2020中考 数学复习--专题复习(一):函数图像的分析判断 (16张PPT)
- 格式:pptx
- 大小:3.19 MB
- 文档页数:16
初中函数图像分析知识点归纳初中阶段,我们学习了各种各样的数学知识,其中函数图像分析也是其中的一部分。
函数图像分析是学习函数的重要内容之一,它帮助我们理解函数的性质和行为。
在本文中,我将对初中函数图像分析的知识点进行归纳和总结。
一、函数的定义域和值域在图像分析中,我们首先要了解函数的定义域和值域。
函数的定义域是指函数可选取的自变量的值的集合,而函数的值域是函数对应的因变量的值的集合。
在分析函数图像时,我们要确保自变量在其定义域内取值,而因变量的取值则取决于函数所定义的规则。
二、函数的奇偶性函数的奇偶性是指函数在自变量取正值和负值时的对称性。
具体来说,若对于函数中的每一对自变量的值 x 和 -x,有相应的 f(x) = f(-x),则函数是偶函数。
相反,若对于函数中的每一对自变量的值 x 和 -x,有相应的 f(x) = -f(-x),则函数是奇函数。
学习函数的奇偶性可以帮助我们预测函数图像的对称性。
三、函数的增减性与极值点函数的增减性是指函数图像在不同区间上的上升或下降趋势。
我们可以通过函数的导数或导函数来确定函数的增减性。
具体来说,若函数在定义域的某个区间上单调递增,那么该区间内的任意两点,其对应的函数值的大小关系保持不变。
若函数在某个区间上单调递减,也满足上述条件。
另外,函数在一处取得极值时,该点称为函数的极值点。
计算函数的导数或导函数,可以帮助我们确定函数的极值点。
四、函数的零点函数的零点也称为函数的根,它是使函数取值为0的自变量值。
零点是函数图像与 x 轴的交点。
通过求解函数的零点,我们可以找到函数图像与 x 轴的交点,进而推测函数的趋势和交点的位置。
五、函数的周期性周期函数是一类特殊的函数,它在一个固定的区间内具有重复的特征。
函数的周期性可以通过观察函数图像来判断。
若函数图像在特定的间隔 (T) 内呈现出相同的形状和性质,则该函数具有周期性。
周期函数的研究可以帮助我们预测函数在整个定义域上的行为。
2020年中考数学三轮专题复习函数及其图象(含答案)一、选择题(本大题共6道小题)1. 二次函数y=(x-1)2+3的图象的顶点坐标是 ()A.(1,3)B.(1,-3)C.(-1,3)D.(-1,-3)2. 若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为直线x=-1,则使函数值y>0成立的x的取值范围是()A.x<-4或x>2B.-4≤x≤2C.x≤-4或x≥2D.-4<x<23. 如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5 km处C.在南偏东15°方向5 km处D.在南偏东75°方向5 km处4. 第一次“龟兔赛跑”,兔子因为在途中睡觉而输掉比赛,很不服气,决定与乌龟再比一次,并且骄傲地说,这次我一定不睡觉,让乌龟先跑一段距离我再去追都可以赢.结果兔子又一次输掉了比赛,则下列函数图象可以体现这次比赛过程的是()5. 从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为()6. 如图,☉O的半径为2,双曲线的解析式分别为y=和y=-,则阴影部分的面积为()A.4πB.3πC.2πD.π二、填空题(本大题共5道小题)7. 星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家,他离家的距离y(千米)与时间t(分)的关系如图所示,则上午8:45小明离家的距离是千米.8. 如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<x时,x的取值范围为.9. 已知二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:x…-1 0 1 2 3 …y… 3 0 -1 0 m…(1)观察上表可求得m的值为;(2)这个二次函数的解析式为;(3)若点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,则n的取值范围为.10. 已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①b>0;②a-b+c<0;③b+2c>0;④当-1<x<0时,y>0,正确的是__________________(填写序号).11. 如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,D为AB的中点,反比例函数y=(k>0)的图象经过点D,且与BC交于点E,连接OD,OE,DE,若△ODE的面积为3,则k的值为.三、解答题(本大题共6道小题)12. 为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.13. 小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.14. 如图,二次函数的图象与x轴交于A(-3,0),B(1,0)两点,交y轴于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出点D的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.15. 如图,抛物线y=-x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=-x2+bx+c的另一个交点为D,已知A(-1,0),D(5,-6),P点为抛物线y=-x2+bx+c上一动点(不与A,D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N,C,M,P为顶点的四边形为平行四边形.若存在,求出点M的坐标;若不存在,请说明理由.16. 某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长度为50 m.设饲养室长为x(m),占地面积为y(m2).(1)如图①,问饲养室长x为多少时,占地面积y最大?(2)如图②,现要求在图中所示位置留2 m宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2 m就行了.”