二力合成的法则-平行四边形法则
- 格式:pptx
- 大小:9.10 MB
- 文档页数:4
合力平行四边形法则全文共四篇示例,供读者参考第一篇示例:合力平行四边形法则是物理学中的一个基本定律,用于描述多力作用于同一物体时所产生合力的性质。
在我们日常生活和工程实践中,合力平行四边形法则具有重要的应用价值。
本文将介绍合力平行四边形法则的定义、原理和应用,并探讨其在日常生活和工程领域中的重要性。
一、合力平行四边形法则的定义合力平行四边形法则是指:当几个力作用于同一物体时,这些力的合力等于它们共同作用的平行四边形的对角线的长度和方向。
换句话说,合力的大小和方向由各力的大小和方向共同决定,而且合力的大小等于平行四边形对角线的长度,合力的方向沿对角线方向。
据此法则,我们可以很方便地求出多个力的合力。
我们需要将各力的大小和方向画在力的起点,然后用直线连接起始点和终点,得到一个平行四边形。
用从起始点到终点的对角线代表合力,合力的大小和方向即为对角线的长度和方向。
合力平行四边形法则的原理可以用矢量的概念来解释。
在物理学中,力是一个矢量量,具有大小和方向。
合力和各力之间的关系可以用矢量相加来表示。
假设有两个力F1和F2作用于同一物体上,它们的大小分别为|F1|和|F2|,方向分别为θ1和θ2。
根据矢量相加的规律,可以计算出合力F的大小和方向,如下所示:F = F1 + F2F是合力的大小,F1和F2分别是力的大小,加号表示矢量的相加。
合力的方向可以根据矢量相加的方向规则来确定。
举例来说,假设一根绳子同时承受两个力的拉扯,我们可以利用合力平行四边形法则来计算绳子的合力,从而确定绳子的承重能力。
又如,在桥梁的设计中,需要考虑多个力的作用,通过合力平行四边形法则可以确定桥梁的结构是否稳定。
在日常生活中,我们也可以利用合力平行四边形法则来解决一些实际问题。
家里的书柜支撑不稳,我们可以利用合力平行四边形法则来分析书柜受力情况,从而找出支撑不稳的原因,并采取相应的措施加固书柜。
合力平行四边形法则作为物理学中的基本定律,具有重要的理论和实践意义。
P2 刚体:在力的作用下不会发生形变的物体。
力的三要素:大小、方向、作用点平衡:物体相对于惯性参考系处于静止或作匀速直线运动。
二、静力学公理1力的平行四边形法则:作用在物体上同一点的两个力,可以合成为仍作用于改点的一个合力,合力的大小和方向由这两个力为边构成的平行四边形的对角线矢量确定。
2二力平衡条件:作用在同一刚体上的两个力使刚体保持平衡的必要和充分条件是:这两个力的大小相等、方向相反,并且作用在同一直线上。
3加减平衡力系原理:作用于刚体的任何一个力系中,加上或减去任意一个平衡力系,并不改变原来力系对刚体的作用。
(1)力的可传性原理:作用在刚体上某点的力可沿其作用线移动到该刚体内的任意一点,而不改变该力对刚体的作用。
(2)三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇于一点,则此三个力必在同一平面内,且第三个力的作用线通过汇交点。
4作用与反作用定律:两个物体间相互作用的力,即作用力和反作用力,总是大小相等,方向相反,作用线重合,并分别作用在两个物体上。
5 刚化原理:变形体在某一力系作用下处于平衡状态时,如假想将其刚化为刚体,则其平衡状态保持不变。
三、约束和约束反力P7 约束:1柔索约束:柔索只能承受拉力,只能阻碍物体沿着柔索伸长的方向运动,故约束反力通过柔索与物体的连接点,方位沿柔索本身,指向背离物体;2光滑面约束:约束反力通过接触点,沿接触面在接触点的公法线,并指向物体,即约束反力为压力;3光滑圆柱铰链约束:①圆柱、②固定铰链、③向心轴承:通过圆孔中心或轴心,方向不定的力,可正交分解为两个方向、大小不定的力;④辊轴支座:垂直于支撑面,通过圆孔中心,方向不定;4链杆约束(二力杆):工程中将仅在两端通过光滑铰链与其他物体连接,中间又不受力作用的直杆或曲杆称为连杆或二力杆,当连杆仅受两铰链的约束力作用而处于平衡时,这两个约束反力必定大小相等、方向相反、沿着两端铰链中心的连线作用,具体指向待定。
