) 解:由(1)可知,博学组和笃行组的平均数和中位数都相同,但是博学组的众数大于笃行组的众数,博学组的方差小于笃行组的方差,∴可知博学组的学生学习生活更好.【点睛】本题主要考查了求平均数,众数,中位数,方差,画折线统计图,用方差和众数作出评价等等,熟知相关知识是解题的关键. 5、 ·线○封○密○外(1)见解析(2)见解析(3)见解析【分析】(1)根据直线和射线的定义作图即可;(2)以点C为圆心,BC为半径画弧,与射线BC交于点D即可;(3)根据两点之间,线段最短,连接AC,与直线l交于点E即可.(1)解:如图,线段AB,射线BC即为所求;(2)如图,点D即为所求;(3)如图,点E即为所求.【点睛】本题考查了作图-复杂作图、直线、射线、线段、线段的性质,解决本题的关键是掌握线段的性质.。
2024-2025学年度第一学期期中模拟试卷九年级数学试卷时间:90分钟 分数:120分一.选择题(每小题3分,共15分)1. 菱形ABCD 的对角线长分别为5和8,它的面积为( )A. 20B. 40C. 24D. 30【答案】A【解析】【分析】根据菱形的面积等于对角线乘积的一半,计算即可. 【详解】菱形的面积为:1 58202××=; 故选:A .【点睛】本题考查菱形的性质,掌握菱形的性质是解题的关键.2. 如果方程()27330mm x x −−−+=是关于x 的一元二次方程,那么m 的值为( ) A. 3±B. 3C. 3−D. 都不对【答案】C【解析】【分析】本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.根据题意得到272m −=,30m −≠,即可求得m 的范围.要特别注意二次项系数30m −≠这一条件,当30m −=时,方程就是一元一次方程了. 【详解】解:由一元二次方程的定义可知27230m m −= −≠, 解得:3m =−.故选:C .3. 在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有( )A. 5个B. 15个C. 20个D. 35个【答案】A【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:设袋中白球有x 个,根据题意得:1515x+=0.75, 解得:x =5,经检验:x =5是分式方程的解,故袋中白球有5个.故选A .【点睛】此题考查了利用概率的求法估计总体个数,利用如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n是解题关键. 4. 参加一次足球联赛的每两队之间都进行一场比赛,共比赛50场比赛,设参加比赛共有x 个队,根据题意,所列方程为( ).A. (1)50x x +=B. (1)502x x +=C. (1)50x x −=D. (1)502x x −= 【答案】D【解析】 【分析】设共有 x 个球队参赛,根据每两队之间都进行一场比赛,且共比赛 50 场,即可得出关于 x 的 一元二次方程,此题得解;【详解】设共有 x 个球队参赛,依题意, 得:(1)502x x −= 故选D【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程 是解题的关键5. 下列判断正确的是( )A. 对角线互相垂直的四边形是菱形B. 对角线相等的菱形是正方形C. 对角线相等的四边形是矩形D. 对角线互相垂直且相等的四边形是正方形【答案】B【解析】【分析】本题考查特殊平行四边形的判定,熟记判定定理是关键.根据菱形,矩形,正方形的判定逐项判【详解】对角线互相垂直平分的四边形是菱形,故A 错误;对角线相等的菱形是正方形,故B 正确;对角线相等的平行四边形是矩形,故C 错误;对角线互相平分垂直且相等的四边形是正方形,故D 错误.故选B .6. 如图,已知MON ∠,点A 在OM 边上,点B 在ON 边上,且OA OB =,点E 在OB 边上,小明,小红分别在图1,图2中作了矩形AEBF ,平行四边形AEBF ,并连接了对角线,两条对角线交于点C ,小明,小红都认为射线OC 是MON ∠的角平分线,你认为他们说法正确的是( )A. 小明,小红都对B. 小明,小红都错C. 小明错误,小红正确D. 小明正确,小红错误【答案】A【解析】 【分析】根据矩形的性质、平行四边形的性质都可以得到AC BC =,即可证得AOC BOC ≌△△,即可得出结论.【详解】解: 四边形AEBF 是矩形,AC BC ∴=,在AOC △和BOC 中,AC BC OA OB OC OC = = =,AOC BOCSSS ∴ ≌(), AOC BOC ∴∠=∠,∴射线OC 是MON ∠的角平分线,故小明的说法正确;四边形AEBF 是平行四边形,AC BC ∴=,在AOC △和BOC 中,AC BC OA OB OC OC = = =,AOC BOCSSS ∴ ≌(), AOC BOC ∴∠=∠,∴射线OC 是MON ∠的角平分线,故小红的说法正确.