请你通过计算,判断小敏的说法是否正确.17. 在画二次函数y=ax2+bx+c(a≠0)的图象时,甲写错了一次项的系数,列表如下:x…-1 0 1 2 3 …y甲… 6 3 2 3 6 …乙写错了常数项,列表如下:x…-1 0 1 2 3 …y乙…-2 -1 2 7 14 …通过上述信息,解决以下问题:(1)求原二次函数y=ax2+bx+c(a≠0)的表达式;(2)对于二次函数y=ax2+bx+c(a≠0),当x时,y的值随x的值增大而增大;(3)若关于x的方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围. 2020年中考数学三轮专题复习函数及其图象-答案一、选择题(本大题共6道小题)1. 【答案】A2. 【答案】D[解析]∵二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为直线x=-1,∴二次函数的图象与x轴另一个交点为(-4,0),∵a<0,∴抛物线开口向下,则使函数值y>0成立的x的取值范围是-4<x<2.3. 【答案】D[解析]目标A的位置在南偏东75°方向5 km处,故选D.4. 【答案】B[解析]根据题意可知兔子先让乌龟跑了一段距离,但是比乌龟晚到终点,故选项B正确.5. 【答案】C6. 【答案】C[解析]根据反比例函数y=,y=-及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积.=π×22=2π.故选C.∴S阴影二、填空题(本大题共5道小题)7. 【答案】1.58. 【答案】x>3[解析]当x=3时,x=×3=1,∴点A在一次函数y=x的图象上,且一次函数y=x的图象经过第一、三象限,∴当x>3时,一次函数y=x的图象在y=kx+b的图象上方,即kx+b<x.9. 【答案】解:(1)3[解析]观察表格,根据抛物线的对称性可得x=3和x=-1时的函数值相等,∴m的值为3,故答案为:3.(2)y=(x-1)2-1[解析]由表格可得,二次函数y=ax2+bx+c图象的顶点坐标是(1,-1),∴y=a(x-1)2-1.又当x=0时,y=0,∴a=1,∴这个二次函数的解析式为y=(x-1)2-1.(3)n>0[解析]∵点A(n+2,y1),B(n,y2)在该抛物线上,且y1>y2,∴结合二次函数的图象和性质可知n>0.10. 【答案】①③④[解析]根据图象可得:a<0,c>0,对称轴:直线x=-=1,∴b=-2a.∵a<0,∴b>0,故①正确;把x=-1代入y=ax2+bx+c,得y=a-b+c.由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=-1时,y=0,∴a-b+c=0,故②错误;当x=1时,y=a+b+c>0.∵b=-2a,∴-+b+c>0,即b+2c>0,故③正确;由图象可以直接看出④正确.故答案为:①③④.11. 【答案】4[解析]过点D作DH⊥x轴于H点,交OE于M,∵反比例函数y=(k>0)的图象经过点D,E,∴S△ODH=S△ODA=S△OEC=,∴S△ODH-S△OMH=S△OEC-S△OMH,即S△OMD=S四边形EMHC,∴S△ODE=S梯形DHCE=3,设D(m,n),∵D为AB的中点,∴B(2m,n).∵反比例函数y=(k>0)的图象经过点D,E,∴E2m,,∴S梯形=+n m=3,DHCE∴k=mn=4.三、解答题(本大题共6道小题)12. 【答案】解:(1)设1只A型节能灯的售价是x元,1只B型节能灯的售价是y元,根据题意,得解得答:1只A型节能灯的售价是5元,1只B型节能灯的售价是7元.(2)设购买A型节能灯a只,则购买B型节能灯(200-a)只,总费用为w元,w=5a+7(200-a)=-2a+1400,∵a≤3(200-a),∴a≤150,∵-2<0,w随a的增大而减小,∴当a=150时,w取得最小值,此时w=1100,200-a=50.答:最省钱的购买方案是:购买A型节能灯150只,B型节能灯50只.13. 【答案】解:(1)从线段AB得:两人从相距30 km的两地同时出发,1 h后相遇,则v小王+v小李=30 km/h,小王从甲地到乙地行驶了3 h,∴v小王=30÷3=10(km/h),∴v小李=20 km/h.(2)C点的意义是小李骑车从乙地到甲地用了30÷20=1.5(h),此时小王和小李的距离是1.5×10=15(km),∴C点坐标是(1.5,15).设直线BC的解析式为y=kx+b,将B(1,0),C(1.5,15)分别代入解析式,得解得:∴线段BC的解析式为y=30x-30(1≤x≤1.5).14. 【答案】解:(1)D(-2,3).(2)设二次函数的解析式为y=ax2+bx+c(a,b,c为常数,且a≠0),根据题意,得解得∴二次函数的解析式为y=-x2-2x+3.(3)x<-2或x>1.15. 【答案】[分析] (1)将点A,D的坐标分别代入直线表达式、抛物线的表达式,即可求解;(2)设出P点坐标,用参数表示PE,PF的长,利用二次函数求最值的方法.求解;(3)分NC是平行四边形的一条边或NC是平行四边形的对角线两种情况,分别求解即可.解:(1)将点A,D的坐标代入y=kx+n得:解得:故直线l的表达式为y=-x-1.将点A,D的坐标代入抛物线表达式,得解得故抛物线的表达式为:y=-x2+3x+4.(2)∵直线l的表达式为y=-x-1,∴C(0,-1),则直线l与x轴的夹角为45°,即∠OAC=45°,∵PE∥x轴,∴∠PEF=∠OAC=45°.又∵PF∥y轴,∴∠EPF=90°,∴∠EFP=45°.则PE=PF.设点P坐标为(x,-x2+3x+4),则点F(x,-x-1),∴PE+PF=2PF=2(-x2+3x+4+x+1)=-2(x-2)2+18,∵-2<0,∴当x=2时,PE+PF有最大值,其最大值为18.(3)由题意知N(0,4),C(0,-1),∴NC=5,①当NC是平行四边形的一条边时,有NC∥PM,NC=PM.设点P坐标为(x,-x2+3x+4),则点M的坐标为(x,-x-1),∴|y M-y P|=5,即|-x2+3x+4+x+1|=5,解得x=2±或x=0或x=4(舍去x=0),则点M坐标为(2+,-3-)或(2-,-3+)或(4,-5);②当NC是平行四边形的对角线时,线段NC与PM互相平分.由题意,NC的中点坐标为0,,设点P坐标为(m,-m2+3m+4),则点M(n',-n'-1),∴0==,解得:n'=0或-4(舍去n'=0),故点M(-4,3).