1、平行四边形法则,即:力21F F 和的合力即此二力构成的平行四边形的对角线所表示的力F ,如图1-2-1(a);
2、三角形法则,即:将21,F F 通过平移使其首尾相接,则由起点指向末端的力F 即21,F F 的
合力。
(如图1-2-1(b))
3、二级结论:两个相等大小的力的合力在角平分线上
4、正交分解:将物体所受力按垂直方向分解,然后再求代数和,这样把矢量问题转化为代数运算。
5、多边形法则:如果有多个共点力求合力,可在三角形法则的基础上,演化为如果有多个共点力求合力,可在三角形法则的基础上,演化为多边形法则。
如图1-2-2所示,a 图为有四个力共点O ,b 图表示四个力矢首尾相接,从力的作用点O 连接力4F 力矢末端的有向线段就表示它们的合力。
而(c)图表示五个共点力组成的多边形是闭合的,即1F 力矢的起步与
5F 力矢的终点重合,这表示它们的合力为零。
问题:画动态平行四边形或三角形
F 1
F 2
F
(a)
(b)
图1-2-1 F 1
F 2
F 3
F 4
F 1
F 2
F 3 F 4
∑F
F 1 F 2
F 3 F 4
F 5
(a) (b) (c) 图1-2-2。
力的合成和力的分解定律力的合成和力的分解定律是物理学中的重要概念,主要涉及力的合成、力的分解和力的平行四边形法则。
一、力的合成力的合成是指多个力共同作用于一个物体时,可以将其看作一个总力的作用。
根据平行四边形法则,多个力的合力等于这些力的矢量和。
即在力的图示中,将各个力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是多个力的合力。
二、力的分解力的分解是指一个力作用于一个物体时,可以将其分解为多个分力的作用。
根据平行四边形法则,一个力可以被分解为两个分力,这两个分力分别与原力构成两个力的矢量和。
在力的图示中,将原力的箭头分别与两个分力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是原力。
三、力的平行四边形法则力的平行四边形法则是描述力的合成和分解的基本规律。
根据该法则,多个力共同作用于一个物体时,它们的合力等于这些力的矢量和。
同样地,一个力可以被分解为两个分力,这两个分力的合力等于原力。
在力的图示中,力的合成和分解都遵循平行四边形法则,即各个力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是合力或分力。
力的合成和力的分解定律在实际生活中有广泛的应用,如物理学中的力学问题、工程设计、体育竞技等。
通过力的合成和分解,可以简化复杂力的计算,便于分析和解决问题。
综上所述,力的合成和力的分解定律是物理学中的重要概念,掌握这些知识有助于更好地理解和解决力学问题。
习题及方法:1.习题:两个力F1和F2,F1 = 5N,F2 = 10N,它们之间的夹角为60度,求这两个力的合力。
解题方法:根据力的合成,将两个力的矢量和画在一个坐标系中,将F1和F2按照夹角60度画出矢量图,然后用平行四边形法则求出合力。
答案:合力F = √(F1² + F2² + 2F1F2cos60°) = √(5² + 10² + 2510*0.5) = 15N。
力的合成与分解一、知识要点 1、力的合成 (1)运算法则:①平行四边形法则,见图(A ),用表示两个共点力F 1和F 2的线段为邻边作平行四边形,那么这两个邻边之间的对角线就表示合力F 的大小和方向。
②三角形定则:求两个互成角度的共点力F 1、F 2的合力,可以把表示F 1、F 2的线段首尾相接地画出,见图(B ),把F 1、F 2的另外两端连接起来,则此连线就表示合力F 的大小、方向。
三角形定则是平行四边形定则的简化,本质相同。
(2)力的合成的几种特殊情况:①相互垂直的两个力的合成,如图所示,F =,合力F 与分力F 1的夹角θ的正切为:21tan F F θ=。
②夹角为θ的两个等大的力的合成,如图所示,作出的平行四边形为菱形,利用其对角线互相垂直的特点可得直角三角形,解直角三角形求得合力2cos2'θF F =,合力'F 与每一个分力的夹角等于2θ。
