多元函数取得极值的条件
- 格式:ppt
- 大小:439.50 KB
- 文档页数:20
多元函数极值的充分条件马丽君(集宁师范学院 数学系)我们知道,一元函数()y f x =在点0x x =取得极值的充分条件是:函数()f x 在点0x 处具有一阶二阶连续导数,0x 是()f x 驻点,即0()0f x '=。
若0()0(0)f x ''><,则0x 为()f x 的极小值点(或极大值点)对于多元函数()Y f X =,其中12(,,,)n X x x x =,有与上面一元函数取得极值的充分条件相对应的结论。
定义 1.设n 元函数()Y f X =,其中12(,,,)n X x x x =,对各自变量具有一阶连续偏导数,则称12,,,Tn f ff x x x ⎛⎫∂∂∂⎪∂∂∂⎝⎭为()f X 的梯度,记作gradf 。
引理 设n 元函数()f X ,其中12(,,,)n X x x x =,对各自变量具有一阶连续偏导数,则()f X 在点000012(,,,)n X x x x =取得极值的必要条件是:0112(),,,0Tn n X X f ff gradf X x x x ⨯=⎛⎫∂∂∂== ⎪∂∂∂⎝⎭证明:引理成立是显然的,即极值点函数可导,则该点的偏导数等于零。
定义 2.设n 元函数()f X ,对各自变量具有二阶连续偏导数,000012(,,,)n X x x x =是()f X 的驻点,现定义()f X 在点0X 处的矩阵为:222000211212222000202122222000212()()()()()()()()()()f N n n n f X f X f X X X X X X f X f X f X H X X X X X X f X f X f X X X X X X ⎧⎫∂∂∂⎪⎪∂∂∂∂∂⎪⎪⎪⎪∂∂∂⎪⎪=∂∂∂∂∂⎨⎬⎪⎪⎪⎪⎪⎪∂∂∂⎪⎪∂∂∂∂∂⎩⎭由于各二阶偏导数连续,即22(,1,2,,)i j j if fi j n x x x x ∂∂==∂∂∂∂,所以0()f H X 为实对称矩阵。
x yz xy z x y z定理1 (必要条件)函数偏导数,证:据一元函数极值的必要条件可知定理结论成立.0),(,0),(0000=′=′y x f y x f yx 取得极值,取得极值取得极值且在该点取得极值,则有),(),(00y x y x f z 在点=存在),(),(00y x y x f z 在点因=在),(0y x f z =0x x =故在),(0y x f z =0y y =zox y对于三元函数,若M 0是f (x , y , z )的驻点,f (x , y , z )在M 0处所有的二阶偏导数连续,则当矩阵在M 0处为正定阵时( ),M 0为极小值点,为负定阵时( ),M 0为极大值点.类似的,可以将以上结论推广到三元以上的函数.H=xx xy xz xyyy yz xz yz zz f f f f f f f f f ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦112233H 0,H 0,H 0>>>112233H 0,H 0,H 0<><αcos 24x αcos 22x −)sin (cos 222−+ααx =x A αsin 24αsin 4x −0cos sin 2=+ααx =αA 解得:由题意知,最大值在定义域D 内达到,而在域D 内只有一个驻点,故此点即为所求.,0sin ≠α0≠x ααααsin cos sin 2sin 2422x x x A +−=)0,120:(2πα<<<<x D 0cos 212=+−αx x 0)sin (cos cos 2cos 2422=−+−ααααx x (cm)8,603===x D πα作业P121 4, 6, 7, 13。