综上所述,存在点M,使得以N,C,M,P为顶点的四边形为平行四边形,点M的坐标分别为:(2+,-3-),(2-,-3+),(4,-5),(-4,3).16. 【答案】解:(1)∵y=x·=-(x-25)2+,∴当x=25时,占地面积y最大.(2)y=x·=-(x-26)2+338,∴当x=26时,占地面积y最大.即当饲养室长为26 m时,占地面积最大.∵26-25=1≠2,∴小敏的说法不正确.17. 【答案】解:(1)根据甲同学的错误可知x=0时,y=c=3是正确的,由甲同学提供的数据,选择x=-1,y=6;x=1,y=2代入y=ax2+bx+3,得解得a=1是正确的.根据乙同学提供的数据,选择x=-1,y=-2;x=1,y=2代入y=x2+bx+c,得解得b=2是正确的,∴y=x2+2x+3.(2)≥-1[解析]抛物线y=x2+2x+3的对称轴为直线x=-1,∵二次项系数为1,故抛物线开口向上,∴当x≥-1时,y的值随x值的增大而增大.故答案为≥-1.(3)∵方程ax2+bx+c=k(a≠0)有两个不相等的实数根,即x2+2x+3-k=0有两个不相等的实数根,∴Δ=4-4(3-k)>0,解得k>2.。
2023年中考数学《函数图像的信息获取和判断的秒杀方法》专项题型解析◆题型一:函数图像的判断判断函数的图像并不需要把每段函数的解析式完整的求出来!秒杀方法:1.判断一次函数关系:只要判断出结果的未知数的次数,并不需要把解析数求出来,当次数是1时即为一次函数,然后通过k判断结果;2.判断二次函数关系:一般在求面积的时候,会有两个含未知数的式子相乘,即结果为二次函数关系,然后通过该二次项系数的正负判断函数的开口方向即可;3.判断反比例函数关系:只要判断出结果的未知数是不是在分母里即可。
【例1】如图,在矩形ABCD中,AB=2cm,BC=4√3cm,E是AD的中点,连接BE,CE.点P 从点B出发,以√3cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s 的速度沿BE-EC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()【答案】D【解析】由题意得:BE=4cm,bc=4√3cm,则Q从B到E需要4s,从E到C需要4s,共8s;P从B到C需要4s。
①当Q在线段BE上运动时,如图,作QF⊥BC,BP=t,QF=12BQ=√32t,则y=12⋅BF⋅QF,即可得函数为二次函数,且二次项系数>0,开口向上,排除AC;②4s时,P到达终点,不再运动;点Q依然在运动,所以面积公式里只有一个变量,则对应函数为一次函数,因此选D。
1.(2013·湖南衡阳·中考真题)如图所示,半径为的圆和边长为的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过的时间为,圆与正方形重叠部分阴影部分的面积为S,则S与的函数关系式的大致图象为()A.B.C.D.【答案】B【分析】观察图形,在运动过程中,S随的变化情况,得到开始随时间的增大而增大,当圆在正方形内时改变,而重合面积等于圆的面积不变,再运动,随的增大而减小,根据以上结论判断即可.【详解】解:∵半径为的圆沿水平线从左向右匀速穿过正方形,开始至完全进入正方形S随时间的增大而增大,∴选项A、D错误;∵当圆在正方形内时,改变,重合面积等于圆的面积,S不变,再运动,S随的增大而减小,∴选项C错误,选项B正确;故选:B.【点睛】本题主要考查动图形问题的函数图象,熟练掌握函数图象形状变化与两图形重合部分形状、大小变化的关系,是解决此题的关键.2.(2022·青海西宁·统考中考真题)如图,△ABC中,BC=6,BC边上的高为3,点D,E,F分别在边BC,AB,AC上,且EF∥BC.设点E到BC的距离为x,△DEF的面积为y,则y关于x的函数图象大致是()A.B.C.D.【答案】A【分析】过点A向BC作AH⊥BC于点H,所以根据相似三角形的性质可求出EF,进而求出函数关系式,由此即可求出答案.【详解】解:过点A向BC作AH⊥BC于点H,根据相似比可知:,即,解得:EF=2(3-x),则△DEF的面积y=×2(3-x)x=-x2+3x=-(x-)2+,故y关于x的函数图象是一个开口向下、顶点坐标为(,)的抛物线.故选:A.【点睛】本题考查了二次函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键.3.(2022·山东菏泽·统考中考真题)如图,等腰与矩形DEFG在同一水平线上,,现将等腰沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF 为止.等腰与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.【答案】B【分析】根据平移过程,可分三种情况,当时,当时,当时,利用直角三角形的性质及面积公式分别写出各种情况下y与x的函数关系式,再结合函数图象即可求解.【详解】过点C作CM⊥AB于N,,在等腰中,,,①当时,如图,,,,∴,y随x的增大而增大;②当时,如图,,∴当时,y是一个定值为1;③当时,如图,,,,当x=3,y=1,当3<x<4,y随x的增大而减小,当x=4,y=0,结合ABCD选项的图象,故选:B.【点睛】本题考查了动点函数问题,涉及二次函数的图象及性质,能够准确理解题意并分情况讨论是解题的关键.4.(2022·辽宁锦州·中考真题)如图,四边形是边长为的正方形,点E,点F分别为边,中点,点O为正方形的中心,连接,点P从点E出发沿运动,同时点Q从点B出发沿运动,两点运动速度均为,当点P运动到点F时,两点同时停止运动,设运动时间为,连接,的面积为,下列图像能正确反映出S与t的函数关系的是()A.B.C.D.【答案】D【分析】分0≤t≤1和1<t≤2两种情形,确定解析式,判断即可.【详解】当0≤t≤1时,∵正方形ABCD 的边长为2,点O为正方形的中心,∴直线EO垂直BC,∴点P到直线BC的距离为2-t,BQ=t,∴S=;当1<t≤2时,∵正方形ABCD 的边长为2,点F分别为边,中点,点O为正方形的中心,∴直线OF∥BC,∴点P到直线BC的距离为1,BQ=t,∴S=;故选D.【点睛】本题考查了正方形的性质,二次函数的解析式,一次函数解析式,正确确定面积,从而确定解析式是解题的关键.5.(2022·广西河池·统考中考真题)东东用仪器匀速向如图容器中注水,直到注满为止.