故选:A .【点睛】本题考查了矩形的性质、平行四边形的性质、三角形全等的判定和性质,角平分线的判定,解题的关键是熟练掌握矩形的性质和平行四边形的性质.7. 关于x 的方程2(1)(2)x x ρ−+=(ρ为常数)根的情况下,下列结论中正确的是( )A. 两个正根B. 两个负根C. 一个正根,一个负根D. 无实数根 【答案】C【解析】【分析】先将方程整理为一般形式,再根据根的判别式得出方程由两个不等的实数根,然后又根与系数的关系判断根的正负即可.【详解】解:2(1)(2)x x ρ−+=,整理得:2230x x ρ+−−=,∴()2221434130ρρ∆=−−−=+>,∴方程有两个不等的实数根,设方程两个根为1x 、2x , ∵121x x +=−,2123x x p =−− ∴两个异号,而且负根的绝对值大.故选:C .【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;△<0,方程没有实数根.也考查了一元二次方程根与系数的关系:12bx x a +=−,12c x x a= 8. 关于x 的一元二次方程2(1)20x k x k −−−+=有两个实数根12,x x ,()1212122(2)2x x x x x x −+−−+3=−,则k 的值( )A. 0或2B. -2或2C. -2D. 2【答案】D【解析】【详解】解:由根与系数的关系,得: 12x x +=k -1,122x x k +=-,由()1212122(2)23x x x x x x −+−−+=−,得: ()21212423x x x x −−+=−,即()21212124423x x x x x x +−+=−-,所以,()2142(2)3k k −−−−+=−,化简,得:24k =,解得:k =±2,因为关于x 的一元二次方程2(1)20x k x k −−−+=有两个实数根,所以,△=()214(2)k k −−−+=227k k +−>0,k =-2不符合,所以,k =2故选D .【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.9. 如图1,在菱形ABCD 中,60A ∠=°,动点P 从点A 出发,沿折线AD DC CB →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB △的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( )A. B. C. D. 【答案】B【解析】【分析】根据图1和图2判定三角形ABD 为等边三角形,它的面积为【详解】解:在菱形ABCD 中,∠A =60°,∴△ABD 为等边三角形,设AB =a ,由图2可知,△ABD 的面积为∴△ABD 的面积2解得:a =负值已舍)故选B【点睛】本题考查了动点问题的函数图象,根据菱形的性质和函数图象,能根据图形得出正确信息是解此题的关键.10. 如图,在正方形ABCD 中,E 为CD 边上一点,F 为 BC 延长线上一点,且CE CF =,连接EF .给出下列至个结论:①BE DF =;②BE DF ⊥;③EF =;④EDF EBF ∠=∠;⑤2ED EC =.其中正确结论的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】C【解析】 【分析】本题考查了正方形的性质、三角形全等的判定定理与性质、勾股定理,①先根据正方形的性质可得,90BC DC BCE DCF =∠=∠=°,再根据三角形全等的判定定理与性质即可得;②先根据三角形全等的性质可得CBE CDF ∠=∠,再根据三角形的内角和定理、等量代换可得90DGE ∠=°,由此即可得;③根据勾股定理即可得;④根据①中所证的全等三角形的性质即可得;无法说明2ED EC =成立,从而得出与题意不符,由此即可得结论.【详解】解:如图,延长BE ,交DF 于点G ,四边形ABCD 正方形,,90BC DC BCE DCF ∴=∠=∠=°,在BCE 和DCF 中,BC DC BCE DCF CE CF = ∠=∠ =, (SAS)BCE DCF ∴ ≌,,BE DF CBE CDF ∴=∠=∠,则结论①正确;即EDF EBF ∠=∠,则结论④正确;由对顶角相等得:BEC DEG ∠=∠,180180CBE BEC CDF DEG ∴°−∠−∠=°−∠−∠,即90BCE DGE ∠=∠=°, BE DF ∴⊥,则结论②正确;是,90CE CF DCF =∠=° ,EF ∴=,则结论③正确;无法说明2ED EC =成立,结论⑤错误;综上,正确结论的个数是4个,故选:C .二.填空题(每小题3分,共15分)11. 如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等,则小球从E 出口落出概率是________.