③夹角为120的两个等大的力的合成,如图所示,实际是②的特殊情况:FF F =⋅=2120cos 2',即合力大小等于分力。
实际上对角线把画出的菱形分为两个等边三角形,所以合力与分力等大。
(3). 合力与两分力之间的大小关系:在两个力F 1和F 2大小一定情况下,改变F 1与F 2方向之间的夹角θ,当θ角减小时,其合力F 逐渐增大,当0θ=时,合力最大F =F 1+F 2,方向与F 1和F 2方向相同;当θ角增大时,其合力逐渐减小,当180θ=,合力最小F =|F 1-F 2|,方向与较大的力方向相同,即合力大小的取值范围为F 1+F 2≥F ≥|F 1-F 2|。
(4). 多个力的合成:应先求其中任意两个力的合力,再求这个合力与第三个力的合力,直到把所有的力都合成进去,最后得到的就是这些力的合力。
2、力的分解(1)作用在物体上的同一个力F 可以分解为无数对大小、方向不同的分力。
一般情况下我们按照力的作用效果进行分解,按力的效果进行分解,这实际上就是定解条件。
3.4力的合成1.合力与分力(1)定义:一个力产生的效果跟原来几个力的共同效果,这个力就叫做那几个力的,原来的几个力叫做。
(2)关系:合力与分力之间是“”关系。
2.力的合成(1)定义:求几个力的的过程叫做力的合成。
力的合成实际上就是要找一个力去代替几个已知的力,而不改变其作用效果,即合力和分力可以。
(2)平行四边形定则:两个力合成时,以表示这两个力的线段为邻边作,这两个邻边之间的对角线就代表,这个法则叫做平行四边形定则。
关键一点:(1)合力与分力满足平行四边形定则而不是算术法则,故合力可以大于、等于或小于分力。
(2)不仅力的合成遵循平行四边形定则,一切矢量的运算都遵循这个定则。
3.合力与分力的关系1、两个力在同一直线上:两个力同向时,两个力的合力等于两个力的‗‗‗‗‗‗‗‗,即‗‗‗‗‗‗‗‗‗,方向与‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗。
两个力反向时,两个力的合力等于两个力的‗‗‗‗‗‗‗‗,即‗‗‗‗‗‗‗‗,方向与大的力同向。
2、两分力大小一定时,夹角θ越大,合力就越小,夹角θ越小,合力越大。
(1)当θ=0°时,(两个分力方向相同)合力最大,F =‗‗‗‗‗‗‗‗‗‗‗‗‗‗(合力与分力同向)(2)当θ=180°时(两个分力方向相反)合力最小,F=‗‗‗‗‗‗‗‗‗‗‗‗‗(合力与分力中较大的力同向)(3)合力的取值范围,‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗。
3、合力可能大于某一分力,可能等于某一分力,也可能小于某一分力。
4、合力不变的情况下,夹角越大,两个等值分力的大小越大。
5、两个力夹角θ一定,F1大小不变,增大F2,其合力F怎样变化?①当θ≤90°时,F合变大。
②当θ>90°时,F合先变小后变大。
4.多力合成的方法先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。
§2.2 力的合成与分解、探究力的合成平行四边形定则内容要求说明力的合成和分解力的平行四边形定则(实验、探究)Ⅱ力的合成和分解的计算,只限于用作图法或直角三角形知识解决一、合力与分力若一个力的作用效果与另外几个力共同作用的效果相同,那么,这个力就叫做那另外几个力的合力,另外几个力叫做这个力的分力.二、力的合成与分解1.求几个力的合力叫做力的合成,求一个力的分力叫做力的分解.力的分解是力的合成的逆运算.2.力的合成与分解都遵循平行四边形定则.3.二力(F1、F2)合成的合力(F)的取值范围为:|F1-F2|≤F≤(F1+F2).在两个分力大小一定的情况下,随着两分力夹角的增大,合力逐渐减小.当两分力夹角为零时,合力最大:F max=F1+F2;当两分力夹角为180°,合力最小:F min=|F1-F2|.三、力的分解的方法把一个已知力分解为两个互成角度的分力,如果没有条件限制,可以分解为无数对分力.力的分解能得到惟一解的条件是:已知两个分力的方向(且不在同一直线上)或已知其中一个分力的大小和方向.1.