4多元函数的极值及其求法一、无条件极值1、f(x,y)=sin x+cos y+cos(x-y)(0≤x,y≤π/2)P116 8.8.4解:f x= cos x-sin(x-y)f y= -sin y+sin(x-y)⇒cos x=sin y解得驻点:P1(0,π/2)、P2(π/2,0)、P3(π/3,π/6)、P4(π/6,π/3)、P5(π/4,π/4)只有P3上A= f xx= -sin x-cos(x-y)|P3=-√3B= f xyx= cos(x-y)|P3=√3/2C= f yy= -cos y-cos(x-y)|P3=-1AC-B2= (-√3)(-1)-(√3/2)2=√3-3/4>0,P3极大值点极大值f(π/3,π/6)=3√3/22、求由x2+y2+z2-2x+2y-4z-10 = 0 确定的隐函数z=z(x,y)的极值解:P116 8.8.5[一] 2x+2zz x-2-4z x= 0 z x=(1-x)/(z-2)2y+2zz y-2y-4z y= 0 z y=(1+y)/(z-2)⇒驻点(1,-1)对应P(1,-1,6)、Q(1,-1,-2)A= z xx= [-(z-2)-(1-x) z x ]/(z-2)2|P=-1/4B= z xyx=-(1-x) z x/(z-2)2|P=0C= z yy= [-(z-2)-(1+y)z y]/(z-2)2|P=-1/4AC-B2= (-1/4)(-1/4)-02>0,A<0,在P达到极大值6A= z xx= [-(z-2)-(1-x) z x ]/(z-2)2|Q =1/4B= z xyx=-(1-x) z x/(z-2)2|Q =0C= z yy= [-(z-2)-(1+y)z y]/(z-2)2|Q=1/4AC-B2= (1/4)(1/4)-02>0,A>0,在Q达到极小值-2[二] (x-1)2+(y+1)2+(z-2)2=42z极大=2+4=6,z极小=2-4=-2二、条件极值1、求z=x2+y2,在条件x+y=1下的条件极值。
多元函数微分学求最值,直接建立拉格朗日乘数法【多元函数微分学求最值,直接建立拉格朗日乘数法】引言在高等数学中,多元函数微分学是一个重要的分支,它研究多元函数的极值与最值问题。
其中一种常见的求最值的方法是通过建立拉格朗日乘数法。
本文将从简单到复杂的角度,逐步探讨多元函数微分学求最值的方法,并结合拉格朗日乘数法来解决实际问题。
一、多元函数的极值1.1 极值概念在单变量函数中,我们通过求导数,令导数为零来判断函数的极值点。
而在多元函数中,我们需要通过求偏导数来判断函数的极值点。
对于一个n元函数$f(x_1,x_2,…,x_n)$,偏导数用$\frac{\partial f}{\partial x_i}$表示。
1.2 极值的判断条件多元函数的极值点与一元函数类似,也需要满足导数为零的条件。
对于一个n元函数$f(x_1,x_2,…,x_n)$,如果在某一点$(a_1,a_2,…,a_n)$处,满足以下条件:$\frac{\partial f}{\partial x_1}(a_1,a_2,…,a_n)=0\\\frac{\partial f}{\partial x_2}(a_1,a_2,…,a_n)=0\\……\\\frac{\partial f}{\partial x_n}(a_1,a_2,…,a_n)=0$那么该点就是函数的极值点。
但这仅仅是极值的必要条件,并不一定是充分条件。
二、最值问题的解决方法2.1 直接法在一元函数中,我们通过求导数来解决最值问题,而在多元函数中,我们也可以直接计算偏导数,并令其为零来解决最值问题。
举例说明:设有一个二元函数$f(x,y)=2x^2+3y^2$,我们要求在$x^2+y^2=1$的条件下,函数$f(x,y)$的最小值。
解法:根据条件$x^2+y^2=1$,我们可以得到一个方程组:$2x-λ\cdot2x=0\\2y-λ\cdot2y=0\\x^2+y^2-1=0$其中,λ为拉格朗日乘子。