【答案】14##025 【解析】【分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B 、C 、D 处都是等可能情况,从而得到在四个出口E 、F 、H 也都是等可能情况,然后概率的意义列式即可得解.【详解】由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E 、F 、G 、H 四个,所以小球从E 出口落出的概率是:14; 故填:14. 【点睛】本题考查了概率的求法,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.12. 设12,x x 是一元二次方程220240x x +−=的两个根,则21122x x x ++=______. 【答案】2023【解析】【分析】根据方程解的定义、根与系数关系,得2112024x x +=,121x x +=−,对待求解代数式变形,用已知的代数式表示求解.的.【详解】解:由题意,得21120240x x +−=,121x x +=− ∴2112024x x +=. ∴2211211122202412023x x x x x x x ++=+++=−=.故答案为:2023【点睛】本题考查方程解的定义,一元二次方程根与系数关系;掌握根与系数关系是解题的关键. 13. 在“新冠”初期,有2人感染了“新冠”,经过两轮传染后共有288人感染了“新冠”(这两轮感染均未被发现未被隔离),则每轮传染中平均一个人传染了_______个人.【答案】11【解析】【分析】设每轮传染中平均一个人传染了x 个人,根据“有2人感染了“新冠”,经过两轮传染后共有288人感染了“新冠””,列出方程,即可求解.【详解】解:设每轮传染中平均一个人传染了x 个人,根据题意得: ()221288x +=解得:1211,13x x ==−,∵0x >且为整数∴213x =−不符合题意,舍去,答:每轮传染中平均一个人传染了11个人.故答案为:11【点睛】本题主要考查了一元二次方程的应用,明确题意,准确得到等量关系是解题的关键.14. 如图,数轴上点A 代表的数字为3+1x ,点B 代表的数字为22+x x ,已知=5AB ,且点A 在数轴的负半轴上,则x 的值为 _____.【答案】2−【解析】【分析】先利用数轴上两点之间的距离的求法得到()2+23+1=5x x x −,再把方程化为一般式26=0x x −−,接着再用因式分解法把方程转化为3=0x −或+2=0x ,然后再解两个一次方程.【详解】解:根据题意得2+2(3+1)=5x x x −,整理得26=0x x −−,()()3+2=0x x −,3=0x −或+2=0x ,所以1=3x ,2=2x −,将1=3x 代入3+1x 中,得出A 为9,因点A 在数轴的负半轴上,故1=3x (舍去); 将2=2x −,代入3+1x 中,得出A 为5−,点A 在数轴的负半轴上,故=2x −.故答案为:2−.【点睛】本题考查了一元二次方程的因式分解法,这种方法简便易用,是解一元二次方程最常用的方法,也考查了数轴.15. 在正方形ABCD 中,2AD =,E ,F 分别为边DC CB ,上的点,且始终保持DE CF =,连接AE 和DF 交于点P ,则线段CP 的最小值为 _________.1−##1−+【解析】【分析】根据“边角边”证明ADE 和DCF 全等,根据全等三角形对应角相等可得DAE CDF ∠=∠,然后求出90APD ∠=°,取AD 的中点O ,连接OP ,根据直角三角形斜边上的中线等于斜边的一半可得点P 到AD 的中点的距离不变,再根据两点之间线段最短可得C 、P 、O 三点共线时线段CP 的值最小,然后根据勾股定理列式求出CO ,再求解即可.【详解】解: 四边形ABCD 是正方形,AD CD ∴=,90ADE DCF ∠=∠=°, 在ADE 和DCF 中,AD CD ADE BCD DE CF = ∠=∠ =, ()SAS ADE DCF ∴ ≌,DAE CDF ∴∠=∠,90CDF ADF ADC ∠+∠=∠=° ,90ADF DAE ∴∠+∠=°,90APD ∴∠=°,取AD 的中点O ,连接OP CO ,,则1133222OP AD ==×=(不变), 根据两点之间线段最短得C 、P 、O 三点共线时线段CP 的值最小,在Rt COD中,根据勾股定理得,CO =,∴1CP CO OP =−−,∴CP1−,1−.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,确定出点P 到AD 的中点的距离是定值是解题的关键.三.解答题(每小题8分,共24分)16. 解方程:(1)2221x x x =+−;(2)()2231x x x −−=−. 