用t表示注水时间,y表示水面的高度,下列图象适合表示y与t的对应关系的是()A.B.C.D.【答案】C【分析】根据题目中的图形可知,刚开始水面上升比较慢,紧接着水面上升较快,最后阶段水面上升最快,从而可以解答本题.【详解】因为对边的圆柱底面半径较大,所以刚开始水面上升比较慢,中间部分的圆柱底面半径较小,故水面上升较快,上部的圆柱的底面半径最小,所以水面上升最快,故适合表示y与t的对应关系的是选项C.故选:C.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.6.(2022·山东潍坊·中考真题)如图,在▱ABCD中,∠A=60°,AB=2,AD=1,点E,F在▱ABCD的边上,从点A同时出发,分别沿A→B→C和A→D→C的方向以每秒1个单位长度的速度运动,到达点C时停止,线段EF扫过区域的面积记为y,运动时间记为x,能大致反映y与x之间函数关系的图象是()A.B.C.D.【答案】A【分析】分0≤x≤1,1<x<2,2≤x≤3三种情况讨论,利用三角形面积公式求解即可.【详解】解:当0≤x≤1时,过点F作FG⊥AB于点G,∵∠A=60°,AE=AF=x,∴AG=x,由勾股定理得FG=x,∴y=AE×FG=x2,图象是一段开口向上的抛物线;当1<x<2时,过点D作DH⊥AB于点H,∵∠DAH=60°,AE=x,AD=1,DF= x-1,∴AH=,由勾股定理得DH=,∴y=(DF+AE)×DH=x-,图象是一条线段;当2≤x≤3时,过点E作EI⊥CD于点I,∵∠C=∠DAB=60°,CE=CF=3-x,同理求得EI=(3-x),∴y= AB×DH -CF×EI=-(3-x)2=-x2+x-,图象是一段开口向下的抛物线;观察四个选项,只有选项A符合题意,故选:A.【点睛】本题考查了利用分类讨论的思想求动点问题的函数图象;也考查了平行四边形的性质,含30度的直角三角形的性质,勾股定理,三角形的面积公式以及一次函数和二次函数的图象.7.(2022·辽宁锦州·统考中考真题)如图,在中,,动点P从点A出发,以每秒1个单位长度的速度沿线段匀速运动,当点P运动到点B时,停止运动,过点P作交于点Q,将沿直线折叠得到,设动点P的运动时间为t秒,与重叠部分的面积为S,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.【答案】D【分析】由题意易得,,则有,进而可分当点P在AB中点的左侧时和在AB中点的右侧时,然后分类求解即可.【详解】解:∵,∴,由题意知:,∴,由折叠的性质可得:,当点P与AB中点重合时,则有,当点P在AB中点的左侧时,即,∴与重叠部分的面积为;当点P在AB中点的右侧时,即,如图所示:由折叠性质可得:,,∴,∴,∴,∴与重叠部分的面积为;综上所述:能反映与重叠部分的面积S与t之间函数关系的图象只有D选项;故选D.【点睛】本题主要考查二次函数的图象及三角函数,熟练掌握二次函数的图象及三角函数是解题的关键.8.(2022·湖北武汉·统考中考真题)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为,小正方形与大正方形重叠部分的面积为,若,则S随t变化的函数图象大致为()A.B.C.D.【答案】A【分析】根据题意,设小正方形运动的速度为V,分三个阶段;①小正方形向右未完全穿入大正方形,②小正方形穿入大正方形但未穿出大正方形,③小正方形穿出大正方形,分别求出S,可得答案.【详解】解:根据题意,设小正方形运动的速度为v,由于v分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt(vt≤1);②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3;③小正方形穿出大正方形,S=2×2-(1×1-vt)=3+vt(vt≤1).分析选项可得,A符合,C中面积减少太多,不符合.故选:A.【点睛】本题主要考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.9.(2022·浙江台州·统考中考真题)吴老师家、公园、学校依次在同一条直线上,家到公园、公园到学校的距离分别为400m,600m.他从家出发匀速步行8min到公园后,停留4min,然后匀速步行6min到学校,设吴老师离公园的距离为y(单位:m),所用时间为x(单位:min),则下列表示y与x之间函数关系的图象中,正确的是()A.B.C.D.【答案】C【分析】根据吴老师离公园的距离以及所用时间可判断.【详解】解:吴老师家出发匀速步行8min到公园,表示从(0,400)运动到(8,0);在公园,停留4min,然后匀速步行6min到学校,表示从(12,0)运动到(18,600);故选:C.【点睛】本题考查函数的图象,解题的关键是正确理解函数图象表示的意义,明白各个过程对应的函数图象.10.(2021·辽宁鞍山·统考中考真题)如图,是等边三角形,,点M从点C出发沿CB方向以的速度匀速运动到点B,同时点N从点C出发沿射线CA方向以的速度匀速运动,当点M停止运动时,点N也随之停止.过点M作交AB于点P,连接MN,NP,作关于直线MP对称的,设运动时间为ts,与重叠部分的面积为,则能表示S与t之间函数关系的大致图象为()A.B.C.D.【答案】A【分析】首先求出当点落在AB上时,t的值,分或两种情形,分别求出S的解析式,可得结论.【详解】解:如图1中,当点落在AB上时,取CN的中点T,连接MT.,,,,是等边三角形,,是等边三角形,,,,,,,,是等边三角形,,,,,四边形CMPN是平行四边形,,,,如图2中,当时,过点M作于K,则,.如图3中,当时,,观察图象可知,选项A符合题意,故选:A.【点睛】本题考查动点问题,等边三角形的性质,二次函数的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考选择题中的压轴题.11.(2022·山东济宁·三模)如图,在正方形中,,动点M自A点出发沿AB方向以每秒1cm 的速度运动,同时动点N自A点出发沿折线以每秒3cm的速度运动,到达B点时运动同时停止.设的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.【答案】B【分析】根据题意,分三段(,,)分别求解与的解析式,从而求解.