计算机图形学-三维图形变换与投影
- 格式:ppt
- 大小:6.61 MB
- 文档页数:94
计算机图形学中的透视和投影变换计算机图形学是机器图像处理和计算机视觉的理论基础,主要研究计算机生成的三维图形的数学表示和渲染技术。
在计算机生成的三维图形中,透视和投影变换是非常重要的技术,它们可以使三维图形更加直观逼真地呈现出来。
本文将对透视和投影变换进行详细讲解。
一、透视变换透视变换是一种三维立体图像转换为二维平面图像的方法,它可以模拟出现实中的透视效果。
在透视变换中,被变换的三维场景需要经过以下几个步骤:1. 建立三维场景模型。
在建立三维场景模型时,需要确定物体的位置、大小、形状和材质等参数,并将这些参数用数学公式表示出来。
2. 确定观察点位置和视线方向。
观察点是放置在场景外的假想点,用于观察场景中的物体。
视线方向是从观察点指向场景中的物体。
3. 定义投影平面。
投影平面是垂直于视线方向的平面,它用于将三维物体投影到二维平面上。
4. 进行透视变换。
在透视变换中,需要用到透视投影矩阵,它可以将三维图形投影到二维平面上,并使得远离观察点的物体变得更小。
透视变换可以使得生成的二维平面图像更加逼真,同时也可以减少计算量,提高渲染效率。
但是透视变换也有一些缺点,例如不能完全保持原图像的形状和大小,因此在实际应用中需要进行调整。
二、投影变换投影变换是一种将三维物体投影到二维平面上的方法,它可以用于生成平面图像、制作立体影像和建立虚拟现实等应用。
在投影变换中,被变换的三维场景需要经过以下几个步骤:1. 建立三维物体模型。
在建立三维物体模型时,需要确定物体的位置、大小、形状和材质等参数,并将这些参数用数学公式表示出来。
2. 确定相机位置和视线方向。
相机位置是放置在场景外的假想点,用于观察场景中的物体。
视线方向是从相机指向场景中的物体。
3. 定义投影平面。
投影平面是垂直于视线方向的平面,它用于将三维物体投影到二维平面上。
4. 进行投影变换。
在投影变换中,需要用到投影矩阵,它可以将三维图形投影到二维平面上,并保持原图形的形状和大小。
第五章图形变换重 点:掌握二维几何变换、二维观察变换、三维几何变换以及三维观察变换。
难 点:理解常用的平移、比例、旋转变换,特别是复合变换。
课时安排:授课4学时。
图形变换包括二维几何变换, 二维观察变换,三维几何变换和三维观察变换。
为了能使各种几何变换(平移、旋转、比例等)以相同的矩阵形式表示,从而统一使用矩阵乘法运算来实现变 换的组合,现都采用齐次坐标系来表示各种变换。
有齐次坐标系齐次坐标系:n 维空间中的物体可用 n+1维齐次坐标空间来表示。
例如二维空间直线 ax+by+c=O ,在齐次空间成为 aX+bY+cW=0 ,以X 、Y 和W 为三维变量,构成没有常数项的 三维平面(因此得名齐次空间)。
点P (x 、y )在齐次坐标系中用P (wx,wy,w )表示,其中 W 是不为零的比例系数。
所以从 n 维的通常空间到 n+1维的齐次空间变换是一到多的变换,而其反变换 是多到一的变换。
例如齐次空间点P (X 、Y 、W )对应的笛卡尔坐标是 x=X/W 和y=Y/W 。
将通一地用矩阵乘法来实现变换的组合。
常笛卡尔坐标用齐次坐标表示时, W 的值取1。
采用齐次坐标系可以将平移、比例、旋转这三种基本变换都以相同的矩阵形式来表示,并统齐次坐标系在三维透视变换中有更重要的作用, 示形它使非线形变换也能采用线形变换的矩阵表式。
图形变换平移变换图示如图所示,它使图形移动位置。
新图 p'的每一图元点是原图形 p 中每个图元点在向分别移动Tx 和Ty 产生,所以对应点之间的坐标值满足关系式x'=x+Tx y'=y+Ty可利用矩阵形式表示成:[x' y' ] = : x y ] + : Tx Ty ]简记为:P'= P+T , T= : Tx Ty ]是平移变换矩阵(行向量)二堆几何变换1 1二维观察变換三维几诃变换平移变换 比例变换 陡转变换 对称变换 错切变换 仿肘变换 复合变换平移变换 比例变换 旋转变换 绕空间任意轴離转 对称变换 蜡切变换三维观察变5.1二维几何变换二维几何变换就是在平面上对二维点的坐标进行变换,从而形成新的坐标。
图形的投影与变换在我们的日常生活中,图形无处不在。
无论是建筑物的外观,还是艺术作品的构图,图形都扮演着重要的角色。
而对于图形的投影与变换,我们或许并不陌生。
在本文中,我们将探讨图形的投影与变换的概念、应用以及相关的数学原理。
一、图形的投影图形的投影是指将三维物体在二维平面上的映射。
在现实生活中,我们经常会观察到物体在光线照射下产生的投影。
例如,太阳光照射在建筑物上,形成了建筑物在地面上的投影。
在数学中,我们可以通过投影矩阵来描述图形的投影过程。
图形的投影可以分为平行投影和透视投影两种形式。
平行投影是指在投影过程中,光线是平行于投影平面的。
透视投影则是指在投影过程中,光线是从一个点出发的,即观察者的位置。
图形的投影不仅在建筑设计中有着重要的应用,还在计算机图形学中扮演着关键的角色。
在计算机图形学中,我们可以通过投影矩阵将三维物体投影到二维屏幕上,从而实现虚拟现实、游戏等领域的应用。
二、图形的变换除了投影之外,图形的变换也是图形学中的重要概念。
图形的变换包括平移、旋转、缩放等操作,可以改变图形的位置、方向和大小。
平移是指将图形沿着平移向量的方向移动一定的距离。
旋转是指将图形绕着旋转中心旋转一定的角度。
缩放则是指改变图形的大小,可以放大或缩小图形。
图形的变换在计算机图形学中也有着广泛的应用。
例如,在三维建模中,我们可以通过平移、旋转和缩放来改变模型的位置和形状。
在计算机动画中,图形的变换可以实现物体的运动和变形。
三、图形的投影与变换的数学原理图形的投影与变换涉及到一些数学原理。
投影矩阵是描述图形投影的数学工具,可以将三维物体投影到二维平面上。
在计算机图形学中,投影矩阵可以通过矩阵乘法来实现。
图形的变换也可以通过矩阵来描述。
平移、旋转和缩放操作可以分别表示为平移矩阵、旋转矩阵和缩放矩阵。
通过矩阵乘法,我们可以将图形的变换表示为一个矩阵乘法的组合。
除了矩阵乘法之外,还有一些其他的数学原理与图形的投影与变换密切相关。