根据力的实际作用效果进行分解.把一个力根据其效果分解的基本方法是:①先根据力的实际作用效果确定两个分力的方向;②再根据两个分力的方向作出力的平行四边形;③解三角形,计算出分力的大小和方向.2.正交分解法.所谓正交分解法,就是把物体受到的各个力都分解到互相垂直的两个方向上去.然后分别求这两个方向上的力的代数和,再根据平衡条件或牛顿定律进行列式求解.正交分解法是一种特殊的处理问题的方法,它的本质还是等效替代.这种方法的突出优点是把复杂的力的矢量运算转化为互相垂直方向上的简单的代数运算.特别适用于多力(三个或三个以上的共点力)作用下的物体的平衡或加速问题.因此,对此方法应注意重点掌握.四、几点说明1.平行四边形定则是整个中学物理矢量运算的基本定则,物理学中的其他矢量如位移、速度、加速度、电场强度、磁感强度等矢量合成与分解亦遵从平行四边形定则.2.一条直线上的矢量合成的运算:先规定正方向,将和正方向一致的矢量记作正,相反的矢量记作负,再直接加减.对未知矢量,可先假设其方向沿规定的正方向,若求解结果为正,表示其方向与规定的正方向一致,求解结果为负,负号则表示其方向与规定的正方向相反.五、探究力合成的平行四边形法则1.利用弹簧秤、橡皮条、细绳套、木板等器材探究力的合成的平行四边形定则的实验方法:a.先用两个力作用在物体的同一点上,使它产生一定的效果,如把橡皮筋一端固定,拉另一端到某一点O;b.再用一个力作用于同一点上,让它产生与第一次两个力共同作用相同的效果,即也把橡皮筋拉到点O.c.记下各个力的大小、方向、画出各个力的图示.d.探究合力F与分力F1、F2的关系2.误差分析:本实验误差的主要来源除弹簧秤本身的误差外,还有读数误差、作图误差,因此在使用弹簧秤前应注意将指针调零,使用时要使它与木板平行,读数时眼睛一定要正视,要按有效数字正确读数和记录;两个分力F1和F2间的夹角不宜太大或太小,在画力的合成图示时,要恰当选定标度.【典型精析】【例1】如图所示,轻质三角支架水平横杆的B 端与竖直墙面光滑铰接,用此支架悬挂重物,已知AB 杆所受的最大压力为2000N ,AC 细绳所受的最大拉力为1000N ,α 角为30o .为了不使支架损坏,则所悬的重物应当满足什么要求?变式训练:如图所示,轻杆BC 的C 点用光滑铰链与墙壁固定,杆的B 点通过水平细绳AB 使杆与竖直墙壁保持30°的夹角.若在B 点悬挂一个定滑轮(不计重力),某人用它匀速地提起重物.已知重物的质量m =30kg ,人的质量M =50kg ,g 取10 m/s 2.试求:(1)此时地面对人的支持力; (2)轻杆BC 和绳AB 所受的力.【例2】如图所示的为曲柄压榨机结构示意图,A 处作用一水平力F ,OB 是竖直线.不计杆、活塞重力和杆转动摩擦,两杆AO 与AB 的长度相同,当OB 的尺寸为200,A 到OB 的距离为10时,求货物M 在此时所受的压力.【例3】两人在两岸用绳拉小船在河流中行驶,如图所示,已知甲的拉力是200 N ,拉力方向与航向夹角为60°,且甲、乙两绳在同一水平面内,若要使小船受到的合力沿航行方向,在河流正中间沿直线行驶,则: (1)若乙的拉力大小为2003N ,乙用力的方向与航行方向的夹角θ应为多大?小船受到两拉力的合力为多大?(2)乙在什么方向时用力最小?此时小船所受两拉力的合力多大?A B C Om M 30°(例2图)FF 乙 v (例3图)【例4】在“验证力的平行四边形定则”实验中,需要将橡皮条的一端固定在水平木板上,先用一个弹簧秤拉橡皮条的另一端到某—点并记下该点的位置;再将橡皮条的另一端系两根细绳,细绳的另一端都有绳套,用两个弹簧秤分别勾住绳套,并互成角度地拉橡皮条.(1)某同学认为在此过程中必须注意以下几项:A. 两根细绳必须等长B. 橡皮条应与两绳夹角的平分线在同一直线上C. 在使用弹簧秤时要注意使弹簧秤与木板平面平行D. 在用两个弹簧秤同时拉细绳时要注意使两个弹簧秤的读数相等E. 在用两个弹簧秤同时拉细绳时必须将橡皮条的另一端拉到用一个弹簧秤拉时记下的位置以上说法中正确的有(填入相应的字母).