【详解】解:当时,分别在线段,此时,,为二次函数,图象为开口向上的抛物线;当时,分别在线段,此时,底边上的高为,,为一次函数,图象为直线;当时,分别在线段,此时,底边上的高为,,为二次函数,图象为开口向下的抛物线;结合选项,只有B选项符合题意,故选:B【点睛】本题考查动点问题的函数图象问题;根据自变量不同的取值范围得到相应的函数关系式是解决本题的关键.12.(2022·甘肃平凉·校考二模)如图,在中,,点以每秒的速度从点出发,沿折线运动,到点停止,过点作,垂足为,的长与点的运动时间秒的函数图像如图所示,当点运动秒时,的长是()A.B.C.D.【答案】B【分析】根据图可判断,,则可确定时的值,利用的值,可求出.【详解】解:由图可得,,,当时,如图所示:此时,故B,,.故选:B.【点睛】本题考查了动点问题的函数图象,解答本题的关键是根据图得到、的长度,此题难度一般.13.(2022·广东深圳·深圳市海滨中学校考模拟预测)如图①,已知Rt△ABC的斜边BC和正方形DEFG的边DE都在直线l上(BC<DE),且点C与点D重合,△ABC沿直线l向右匀速平移,当点B与点D重合时,△ABC停止运动,设DG被△ABC截得的线段长y与△ABC平移的距离x之间的函数图像如图②,则当x=3时,△ABC和正方形DEFG重合部分的面积为()A.B.C.D.【答案】C【分析】过点A作AH⊥BC于点H,由图形可知,当点H和点D重合时,DG被截得的线段长最长,即CH=1;当点B和点D重合时,BC=4,由此可解△ABC;画出当x=3时的图形,利用相似可得出结论.【详解】解:如图①,过点A作AH⊥BC于点H,∴∠AHB=∠AHC=∠BAC=,∴∠ABH+∠BAH=∠BAH+∠HAC=,∴∠ABH=∠HAC,∴△ABH∽△CAH,∴AH:HC=BH:AH,结合图①可知,当点H和点D重合时,DG被截得的线段长最长,即CH=1;当点B和点D重合时,由函数图像可得:BC=4,∴BH=3,∴AH:1=3:AH,即(负值舍去),当x=3时,,如图②,∴设与DG的交点为M,由,则,∴,∴1:3=MD:,即,∴故选:C.【点睛】本题考查的是动点图象问题,涉及相似三角形的性质与判定,解题关键是得出BC和DM的长.14.(2022·青海·统考一模)如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的关系用图象描述大致是()A.B.C.D.【答案】D【分析】该题属于分段函数,根据图象需要得出:点在边上时,随的增大而减小;当点在边上时,随的增大而增大;当点在线段上时,随的增大而减小;当点在线段上时,随的增大而增大.【详解】解:如图,过点作于点.在中,,.①点在边上时,随的增大而减小.故A、B错误,不符合题意;②当点在边上时,随的增大而增大;③当点在线段上时,随的增大而减小,点与点重合时,最小,但是不等于零.故C错误,不符合题意;④当点在线段上时,随的增大而增大.故D正确,符合题意.故选:D.【点睛】本题考查了动点问题的函数图象,解题的关键是读懂图象的含义,即会识图.15.(2021·宁夏银川·统考一模)如图,AB是半圆O的直径,点P从点O出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是()A.B.C.D.【答案】C【分析】依题意,可以知道路程先逐渐变大,再保持不变,然后逐渐变小直至为0.则可以作出判断.【详解】解:由题意可以看出点P在从O到A过程中,s随t的增大而增大;点P在上时,s等于半圆O的半径,即s随t的增大而保持不变;点P从B到O的过程中,s随t的增大而逐渐减少直至为0.只有选项C符合实际情况.故选:C.【点睛】此题考查了函数图像的识别,应抓住s随t变化的本质特征:从0开始增大,到达边线后不变,然后到达B点后开始减小直到0.16.(2022·湖南郴州·统考中考真题)如图1,在中,,,.点D从A 点出发,沿线段AB向终点B运动.过点D作AB的垂线,与的直角边AC(或BC)相交于点E.设线段AD的长为a(cm),线段DE的长为h(cm).(1)为了探究变量a与h之间的关系,对点D在运动过程中不同时刻AD,DE的长度进行测量,得出以下几组数据:变量a(cm)0 0.5 1 1.5 2 2.5 3 3.5 4变量h(cm)0 0.5 1 1.5 2 1.5 1 0.5 0在平面直角坐标系中,以变量a的值为横坐标,变量h的值为纵坐标,描点如图2-1;以变量h的值为横坐标,变量a的值为纵坐标,描点如图2-2.根据探究的结果,解答下列问题:①当时,________;当时,________.②将图2-1,图2-2中描出的点顺次连接起来.③下列说法正确的是________.(填“A”或“B”)A.变量h是以a为自变量的函数B.变量a是以h为自变量的函数(2)如图3,记线段DE与的一直角边、斜边围成的三角形(即阴影部分)的面积为s.①分别求出当和时,s关于a的函数表达式;②当时,求a的值.【答案】(1)①1.5;1或3;②见解析;③A(2)①当时,;当时,;②或【分析】(1)①根据题意,对照变量h和变量a对应的数值即可填写,②图2-1,图2-2中描出的点顺次连接起来即可;③根据函数的定义即可判断;(2)①如图,当时,,得到阴影部分是三角形ADE的面积:;当时,,得到阴影部分的面积是三角形BDE的面积:.②当时,令,解得a;当时,令,解得a即可求解;(1)解:①根据题意,对照变量h和变量a对应的数值,当时, 1.5;当时,1或3.故答案为:1.5;1或3;②连线如图2-1、图2-2所示:③根据函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量,所以变是h是以a为自变量的函数,故A选项符合,故选:A.(2)①如图3,当时,,∴阴影部分的面积:;当时,,∴阴影部分的面积:.∴当时,;当时,.②当时,令,解得或(不符合题意,舍去).当时,令,解得或(不符合题意,含去).∴当时,或.【点睛】本题考查了函数图像,写函数关系式,理解函数的定义以及表示方法,会根据三角形的面积公式得出函数关系式是解题的关键.◆题型二:根据已知图像获取相关信息把图像和运动情况结合起来,了解每一个转折点,每条线的具体含义。