【答案】(1)1222x x +(2)1x =,2x =【解析】【分析】(1)先将方程化为一般式,再用配方法求解即可;(2)先将方程化为一般式,再用公式法求解即可.小问1详解】解:2221x x x =+−,241x x −=,2445x x +=−,()225x −=,2x −,解得:1222x x +−;【小问2详解】解:()2231x x x −−=−, 22231x x x −−=−,22210x x +−=,2,2,1a b c ===−,∴()224242112b ac ∆=−=−××−=,x ,解得:1x =,2x =. 【点睛】本题主要考查了解一元二次方程,解题的关键是熟练掌握一元二次方程的法和步骤.17. 笼子里关着一只小松鼠(如图),笼子的主人决定把小松鼠放归大自然,将笼子所有的门都打开.松鼠要先经过第一道门(A ,B ,或C ),再经过第二道门(D 或E )才能出去.【(1)请用树状图或列表的方法,表示松鼠走出笼子的所有可能路线(经过的两道门).(2)求松鼠经过E门出去的概率.【答案】(1)见解析(2)1 2【解析】【分析】(1)根据题意画出树状图即可;(2)根据(1)所画的树状图确定松鼠走出笼子的所有可能路线结果数和松鼠经过E门出去的结果数,然后运用概率公式计算即可.【小问1详解】解:根据题意画出树状图如下:【小问2详解】解:根据(1)所得的树状图可知:松鼠走出笼子的所有可能路线结果数为6,松鼠经过E门出去的结果数为3,则松鼠经过E门出去的概率为31 62 =.【点睛】本题主要考查了画树状图、根据树状图求概率等知识点,正确画出树状图是解答本题的关键.18. 已知:平行四边形ABCD的两边AB,AD的长是关于x的方程210 24mx mx−+−=的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么平行四边形ABCD的周长是多少?【答案】(1)1 2(2)5【解析】【分析】本题考查了菱形的性质,平行四边形的性质,一元二次方程根的判别式以及根据系数的关系,解一元二次方程,综合运用各知识点是解答本题的关键.(1)根据菱形的性质可知方程210 24mx mx−+−=有两个相等的实数根,由根的判别式求出m,进而可求出方程的根;(2)由AB的长为2,可知2是方程的一个根,代入方程求出m,根据根与系数的关系可求出平行四边形ABCD的周长.【小问1详解】解:∵平行四边形ABCD 是菱形,∴AB AD =, ∴方程21024m x mx −+−=有两个相等的实数根, ∴()214024m m ∆=−−−=, 解得:121m m ==, 当1m =时,方程为2104x x −+=, 解得1212x x ==, 即菱形的边长为12; 【小问2详解】 解:∵AB ,AD 的长是方程21024m x mx −+−=的两个实数根,AB 的长为2, ∴AB AD m +=,2是方程的一个根, ∴2122024m m −+−=, ∴解得52m =, ∴52AB AD +=, ∴()25AB AD +=, ∴平行四边形ABCD 的周长为5.四.解答题(每小题9分,共27分)19. 阅读材料:我们知道20x ≥,()20a b ±≥这一性质在数学中有着广泛的应用,比如探求多项式2362x x +−的最小值时,我们可以这样处理:2362x x +−()2322x x +−()22232112x x =++−−()223112x =+−−()2315x =+−.因为()210x +≥,所以()231505x +−≥−,当1x =−时,()2315x +−取得最小值5−.(1)求多项式2283x x −+的最小值,并写出对应的x 的取值.(2)求多项式22247x x y y −+−+的最小值.【答案】(1)xx =2,最小值5−;(2)2【解析】【分析】此题考查的是完全平方公式,非负数的性质,解题的关键是把给出的式子化成完全平方的形式. (1)先把给出的式子化成完全平方的形式,再根据非负数的性质即可得出答案;(2)根据完全平方公式把给出的式子进行整理,即可得出答案.【小问1详解】解:2283x x −+ ()2243x x −+()224443x x =−++﹣()22243x =−−+ ()2225x =−−,∵()220x −≥,∴()222505x −−≥−,∴当xx =2时,()2225x −−取得最小值5−;【小问2详解】解:22247x x y y −+−+ ()()2221442x x y y =−++−++()()22122x y =−+−+,∵()210x −≥,()220y −≥,∴()()221222x y −+−+≥,∴当xx =1,2y =时,22247x x y y −+−+有最小值2.20. 如图,在ABCD 中,5AB =,4BC =,点F 是BC 上一点,若将DCF 沿DF 折叠,点C 恰好与AB 上的点E 重合,过点E 作EG BC ∥交DF 于点G ,连接CG .(1)求证:四边形EFCG 是菱形;(2)当A B ∠=∠时,求点B 到直线EF 的距离.