(2)某同学在坐标纸上画出了如图所示的两个已知力F1和F2,图中小正方形的边长表示2 N,两力的合力用F表示,F1、F2与F的夹角分别为θ1和θ2,请你根据作图法,得出下列关系正确的有.A. F1=4 NB.F=12 NC.θ1=45°D.θ1<θ2【自我检测】1.一个物体受到了同一个平面的三个共点力,这三个力的合力可能为零的是() A.5 N,10 N,15 N B.10 N,10 N,10 NC.10 N,15 N,35 N D.2 N,10 N,8 N2.作用在同一物体上的两个共点力F1、F2,F1>F2且F1、F2在同一条直线上,其合力为F,下列判断正确的是()A.F1、F2同时增大一倍,F也一定增大一倍B.F1、F2同时增大10 N,F也一定增大10 NC.F1增大10 N、F2减小10 N,F一定不改变D.在F1、F2中,若其中的一个力增大,F可能减小3.在探究“力合成的平行四边形法则”的实验中,其中的三个实验步骤是:(a)在水平放置的木板上垫一张白纸,把橡皮条的一端固定在木板上,另一端拴两根细线,通过细线同时用两弹簧互成角度地拉橡皮条,使它与细线的结点达到某一位置O点,在白纸上记下O点和两弹簧秤的读数F1和F2.(b)在纸上根据F1和F2的大小,应用平行四边形定则作图求出合力F.(c)只用一个弹簧秤通过细绳拉橡皮条,使它的伸长量与两个弹簧秤拉时相同,记下此时弹簧秤的读数F'和细绳的方向.以上三个步骤中均有错误或疏漏,指出错在哪里?在(a)中是__________________________.在(b)中是__________________________.在(c)中是__________________________.【课后练习】1.城市中的路灯、无轨电车的供电线路等,经常用三角形的结构悬挂.如图为这类结构的一种简化模型.图中硬杆OB 可绕通过B 点且垂直于纸面的轴转动,钢索和杆的重量都可忽略.如果悬挂物的重量为200N ,∠AOB =30°,硬杆OB 处于水平,钢索OA 对O 点的拉力为T 和杆OB 对O 点的支持为F ,则( ) A .T =200N B .T =2003NC .F =2003ND .F =200N2.如图所示吊床用绳子拴在两棵树上等高位置.某人先坐在吊床上,后躺在吊床上,均处于静止状态.设吊床两端系绳中的拉力为F 1、吊床对该人的作用力为F 2,则A .坐着比躺着时F 1大B .躺着比坐着时F 1大C .坐着比躺着时F 2大D .躺着比坐着时F 2大3.如图所示,物体静止于光滑水平面M 上,力F 作用于物体O 点,现要使物体沿着OO ′方向做加速运动(F 和OO ′都在M 水平面内).那么,必须同时再加一个力F ′,这个力的最小值是( ) A .Fcos θ B .Fsin θ C .Ftan θ D .Fcot θ4.用绳AC 和BC 吊起一重物处于静止状态,如图所示.若AC 能承受的最大拉力为150 N ,BC 能承受的最大拉力为105 N ,那么,下列正确的说法是 0(sin 370.6,cos370.8)== ( ) A .当重物的重力为150 N 时,AC 、BC 都不断,AC 拉力比BC 拉力大 B .当重物的重力为150 N 时,AC 、BC 都不断,AC 拉力比BC 拉力小 C .当重物的重力为176 N 时,最终AC 不断,BC 断 D .当重物的重力为176 N 时,最终AC 、BC 都会断5.如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A , A 的左端紧靠竖直墙,A 与竖直墙之间放一光滑圆球B ,整个装置处于静止状态,若把A 向右移动少许后,它们仍处于静止状态,则( ) A .球B 对墙的压力增大 B .球B 对墙的压力减小C .物体A 与球B 之间的作用力减小D .物体A 对地面的压力增大6.在利用弹簧秤、橡皮条、细绳套、木板等器材探究力的合成的平行四边形定则实验中,下列说法中正(第4题图)(第5题图)ABO30°(第1题图)确的是( )A .分别用两只弹簧秤和用一只弹簧秤拉橡皮筋时,结点必须拉到同一点B .实验过程中,弹簧的轴线必须与纸面平行C .弹簧秤不能超过木板的边界D .作力的平行四边形时,不同拉力的标度应该相同7.