2020年中考数学函数图象判断问题专题复习(名师精选全国真题,值得下载练习)1.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛.下列函数图象可以体现这一故事过程的是()解析由于兔子开始的时候领先,所以开始时兔子的速度比乌龟快,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A,C均错误;故选B.2.甲、乙两车从A地出发,匀速驶向B地.甲车以80 km/h的速度行驶1 h后,乙车才沿相同路线行驶.乙车先到达B地并停留1 h后,再以原速度按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120 km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的是()A.①②③B.①②④C.①③④D.①②③④解析由图象可知,乙出发时,甲、乙相距80 km,2小时后,乙车追上甲.则说明乙每小时比甲快40 km,则乙的速度为120 km/h,①正确;由图象第2~6小时,乙由相遇点到达B,用时4小时,每小时比甲快40 km,则此时甲乙距离4×40=160 km,则m=160,②正确;当乙在B 休息1 h时,甲前进80 km,则H点坐标为(7,80),③正确;乙返回时,甲、乙相距80 km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选A.3.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为,则不等式组mx-2<kx+1<mx的解集为()A.x>B.<x<C.x<D.0<x<代入y1=kx+1,可得m=k+1,解得k=m-2,∴y1=(m-2)x+1,令y3=mx-2,则当y3<y1时,mx-2<(m-2)x+1,解得x<;当kx+1<mx时,(m-2)x+1<mx,解得x>,∴不等式组mx-2<kx+1<mx的解集为<x<,故选B.4.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5 min的集中药物喷洒,再封闭宿舍10 min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5 min集中喷洒药物,室内空气中的含药量最高达到10 mg/m3B.室内空气中的含药量不低于8 mg/m3的持续时间达到了11 minC.当室内空气中的含药量不低于5 mg/m3且持续时间不低于35分钟时,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2 mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2 mg/m3开始,需在59 min后,学生才能进入室内正确.不符合题意;B.由题意x=4时,y=8,∴室内空气中的含药量不低于8 mg/m3的持续时间达到了11 min,正确,不符合题意;C.y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;D.正确.不符合题意,故选C.5.小明参加100 m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才” 请你预测小明5月后(6月份)100 m短跑的成绩为() (温馨提示:目前100 m短跑世界纪录为9秒58)A.14.8 sB.3.8 sC.3 sD.预测结果不可靠设y=kx+b依题意得解答-∴y=-0.2x+15.8.当x=5时,y=-0.2×5+15.8=14.8.故选A.6.如图,一次函数y=-x-2与y=2x+m的图象相交于点P(n,-4),则关于x的不等式组--的解集为.--2<x<2一次函数y=-x-2的图象过点P(n,-4),∴-4=-n-2,解得n=2,∴P(2,-4),又∵y=-x-2与x轴的交点是(-2,0),∴关于x的不等式2x+m<-x-2<0的解集为-2<x<2.7.某日上午,甲、乙两车先后从A地出发沿一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.千米/小时≤v≤80千米/小时:甲车的速度为120÷3=40千米/小时 2≤t≤3若10点追上,则v=2×40=80千米/小时,若11点追上,则2v=120,即v=60千米/小时,∴60千米/小时≤v≤80千米/小时.8.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时):(1)求v关于t的函数表达式;(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?由题意可得100=vt,则v=.(2)∵不超过5小时卸完船上的这批货物,∴t≤5 则v≥=20.答:平均每小时至少要卸货20吨.9.某学校积极响应“三城同创”的号召,绿化校园,计划购进A、B两种树苗,共21棵,已知A种树苗每棵90元,B种树苗每棵70元.设购买A种树苗x棵,购买两种树苗所需费用为y元.(1)求y与x的函数表达式,其中0≤x≤21;(2)若购买B种树苗数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.根据题意,得y=90x+70(21-x)=20x+1 470,所以函数表达式为y=20x+1 470.(2)∵购买B种树苗的数量少于A种树苗的数量,∴21-x<x,解得x>10.5,又∵y=20x+1 470,且x取整数,∴当x=11时,y有最小值=1 690,∴使费用最省的方案是购买B种树苗10棵,A种树苗11棵,所需费用为1 690元.10.一水果店是A酒店某种水果的唯一供货商,水果店根据该酒店以往每月的需求情况,本月初专门为他们准备了2 600 kg的这种水果.已知水果店每售出1 kg该水果可获利润10元,未售出的部分每1 kg将亏损6元,以x(单位:kg 2 000≤x≤3 000)表示A酒店本月对这种水果的需求量,y(元)表示水果店销售这批水果所获得的利润.(1)求y关于x的函数表达式;(2)当A酒店本月对这种水果的需求量如何时,该水果店销售这批水果所获的利润不少于22 000元?由题意得,当2 000≤x≤2 600时,y=10x-6(2 600-x)=16x-15 600;当2 600<x≤3 000时,y=2 600×10=26 000;(2)由题意得16x-15 600≥22 000 解得x≥2 350.∴当A酒店本月对这种水果的需求量小于等于3 000 kg,不少于2 350 kg时,该水果店销售这批水果所获的利润不少于22 000元.11.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?设该一次函数解析式为y=kx+b,将(150,45)、(0,60)代入y=kx+b中,解得-∴该一次函数解析式为y=-x+60.