【答案】(1)证明见解析(2)点B 到直线EF 的距离为65. 【解析】【分析】(1)由折叠的性质得出CFD EFD ∠=∠,CF EF =,CG EG =,再根据平行线的性质可得EGF EFD ∠=∠,进而可证四条边相等;(2)先由题意得出四边形ABCD AE ,CE 的长,最后利用等面积法即可求解.【小问1详解】证明:∵将DCF 沿DF 折叠,点C 恰好与AB 上的点E 重合,∴CFD EFD ∠=∠,CF EF =,CG EG =,∵EG BC ∥,∴EGF CFD ∠=∠,∴EGF EFD ∠=∠,∴EG EF =,∴EG EF CF CG ===,∴四边形EFCG 是菱形;【小问2详解】解:∵ABCD ,则AD BC ∥,∴180A B ∠+∠=°,∵A B ∠=∠,∴90A B ∠=∠=°,∴四边形ABCD 是矩形,∵5AB =,4BC =,∴5AB CD ED ===,4BC AD ==,∴3AE ,∴2BE =,在Rt BEF △中,222BE BF EF +=,4EF CF BF ==−,∴()22224BF BF +=−, 解得32BF =, ∴35422EF =−=, 设点B 到直线EF 的距离为h , ∴131522222h ××=×, 解得65h =, ∴点B 到直线EF 的距离为65. 【点睛】本题考查矩形的性质,菱形的判定,平行线的性质,勾股定理,折叠的性质等知识,熟练掌握以上知识是解题关键.21. 某商店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场发现当每个背包的售价为40元时,月均销量为1元,月均销量就相应减少10个.(1)若使这种背包的月均销量不低于130个,每个背包售价应不高于___________元?(2)在(1)的条件下,当该这种书包销售单价为多少元时,销售利润是3120元?(3)这种书包的销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【答案】(1)每个背包售价应不高于55元.(2)当该这种书包销售单价为42元时,销售利润是3120元.(3)这种书包的销售利润不能达到3700元.【解析】【分析】(1)设每个背包的售价为x 元,则月均销量为()2804010x ⎡⎤--⨯⎣⎦个,根据月均销量不低于130个,即可得出关于x 的一元一次不等式,解之取其最大值即可得出结论;(2)根据总利润=每个的利润×月均销量,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论;(3)根据总利润=每个的利润×月均销量,即可得出关于x 的一元二次方程,由根的判别式Δ=-36<0,即可得出这种书包的销售利润不能达到3700元.【小问1详解】解:设每个背包的售价为x 元,则月均销量为()2804010x ⎡⎤--⨯⎣⎦个,依题意, 得:()2804010130x ⎡⎤--⨯≥⎣⎦, 解得:55x ≤.答:每个背包售价应不高于55元.【小问2详解】依题意,得:()()3028040103120x x ⎡⎤---⨯=⎣⎦, 整理,得:29823520x x −+=,解得:124256x x ==,(不合题意,舍去). 答:当该这种书包销售单价为42元时,销售利润是3120元.【小问3详解】依题意,得:()()3028040103700x x ⎡⎤---⨯=⎣⎦, 整理,得:29824100x x -+=.∵()298412410360=--⨯⨯=- <,∴该方程无解,∴这种书包的销售利润不能达到3700元.【点睛】本题考查了一元二次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)(3)找准等量关系,正确列出一元二次方程.五.解答题(每小题12分,共24分)22. 如图所示,在Rt ABC △中,90B ∠=︒,100cm AC =,60A ∠=°,点D 从点C 出发沿CCCC 方向以4cm/s 的速度向点A 匀速运动,同时点E 从点A 出发沿CCAA 方向以2cm/s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D E 、运动的时间是t 秒(025t <≤),过点D 作DF BC ⊥于点F ,连接DE EF ,.(1)求证:四边形AEFD 是平行四边形;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,DEF 为直角三角形?请说明理由.【答案】(1)证明见解析(2)能,503t = (3)252或20,理由见解析 【解析】【分析】(1)根据时间和速度表示出AE 和CCCC 的长,利用30°所对的直角边等于斜边的一半求出DF 的长,可得AE DF =,再证明DF AE ∥即可求证; (2)由(1)知四边形AEFD 为平行四边形,如果四边形AEFD 能够成为菱形,则必有邻边相等,即AE AD =,据此列方程求解即可;(3)当DEF 为直角三角形时,有三种情况:①当90EDF ∠=°时,②当90DEF ∠=°时,③当90DFE ∠=°时,分别找出等量关系列方程即可求出t 的值即可.