在“探究力的合成的平行四边形定则”的实验中,使b 弹簧测力计按图所示的位置开始沿顺时针方向缓慢转动,在这一过程中保持O 点位置不变和a 弹簧测力计的拉伸方向不变,则在整个转动过程中关于a 、b 弹簧测力计的读数变化情况是 ( ) A. a 增大,b 减小 B. a 减小,b 减小C. a 减小,b 先增大后减小D. a 减小,b 先减小后增大8.如图所示,是一表面光滑、所受重力可不计的劈尖(AC=BC ,∠ACB =θ)插在缝间,并施以竖直向下的力F ,若劈对左、右接触点的压力大小分别是F 1、F 2,则( )A .12sin2F F θ=B .12sin2F F θ=⋅C .22sin2F F θ=D .22sin2F F θ=⋅9.如图所示,一根轻绳上端固定在O 点,下端拴一个重为G 的钢球,球处于静止状态.现对球施加一个方向向右的外力F ,使球缓慢偏移,如果外力F 方向始终水平,最大值为2G ,试求轻绳张力T 的大小取值范围.10.如图所示,楔形物倾角为θ=30°,放在水平地面上,轻质硬杆下端带有滑轮,上端顶有1000N 的物体,则当作用于楔形物上的水平推力多大时,才能将重物顶起?并讨论此装置能省力的条件.(不计竖直槽与硬杆之间的摩擦及滑轮与楔形物间的摩擦)(第8题图)(第9题图)§2.2 力的合成与分解、探究力的合成平行四边形定则【典型精析】【例1】若F AB 达到最大值2000N ,则F AC =F AB /cos30°=334000 >1000N.故要保证支架不损坏,应使F AC ≤1000N,故 max 2sin 30500oG F N ≤=变式训练:(1)F N =Mg-mg =200N(2)T BO =2mg =600NN,320030==οtan T F BO ABN 34002==AB BC F F【例2】力F 的作用效果是对AB 、AO 两杆产生沿杆方向的压力F 1、F 2,如图甲所示,而F 1的作用效果是对M 产生水平推力F ′和竖直向下的压力F N ,如图乙所示.由图可得tan α=10100=10,F 1=F 2=2cos F α,而F N =F 1sin α,则F N =tan 2F α=5F .【例3】(1)取船航向为x 轴,与船航向垂直为y 轴建立坐标系.如图所示,将F甲、F 乙沿两坐标轴正交分解,有F 甲x =F 甲cos 60°=200×21N=100 N ,F 甲y =F 甲sin 60°=200×32N=1003 N ,F 乙x =F 乙co s θ,F 乙y =F 乙sin θ.要使小船受到的合力沿航行方向,则必须满足F 乙y =F 甲y =1003 N ,即F 乙sin θ=1003N ,θ=30°; F 乙x =F 乙cos θ=300 N ,小船所受甲乙的合力F 合=F 甲x +F 乙x =(100+300)N=400 N . (2)当θ=90°时,F 乙有最小值F min =1003N ,方向为垂直于船的航向,此时两拉力的合力为F ′合=F 甲x =100 N . 【例4】(1)CE (2)BC【自我检测】1.ABD 2.AD3. (1) (a )漏记了两细线的方向 (b )必须依据两力的大小和方向才能作图 (c )必须将橡皮条拉到原来的O 点【课后练习】1.C 2.A 3.B (为使物体在水平面内沿着OO ′做加速运动,则F 与F ′的合力方向应沿着OO ′,为使F ′最小,F ′应与OO ′垂直,如图所示,故F ′的最小值为F ′=Fsin θ,B 选项正确.) 4.AD 5.BC 6.ABD 7. D 8. AC9.当水平拉力F=0时轻绳处于竖直位置,绳子张力最小G T =1F AB(例2答图)(例3答图)当水平拉力F=2G 时,绳子张力最大G G G T 5)2(222=+= 因此轻绳的张力范围是G T G 5≤≤10. Gtan θ;θ<45°(先对硬质杆及下面滑轮进行受力分析,受上端物体的压力,大小等于物体的重力G ,斜面的支持力N=G/cosθ,及槽水平向右的作用力F=Gtanθ.再对楔形物进行受力分析,易知所求推力的大小和竖直槽水平向右的作用力F 相等,且θ越小越省力.)。