(2)当y=-x+60=8时,解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530-520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油时,离加油站的路程是10千米.12.为了落实党的“精准扶贫”政策,A,B两城决定向C、D两乡运送肥料以支持农村生产,已知A,B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?设A城有化肥a吨,B城有化肥b吨,根据题意,得解得-答:A城和B城分别有200吨和300吨肥料;(2)设从A城运往C乡肥料x吨,则运往D乡(200-x)吨从B城运往C乡肥料(240-x)吨,则运往D乡(60+x)吨如总运费为y元,根据题意,则y=20x+25(200-x)+15(240-x)+24(60+x)=4x+10 040由于函数是一次函数,k=4>0所以当x=0时,运费最少,最少运费是10 040元.(3)从A城运往C乡肥料x吨,由于A城运往C乡的运费每吨减少a(0<a<6)元,所以y=y=(20-a)x+25(200-x)+15(240-x)+24(60+x)=(4-a)x+10 040,当0<a≤4时,∵4-a≥0,∴当x=0时,运费最少;当4<a<6时,∵4-a<0,∴当x=240时,运费最少.所以:当0<a≤4时,A城化肥全部运往D乡,B城运往C乡240吨,运往D乡60吨,运费最少;当4<a<6时,A城化肥全部运往C乡,B城运往C乡40吨,运往D乡260吨,运费最少.。
函数图象的判断(25题)含详细答案一、选择题1.函数()33xy x x =-⋅的图象大致是()A .B .C .D .2.函数()2111x x x f x ln x x -+⎛⎫= ⎪--⎝⎭的图象大致为()A .B .C .D .3.函数()()||f x xcosx sinx ln x =+的部分图像大致为()A .B .C .D .4.函数2()(1)31x f x cosx =-⋅+的图像大致为()A .B .C .D .5.函数()313ln xf x x x=-的图象可能为()A .B .C .D .6.函数()2sin222x xx xf x -=-的图象大致为()A .B .C .D .7.已知函数()y f x =部分图象如图所示,则函数()f x 的解析式可能为()A .()sin2f x x x =B .()sin f x x x =C .()2sin xf x x=D .()2sin2xf x x=8.“家在花园里,城在山水间.半城山色半城湖,美丽惠州和谐家园......”首婉转动听的《美丽惠州》唱出了惠州的山姿水色和秀美可人的城市环境.下图1是惠州市风景优美的金山湖片区地图,其形状如一颗爱心.图2是由此抽象出来的一个“心形”图形,这个图形可看作由两个函数的图象构成,则“心形”在x 轴上方的图象对应的函数解析式可能为()A .y =B .y =C .y =D .y =9.已知函数e (21)()1x x f x x -=-,则()f x 的大致图象为()A .B .C .D .10.函数()2221x xf x x--=-的图象大致是()A .B .C .D ..11.函数()1f x x sinx x ⎛⎫=-⎪⎝⎭的图象可能为()A .B .C .D .12.函数3e ()e cosxf x x lncosx+=-的图象大致为()A .B .C .D .13.函数()221()22xxx sinx f x -+=+的部分图象大致是()A .B .C .D .14.如图是下列某个函数在区间[]22-,的大致图象,则该函数是()A .()3223312x x x xf x cosx +-=+B .()322331x x xf x x +-=+C .()3221x x xf x sinx x -+=+D .()2251x xf x cosxx -=+15.数学与音乐有着紧密的关联,我们平时听到的乐音一般来说并不是纯音,而是由多种波叠加而成的复合音.如图为某段乐音的图象,则该段乐音对应的函数解析式可以为()A .112323y sinx sin x sin x =++B .112323y sinx sin x sin x=--C .112323y sinx cos x cos x=++D .112323y cosx cos x cos x=++16.函数()211e xf x sinx ⎛⎫=-⎪+⎝⎭的部分图像大致形状是()A .B .C .D .17.函数()e 1e 1x x f x cosx -=⋅+的图象大致为()A .B .C .D .18.函数())f x xln x =的图象大致为()A .B .C .D .19.函数()e ex xy sinxln -=+在区间[]ππ-,上的图象大致为()A .B .C .D .20.已知函数op =>0,≤0,则函数()1y f x =-的图象大致是()A .B .C .D .21.函数()3sin xf x x x=-在[]ππ-,上的图像大致为()A .B .C .D .22.函数3||x sinxy x -=的大致图象是()A .B .C .D .23.函数101()101x x f x sinx -=⋅+在区间ππ22⎡⎤-⎢⎣⎦,上的图象大致为()A .B .C .D .24.已知函数()f x 的图象如图所示,则该函数的解析式可能是()A .()||||22f x sinx cosx sin x =+-B .()||||22f x sinx cosx sin x =-+C .()||||22f x sinx cosx cos x =-+D .()||||22f x sinx cosx cos x=++25.函数()e e 3πsin 242x x f x x -+⎛⎫=⋅- ⎪⎝⎭在[]44-,上的图象大致是()A .B .C .D .答案解析部分1.【答案】B【知识点】函数的图象【解析】【解答】解:函数()33xy x x =-⋅的定义域为R ,()()()()()33x f x x x f x --=---⋅=-,所以函数()33xy x x =-⋅为奇函数,故排除CD 选项,当01x <<时,3x x <,所以()330xy x x =-⋅<再排除A.故答案为:B.【分析】先求函数的定义域,利用函数的奇偶性判处CD 选项,再根据01x <<时,函数值的正负即可排除A.2.