极值点的判定条件一、引言极值点是函数在其定义域内的点,函数在该点的导数或二阶导数出现变化。
确定极值点是研究函数性态的关键步骤之一。
通过对极值点的判定,我们可以理解函数的变化规律,了解函数在何处达到其最大值或最小值。
极值点的概念在实际应用中具有广泛的应用,如经济学、物理学、工程学等领域。
因此,掌握极值点的判定条件对于解决实际问题具有重要意义。
二、极值点的定义与分类极值点是函数在其定义域内的点,函数在该点的导数或二阶导数出现变化。
根据导数的符号变化,极值点可以分为极大值点和极小值点。
在极大值点,函数的一阶导数由负变正;在极小值点,函数的一阶导数由正变负。
此外,根据函数的二阶导数变化,极值点还可以分为鞍点、拐点、尖点和圆的界限点等类型。
这些不同类型的极值点对于函数性态的分析具有重要的意义。
三、一元函数的极值判定条件对于一元函数,其极值的判定条件主要包括:1.极值的必要条件:如果函数f在x0处可导,且x0为f的极值点,那么f’(x0)=0。
这个必要条件告诉我们,如果一个点是函数的极值点,那么该点的导数必定为零。
然而,需要注意的是,导数为零的点不一定是极值点。
2.极值的充分条件:如果函数f在x0处可导,且在x0的某邻域内:(i)若f’(x)在x0两侧的正负号改变,则x0为极值点。
这被称为“正负号检验法”。
(ii)若f’(x)在x0两侧的正负号不改变,则x0不是极值点。
(iii)若f’(x)在x0两侧的正负号由负变正,则x0为极大值点;若f’(x)在x0两侧的正负号由正变负,则x0为极小值点。
这被称为“变号检验法”。
在实际应用中,我们通常首先计算函数的一阶导数,然后令其一阶导数为零,解得可能的极值点。
然后使用正负号检验法或变号检验法来进一步确定这些可能的极值点是否为真正的极值点。
对于无法通过一阶导数直接判断的复杂函数,可能需要使用二阶导数或更高阶的导数来进行判断。
四、多元函数的极值判定条件对于多元函数,其极值的判定条件主要包括:1.极值的必要条件:如果函数f在点x0处可微,且x0为f的极值点,那么f’(x0)=0。
多元函数的极限与连续性在数学中,多元函数的极限与连续性是重要的概念。
本文将介绍多元函数的极限和连续性的定义,并探讨它们的性质和应用。
一、多元函数的极限多元函数的极限可以类比于一元函数的极限,但其定义稍有不同。
对于一个二元函数,我们将自变量表示为(x,y),则当自变量趋近于某个点(a,b)时,函数值f(x,y)的极限记为:lim (x,y)→(a,b) f(x,y) = L其中,L为实数。
我们称函数f(x,y)在点(a,b)处具有极限L,如果对于任意给定的ε>0,存在δ>0,使得当(x,y)满足0< √((x-a)^2+(y-b)^2) < δ时,都有 |f(x,y)-L|<ε 成立。
类似地,对于一个三元函数,自变量表示为(x,y,z),其极限定义与二元函数类似。
多元函数的极限有以下性质:1. 极限存在且唯一:如果一个多元函数在某点具有极限,那么它的极限是唯一的。
2. 有界性:如果一个多元函数在某点具有极限,则它在该点附近是有界的。
但需要注意,多元函数在整个定义域内有界不一定代表在每个点处都具有极限。
3. 加法性、乘法性:如果两个多元函数在某点都具有极限,则它们的和、差、积仍在该点处具有极限。
4. 复合函数的极限性质:多元函数的复合函数在某点处具有极限的条件是,内部函数在该点处具有极限,且外部函数在内部函数极限处连续。
二、多元函数的连续性多元函数的连续性是指函数在整个定义域内的连续性。
对于一个二元函数,如果对于任意给定的ε>0,存在δ>0,使得当(x,y)满足0<√((x-a)^2+(y-b)^2) < δ时,都有 |f(x,y)-f(a,b)|<ε 成立,那么我们称函数f(x,y)在点(a,b)处连续。
类似地,对于一个三元函数,连续性的定义也类似。
多元函数的连续性具有以下性质:1. 极限与连续性的关系:如果一个多元函数在某点处具有极限L,则它在该点处连续。