第六章季节变动预测法
- 格式:ppt
- 大小:657.00 KB
- 文档页数:61
季节性预测的实施步骤简介季节性预测是对特定季节或周期性变化进行预测的一种方法。
它可以用于预测销售趋势、股市走势、气候变化等。
本文将介绍季节性预测的实施步骤,以帮助读者了解如何进行季节性预测分析。
步骤一:数据收集•收集特定领域的历史数据•数据可以包括销售量、股票价格、气温等•数据需要包括足够的时间范围以进行分析步骤二:数据预处理•清洗数据,去除异常值和缺失值•对数据进行平滑处理,例如可以使用移动平均或指数平滑法•如果数据包含趋势成分,则需要进行去趋势化处理步骤三:分解季节性成分•使用时间序列分解方法,将数据分解为趋势、季节和残差成分•可以使用加法模型或乘法模型进行分解•分解后的季节性成分将用于后续的预测分析步骤四:建立模型•选择适当的季节性模型,例如季节性ARIMA模型或指数平滑季节性模型•根据历史数据进行参数估计•可以使用交叉验证方法选择最佳模型参数步骤五:模型评估与优化•使用历史数据对建立的模型进行评估,计算预测误差指标,例如均方根误差(RMSE)•如果模型不符合要求,则进行调整和优化,例如调整模型参数或选择其他模型步骤六:预测未来季节性变化•使用建立好的模型对未来季节性变化进行预测•预测结果可以帮助决策者制定相应的策略和计划•预测结果需要根据具体应用场景进行解读和使用步骤七:结果分析与调整•对预测结果进行分析,判断预测的准确度和可靠性•如果预测结果较差,则需要进行调整和改进,例如重新选择模型或改进数据处理方法•对预测结果进行跟踪和监控,及时调整预测策略结论季节性预测是一种重要的预测方法,它可以帮助决策者了解和预测特定季节或周期性变化。
本文介绍了进行季节性预测的实施步骤,包括数据收集、数据预处理、分解季节性成分、建立模型、模型评估与优化、预测未来季节性变化以及结果分析与调整。
通过遵循这些步骤,可以提高季节性预测的准确性和可靠性,为决策者提供更准确的预测结果。
季节指数法则
季节指数法是一种基于时间序列中季节性周期变动的预测方法。
它通过计算描述该变动的季节变动指数来预测目标未来的状况。
这种方法适用于具有明显季节性特征的数据,如销售、生产等。
季节指数的计算步骤如下:
1. 收集数据:收集时间序列数据,确保数据具有明显的季节性特征。
2. 求出各年同月或同季观察值的平均数(用A表示)。
3. 求历年间所有月份或季度的平均值(用B表示)。
4. 计算各月或各季度的季节指数,即C=A/B。
季节指数法的应用非常广泛,可以用于预测销售、库存、生产等领域的未来趋势。
通过计算季节指数,企业可以更好地了解市场需求和销售情况,从而制定更加合理的生产和销售计划。
需要注意的是,季节指数法只适用于具有明显季节性特征的数据,对于非季节性数据或季节性特征不明显的数据,这种方法可能不太适用。
同时,在进行季节指数预测时,还需要考虑其他因素的影响,如经济环境、市场竞争等。
因此,在使用季节指数法进行预测时,需要结合其他方法和数据来源进行综合分析。
第一节季节变动数据模式分析法及预测步骤一、数据模式的分析法1、叠加法2、乘积法二、预测步骤第一步:确定在不考虑季节变化因素影响下的年度预测值,也称水平/趋势预测值。
第二步:利用按季(月)度的各年历史值(3年以上)计算各季度的季节指标(季节指数、季节变差、季节比重。
第三步:运用步骤二中得到的季节指标和步骤一中得到的年度预测值,从而估算预测期各季(月)度的预测值。
第二节季节指数预测法一、季节指数的测算方法1、按季平均法例:某食品公司历年肉制品按季销售资料如表所示(单位:吨):表8—1 按季平均法计算表年份第一季度第二季度第三季度第四季度2001 2150 1440 1485 17682002 2192 1500 1510 17952003 2089 1495 1504 17652004 2230 1530 1525 18102005 2285 1510 1579 1796历年同季的季度平均值见上表中所示。