【答案】A【知识点】奇偶函数图象的对称性;函数的图象【解析】【解答】解:因为()2111x x x f x ln x x -+⎛⎫= ⎪--⎝⎭,所以101xx+>-,解得:-1<x<1,即函数f(x)的定义域为(-1,1),所以()()2111111111x x x x x x x f x ln ln xln x x x x x --+++⎛⎫⎛⎫⎛⎫===- ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭,()()()111111x x x f x x ln xln xln f x x x x --+⎛⎫⎛⎫⎛⎫-=--==-= ⎪ ⎪ ++-⎝⎭⎝⎭⎝⎭,所以函数f(x)是偶函数,故排除C 、D 选项;当0<x<1时,则-1<-x<0,1<1+x<2,0<1-x<1,所以111x x +>-,则1ln 01x x +⎛⎫> ⎪-⎝⎭,所以f(x)<0,排除B 选项;故答案为:A.【分析】先求出f(x)的定义域并化简解析式,利用奇偶性排除C 、D 选项,再推导出当0<x<1时,f(x)<0排除B 选项.3.【答案】A【知识点】函数的奇偶性;奇偶函数图象的对称性;函数的图象【解析】【解答】函数()()||f x xcosx sinx ln x =+的定义域为{}|0x x ≠,且()()()()()f x xcos x sin x ln x xcosx sinx lnx f x -=--+--=--=-⎡⎤⎣⎦,所以函数()f x 是奇函数,其函数图象关于()00,对称,所以C 、D 不符合题意;又ππππππ0222222f cos sin ln ln ⎛⎫=-+⋅=> ⎪⎝⎭,所以B 不符合题意;故答案为:A.【分析】利用奇偶函数的定义可判定出函数()f x 是奇函数,再根据奇函数图象的对称性可排除C 、D ;再由π02f ⎛⎫> ⎪⎝⎭可排除B ;进而可得答案.4.【答案】B【知识点】函数的奇偶性;奇函数与偶函数的性质;函数的图象【解析】【解答】2()(1)31x f x cosx =-⋅+,则()f x 的定义域为R ,又()()()2232111313131x x x x f x cos x cosx cosx f x -⎛⎫⨯⎛⎫⎛⎫-=-⋅-=-⋅=-+⋅=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,所以()f x 为奇函数,图象关于原点对称,故排除CD ,当πx =时,()ππ22π=1π-1+03131f cos ⎛⎫-=< ⎪++⎝⎭,故排除A.故答案为:B.【分析】根据题意,先分析函数的奇偶性,排除C 、D ;结合特殊值()πf ,排除A ;综合可得答案.5.【答案】D【知识点】函数的奇偶性;奇函数与偶函数的性质;函数的图象【解析】【解答】函数()313ln x f x x =-定义域为(0)(0)⋃-∞+∞,,,()()()331133ln x ln x f x x x f x -⎛⎫-=--=--=- ⎪-⎝⎭则函数()f x 为奇函数,其图像关于原点中心对称,排除C ;又()3111110313ln f =⨯-=>,排除AB ;故答案为:D【分析】先判断出函数f (x)为奇函数,排除选项C ;再利用特值f (1)>0排除选项A 、B ;进而得到答案.6.【答案】D【知识点】函数的奇偶性;函数的图象【解析】【解答】由()2sin222x x x x f x -=-可得定义域为{|0}x x ≠,因为()()()2sin222x x x x f x f x ---==-,所以()f x 是偶函数,函数图象关于y 轴对称,A ,C 不符合题意;又()2111sin21022f -⨯=>-,B 中图象不符合,D 中图象符合,故答案为:D .【分析】利用函数的奇偶性以及函数值的符号,逐项进行判断,可得答案.7.【答案】D【知识点】分段函数的解析式求法及其图象的作法;函数的图象【解析】【解答】由图象知()[]00πf x x =∈,,有三个零点经验证只有AD 满足,排除BC 选项,A 中函数满足()sin(2)sin2()f x x x x x f x -=--==为偶函数,D 中函数满足()2(2)22()x x f x sin x sin x f x --=-=-=-为奇函数,而图像关于原点对称,函数为奇函数,排除A ,选D .故答案为:D .【分析】由函数图象结合函数零点与函数与x 轴交点横坐标的等价关系,依据奇函数和偶函数的定义、对称性,逐项排除可得答案。
九年级判断函数图像知识点函数图像是数学中的重要概念,它通过给定的输入值得到相应的输出值,并将这种关系用图形的方式展示出来。
对于九年级的学生来说,学习如何判断函数图像是非常关键的。
本文将为大家介绍一些判断函数图像的重要知识点。
首先,我们需要了解如何根据函数的表达式来判断函数图像的形状。
以一次函数为例,一次函数的一般形式为y=ax+b,其中a 和b为常数。
当a为正数时,图像是一个从左下方向右上方倾斜的直线;当a为负数时,图像则是一个从左上方向右下方倾斜的直线。
而b则决定了直线与y轴的交点位置。
根据函数表达式的系数,我们可以判断函数图像在平面直角坐标系中的大致形状。
其次,函数的二次函数形式也是九年级需要掌握的重要内容。
二次函数的一般形式为y=ax²+bx+c,其中a、b和c为常数,且a 不为零。
二次函数的图像形状是一个拱形,被称为抛物线。
根据二次函数的系数,我们可以判断抛物线的开口方向以及在平面直角坐标系中的位置。
当a为正数时,抛物线开口向上;当a为负数时,抛物线开口向下。
而b和c则决定了抛物线的位置,例如顶点坐标和与x轴交点的位置等。
除了一次函数和二次函数,九年级还需要了解其他常见的函数类型,如绝对值函数、分段函数等。
绝对值函数的一般形式为y=|x|,其图像是一个以原点为对称中心的V字形曲线。
而分段函数由多个不同部分的函数组成,每个部分遵循特定的条件。
对于分段函数,我们可以根据不同的条件判断函数图像在不同的部分如何呈现。
在判断函数图像的过程中,我们还需要注意一些特殊情况。
例如,当函数表达式中存在有理数指数时,我们需要特殊对待。
对于有理数指数的相关知识,我们需要通过数值计算或利用图象软件来得到准确的结果。
此外,我们还需要注意函数图像中的对称性。
例如,奇函数的图像关于原点对称,而偶函数的图像关于y轴对称。
了解这些特殊情况可以帮助我们更准确地判断函数图像。
最后,判断函数图像是一个需要多方面能力的任务。