第三章 空间力系分解
- 格式:ppt
- 大小:845.50 KB
- 文档页数:30
47第3章 空间力系本章要点● 理解力在空间直角坐标轴上的投影● 理解力对轴之矩● 掌握空间力系的平衡方程及其应用● 掌握重心及其计算前面我们讨论了平面力系,平面力系中各力的作用线分布在同一平面内,这是物体受力的特殊情况,现在将讨论物体受力的最一般的情况——空间力系。
当力系中各力的作用线不在同一平面,而呈空间分布时,称为空间力系。
本章主要介绍空间力系的简化与平衡问题。
在工程实际中,有许多问题都属于这种情况。
如图3-1所示车床主轴,受有切削力F x 、F y 、F z 和齿轮上的圆周力F t 、径向力F n 以及轴承A 、B 处的约束反力,这些力构成一组空间力系。
与平面力系一样,空间力系可分为空间汇交力系、空间平行力系及空间一般力系。
图3-1 车床主轴3.1 力在空间直角坐标轴上的投影在平面力系中,常将作用于物体上某点的力向坐标轴x 、y 上投影。
同理,在空间力系中,也可将作用于空间某一点的力向坐标轴x 、y 、z 上投影。
具体作法如下:1.直接投影法若一力F 的作用线与x 、y 、z 轴对应的夹角已经给定,如图3-2a 所示,则可直接将力F 向三个坐标轴投影,得⎪⎭⎪⎬⎫=== cos cos cos γβαF F F F F F z y x (3-1)48其中,α、β、γ分别为力F 与x 、y 、z 三坐标轴间的夹角。
2.二次投影法当力F 与x 、y 坐标轴间的夹角不易确定时,可先将力F 投影到坐标平面xoy 上,得一力F xy ,进一步再将F xy 向x 、y 轴上投影。
如图3-2b 所示。
若γ为力F 与z 轴间的夹角,φ为F xy 与x 轴间的夹角,则力F 在三个坐标轴上的投影为⎪⎭⎪⎬⎫===== cos sin sin sin cos sin cos γϕγϕϕγϕF F F F F F F F z xy y xy x (3-2)图3-2 二次投影法具体计算时,可根据问题的实际情况选择一种适当的投影方法。