【小问1详解】证明:由题意得,2AE t =,4CD t =,∵DF BC ⊥,∴90CFD ∠=°,∵90B ∠=︒,60A ∠=°,∴30C ∠=°, ∴114222DF CD t t ==×=,∴AE DF =;∵90CFD B ∠=∠=°,∴DF AE ∥,∴四边形AEFD 是平行四边形;【小问2详解】解:四边形AEFD 能够成为菱形,理由如下: 由(1)得,四边形AEFD 为平行四边形,若AEFD 为菱形,则AE AD =,∵100AC =,4CD t =,∴1004AD t =−,∴21004t t =−, ∴503t =, ∴当503t =时,四边形AEFD 能够成为菱形; 【小问3详解】解:分三种情况:①当90EDF ∠=°时,如图1, ∵90CFD B EDF ∠=∠=∠=°, ∴四边形DFBE 为矩形, ∴2DF BE t ==, ∵1502AB AC ==,2AE t =, ∴2502t t =−,252t =;②当90DEF ∠=°时,如图2, ∵四边形AEFD 为平行四边形, ∴EF AD ∥,∴90ADE DEF ∠=∠=°, 在Rt ADE 中,60A ∠=°, ∴30AED ∠=°,∵2AE t =, ∴12AD AE t ==,∵AD CD AC +=,∴4100t t +=,∴20t =;③当90DFE ∠=°不成立;综上所述:当t 为252或20时,DEF 为直角三角形. 【点睛】本题考查了平行四边形的判定与性质,菱形的性质,矩形的判定与性质,,含30°角的直角三角形的性质,直角三角形两锐角互余,平行线的判定与性质,一元一次方程的应用,掌握以上知识点是解题的关键.23. 如图,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(3,4)−,点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H ,连接BM .(1)填空:菱形ABCO 的边长=______;(2)求直线AC 的解析式;(3)动点P 从点A 出发,沿折线A B C --方向以3个单位/秒的速度向终点C 匀速运动,设PMB △的面积为()0S S ≠,点P 的运动时间为t 秒, ①当503t <<时,求S 与t 之间的函数关系式; ②在点P 运动过程中,当2S =,请直接写出t 的值. 【答案】(1)5 (2)直线AC 的解析式为1522y x =−+ (3)①91544t S =−+;②79t =或115【解析】 【分析】(1)根据点A 的坐标,结合勾股定理可计算菱形边长AO 的长度;(2)先求出C 点坐标,设直线AC 解析式y kx b =+,将点A C ,坐标代入得到二元一次方程组,然后解方程组即可得到,k b 的值;(3)①当503t <<时,根据题意得到53BP BA AP t =−=−,53422HM OH OM =−=−=,然后利用三角形面积公式,即可表示出S 与t 之间的函数关系;②设M 到直线BC 的距离为h ,根据等面积方法列方程,求出h ,可得到当51033t <<时,S 与t 之间的函数关系,将2S =分别代入两个解析式中,分别解方程即可得解.【小问1详解】解:∵点A 的坐标为()3,4−,∴34AH HO ==,在Rt AOH △中,5AO,故答案为:5;【小问2详解】解:∵四边形ABCO 是菱形,∴5OC OA ==,即50C (,). 设直线AC 的解析式y kx b =+,函数图象过点A C ,, 则5034k b k b += −+=, 解得1252k b =− =, ∴直线AC 的解析式为:1522y x =−+; 【小问3详解】 解:由1522y x =−+,令0x =,52y =,则50,2M ,则52OM =, ①当503t <<时,如图所示, 的53BP BA AP t =−=−,53422HM OH OM =−=−=, ∴()113915·5322244S BP HM t t ==××−=−+, ∴91544t S =−+, ②设M 到直线BC 的距离为h , ∴ΔΔΔ111222ABC AMB BMCS S S AB OH AB HM BC h +⋅⋅+⋅ 则113154552222h ××=××+×, 解得52h =, 当51033t <<时,如图所示,35BP t =−,52h =, ()11515253522244t S BP h t ∴=×=×−×=−, 当2S =时,代入91544t S =−+, 解得79t =, 代入152544t S =−,解得115t=,综上所述79t=或115.【点睛】本题考查了菱形的性质、动点问题、求一次函数解析式、勾股定理等知识,采用数形结合并分情况分析是解题关键.。