表8—2 按季平均法计算表2、全年比率平均法分两步:二、实际预测1、情形一:已知年度预测值,估计各季度预测值2、情形二:已知某季度的实际值,估计其它各季预测值。
第三节季节变差预测法一、季节变差指标的测定方法某季的季节变差=历年同季的季节平均值-全时期季度平均值例题:上例中(见表8-1数据),要求利用季节变差估算各季度预测值。
二、实际预测1、情形一:已知年度预测值,预测其它各季度值。
某季的预测值=年度预测值/4+该季的季节变差例:数据同上,预计2006年该公司肉制品销售量比上年增加3%,估计其它各季度预测值,即2006年度预测值为:7170 ×(1+3%)=7385 (吨),预测各季度值。
2、情形二:已知某季的实际值,估计其它各季度预测值。
某季度预测值=已知季度的实际值—已知季度的季节变差+该季的季节变差例题:上例中,2004年一季度销售量为2400吨,要求预测其它各季销售量。
第二季度的预测值=2400-441.3+(-252.9)=1705.8(吨)第三季度的预测值=2400-441.3+(-229.1)=1729.6 (吨)第四季节的预测值=2400-441.3+38.9=1997.6 (吨)全年的预测值=(2400-441.3)×4=7834.8 (吨)第四节季节比重预测法一、季节比重指标的测定方法一年中各季的季节比重之和为100%,平均每季季节比重为25%,大于25%,高于平均水平,小于25%,低于平均水平。
四、季节变动预测法季节变动是指由于自然条件和社会条件的影响,事物现象在一年内随着季节的转换而引起的周期性变动。
例如,电力系统一天24小时的负荷和交通系统的客运量均呈现季节性的波动。
为了掌握季节性变动的规律,测算未来的需求,正确地进行各项经济管理决策,及时组织生产和交通运输、安排好市场供给,必须对季节变动进行预测。
季节变动预测就是根据以日、周、月、季为单位的时间序列资料,测定以年为周期、随季节转换而发生周期性变动的规律性方法。
进行季节变动分析和预测,首先要分析判断该时间序列是否呈现季节性变动。
通常,将3—5年的已知资料绘制历史曲线图,以其在一年内有无周期性波动作出判断。
然后,将各种影响因素结合起来,考虑它是否还受趋势变动和随机变动等其他因素的影响。
季节变动的预测方法有很多,最常用的方法是平均数趋势整理法。
它的基本思想是:通过对不同年份中同一时期数据平均,消除年随机变动,然后再利用所求出的平均数消除其中的趋势成分,得出季节指数,最后建立趋势季节模型进行预测。
下面以例5.5为例,介绍平均数趋势整理法的实际操作。
例5.5 已知某市2003年至2005年接待海外游客资料如表5.7所示,要求预测2006年第一季度各月该市接待海外游客的数量。
表5.7 某市2003-2005年接待海外游客资料单位:万人次[解] (1)求出各年的同月平均数,以消除年随机变动。
以n代表时间序列所包含的年数,i r表示各年第i个月的同月平均数,则:173191715...121111=++=+++=n y y y r n33.193212017...222122=++=+++=n y y y r n……253272523...1221211212=++=+++=n y y y r n求各年的月平均数,以消除月随机变动。
以)(t y -表示第t 年的月平均数,则:83.261223241715121121211)1(=++++=+++=-y y y y33.301225292017122122221)2(=++++=+++=-y y y y……5.321227302119121221)(=++++=+++=-n n n n y y y y建立趋势预测模型,求趋势值。