空间几何体的体积
零、复习回顾
1.正方体的体积公式 V正方体=a3(这里a为棱长)
2.长方体的体积公式 V长方体=abc(这里a,b,c分别为长方体长、宽、高) 或V长方体=sh(s,h分别表示长方体的底面积和高)
一、教学情境
平面几何中我们用单位正方形的面积来 度量平面图形的面积,立体几何中用单位正方 体(棱长为1个长度单位)的体积来度量几何体 的体积.
一个几何体的体积是单位正方体体积的 多少倍,那么这个几何体的体积的数值就 是多少。
二、学生活动 (1)取一摞书放在桌面上,并改变它们的位 置,观察改变前后的体积是否发生变化?
祖暅原理:
两等高的几何体若在所有等高处 的水平截面的面积相等,则这两个 几何体的体积相等.
(2)问题:两个底面积相等、高也相等的棱 柱(圆柱)的体积如何?
这里S、S′分别是上,下底面积,h是高
S′=0
1 V锥体= 3 Sh
这里S是底面积,h是高
5.球的体积
实验:
给出如下几何模型
R
R
步骤
1.拿出圆锥 和圆柱
2.将圆锥倒立放入 圆柱
3.取出半球和新的几何体做它们的截面
R
结论:截面面积相等
则两个几何体的体积相等
R
R
R
1
2 V球 =
R2 R 1 R2 R
三、数学建构 1.柱体(棱柱、圆柱)的体积:
V柱体 Sh
2.锥体(棱锥、圆锥)的体积:
问题:等底同高的锥体的体积有何关系?
V锥体
1 3
Sh
3.台体(棱台、圆台)的体积
V台体体积的关系:
V柱体=Sh 高
这里S是底面积,h是
S′= S