2015年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2-= A.2B.2-C.12D.12-2. 据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为( )A.61.357310⨯B.71.357310⨯C.81.357310⨯D.91.357310⨯3. 一组数据2,6,5,2,4,则这组数据的中位数是( )A.2B.4C.5D.64. 如图,直线a ∥b ,∠1=75°,∠2=35°,则∠3的度数是( )A.75°B.55°C.40°D.35°5. 下列所述图形中,既是中心对称图形,又是轴对称图形的是( )A.矩形B.平行四边形C.正五边形D.正三角形6. 2(4)x -=A.28x -B.28xC.216x -D.216x7. 在0,2,0(3)-,5-这四个数中,最大的数是( )A.0B.2C.0(3)-D.5-8. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是( )A.2a ≥B.2a ≤C.2a >D.2a <9. 如题9图,某数学兴趣小组将边长为3的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的面积为( )A.6B.7C.8D.910. 如题10图,已知正△ABC 的边长为2,E ,F ,G 分别是AB ,BC ,CA 上的点,且AE =BF =CG ,设 △EFG 的面积为y ,AE 的长为x ,则y 关于x 的函数图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡相应的位置上.11. 正五边形的外角和等于(度).12. 如题12图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是.13. 分式方程321x x=+的解是 .14. 若两个相似三角形的周长比为2:3,则它们的面积比是.15. 观察下列一组数:13,25,37,49,511,…,根据该组数的排列规律,可推出第10个数是.16. 如题16图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是.三、解答题(一)(本大题3小题,每小题6分,共18分). 17. 解方程:2320x x -+=.18. 先化简,再求值:21(1)11x x x ÷+--,其中21x =-.19. 如题19图,已知锐角△AB C.(1) 过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2) 在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20. 老师和小明同学玩数学游戏,老师取出一个不透明的口袋,口袋中装有三张分别标有数字1,2,3的 卡片,卡片除数字个其余都相同,老师要求小明同学两次随机抽取一张卡片,并计算两次抽到卡片上 的数字之积是奇数的概率,于是小明同学用画树状图的方法寻求他两次抽取卡片的所有可能结果,题20图是小明同学所画的正确树状图的一部分.(1) 补全小明同学所画的树状图;(2) 求小明同学两次抽到卡片上的数字之积是奇数的概率.21. 如题21图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1) 求证:△ABG≌△AFG;(2)求BG的长.22. 某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1) 求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2) 商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?五、解答题(三)(本大题3小题,每小题9分,共27分)23. 如题23图,反比例函数ky x=(0k ≠,0x >)的图象与直线3y x =相交于点C ,过直线上点A (1,3)作 AB ⊥x 轴于点B ,交反比例函数图象于点D ,且AB =3B D. (1) 求k 的值; (2) 求点C 的坐标;(3) 在y 轴上确实一点M ,使点M 到C 、D 两点距离之和d =MC +MD ,求点M 的坐标.24. ⊙O 是△ABC 的外接圆,AB 是直径,过»BC的中点P 作⊙O 的直径PG 交弦BC 于点D ,连接AG ,CP ,P B.(1) 如题24﹣1图;若D 是线段OP 的中点,求∠BAC 的度数;(2) 如题24﹣2图,在DG 上取一点k ,使DK =DP ,连接CK ,求证:四边形AGKC 是平行四边形; (3) 如题24﹣3图;取CP 的中点E ,连接ED 并延长ED 交AB 于点H ,连接PH ,求证:PH ⊥A B.25. 如题25图,在同一平面上,两块斜边相等的直角三角板Rt △ABC 与Rt △ADC 拼在一起,使斜边AC 完全重合,且顶点B ,D 分别在AC 的两旁,∠ABC =∠ADC =90°,∠CAD =30°,AB =BC =4cm . (1) 填空:AD =(cm ),DC =(cm );(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发,且分别在AD ,CB 上沿A →D ,C →B 的方向运动,当N 点运动 到B 点时,M ,N 两点同时停止运动,连结MN ,求当M ,N 点运动了x 秒时,点N 到AD 的距离(用含x 的式子表示);(3) 在(2)的条件下,取DC 中点P ,连结MP ,NP ,设△PMN 的面积为y (cm 2),在整个运动过程中,△PMN 的面积y 存在最大值,请求出这个最大值. (参考数据:sin 75°=62+,sin 15°=62-)参考答案一、选择题1、A2、B3、B4、C5、A6、D7、B8、C9、D 10、D二、填空题11、360° 12、6 13、x=2 14、4:9 15、211016、4 三、解答题(一)17.解:(x-1)(x-2)=0 x 1=1,x 2=2 18.解:原式=111)1)(1(112+=-⋅-+=-÷-x x x x x x x x x x 把12-=x 代入得:原式=22 19.(1)(2)解:∵43tan ==∠AD BD BAD 且 AD=4,∴BD=3 ∴CD=5-3=2 四、解答题(二) 20.(1)(2)9421.(1)证明:∵AB=AD=AF,AG=AG ,∠ABG=∠AFG=90° ∴△ABG 和△AFG 全等(HL ) (2)设BG=x,GC=6-x ,GF=x ,GE=3+x,EC=3 在Rt △GCE 中,(x+3)2=32+(6-x)2 解得:x=2 22. (1)设A 型号每台的价格为x ,B 型号的为y,由题意得: ⎩⎨⎧=-+-=-+-120)40(3)30(67640)30(5y x y x 解得:⎩⎨⎧==5642y x(2)设A 型号的购进x 台,则B 型号的为(70-x )台,由题意得: 2500)70(4030≤-+x x 解得:x ≥30 ∴A 型号的最少要30台 五、解答题(三)23.(1)∵AB=3BD,AB=3 ∴BD=1 ∴D 点坐标为(1,1) 代入xk y =得:k=1(2)联立y=3x 与xy 1=解得:C 点坐标为(3,33) (3)作D 点关于y 轴的对称点E (-1,1),连接CE ,则CE 与y 轴的交点就是所求的点M设CE 的直线解析式为y=kx+b ,代入E,C 两点坐标解得: k=332- , b=232- ∴M 点坐标为(0,232-)24.(1).∵P 点为弧BC 的中点,且OP 为半径 ∴OP ⊥BC又∵AB 为直径,∴∠ACB=90° ∴AC//OP∴∠BAC=∠BOD 又∵21cos ===∠OP OD OB OD BOD ,∴∠BOD=60° ∴∠BAC=60°(2) 由(1)得:AC//GK, DC=DB又∵DK=DP ∴用SAS 易证明:△CDK 与△BDP 全等 ∴∠CKD=∠BPD 又∵∠G=2-180AOG ∠︒ ∠BPD=2-180BOD∠︒ ∴∠G=∠BPD=∠CKD∴AG//CK 又AC//GK (已证) ∴四边形AGKC 为平行四边形 (3) 连接OC∵点E 为CP 的中点,点D 为BC 的中点 ∴DE//BP∴△OHD 与△OBP 相似 ∵OP=OB ∴OH=OD 又OC=OP ∠COD=∠POH ∴△COD 与△POH 全等 ∴∠PHO=∠CDO=90°25.(1)AD=62 CD=22(2)过N 点作NE ⊥AD 于E ,过C 点作CF ⊥NE 于F ∴NF=x x NCF NC 42-615sin sin =︒⋅=∠⋅ 又EF=CD=22 ∴x NE 42622-+= )40(≤≤x (3)设NE 与PM 相交于点H 则MD NH S PMN ⋅⋅=21△ ∵DE=CF=x NC 42675sin +=︒⋅ ∴x x x DE AM AD ME 42646242662++-=+--=--= 由△MEH 与△MDP 相似得:MD ME PD HE =,∴MD ME HE ⋅=2 ∴NH=MDMENE HE NE ⋅-=-2 ∴MD NH S PMN ⋅⋅=21△=ME NE MD MD ME NE MD 2(21)2(21-⋅=⋅-⋅)=)]42662(2)42622)(62[(21x x x x +----+- =32422378262+--+--x x 当2622372---=-=a b x 时,面积有最大值, S 最大值=16162962338442-++=-a b ac PS :答案仅供参考,最后一题最后一问的答案,没有绝对把握算对了,毕竟只算了一遍,也真心不想算第二遍!。