多元函数极值的判定
- 格式:doc
- 大小:484.00 KB
- 文档页数:10
多元函数极值的充分条件马丽君(集宁师范学院 数学系)我们知道,一元函数()y f x =在点0x x =取得极值的充分条件是:函数()f x 在点0x 处具有一阶二阶连续导数,0x 是()f x 驻点,即0()0f x '=。
若0()0(0)f x ''><,则0x 为()f x 的极小值点(或极大值点)对于多元函数()Y f X =,其中12(,,,)n X x x x =,有与上面一元函数取得极值的充分条件相对应的结论。
定义 1.设n 元函数()Y f X =,其中12(,,,)n X x x x =,对各自变量具有一阶连续偏导数,则称12,,,Tn f ff x x x ⎛⎫∂∂∂⎪∂∂∂⎝⎭为()f X 的梯度,记作gradf 。
引理 设n 元函数()f X ,其中12(,,,)n X x x x =,对各自变量具有一阶连续偏导数,则()f X 在点000012(,,,)n X x x x =取得极值的必要条件是:0112(),,,0Tn n X X f ff gradf X x x x ⨯=⎛⎫∂∂∂== ⎪∂∂∂⎝⎭证明:引理成立是显然的,即极值点函数可导,则该点的偏导数等于零。
定义 2.设n 元函数()f X ,对各自变量具有二阶连续偏导数,000012(,,,)n X x x x =是()f X 的驻点,现定义()f X 在点0X 处的矩阵为:222000211212222000202122222000212()()()()()()()()()()f N n n n f X f X f X X X X X X f X f X f X H X X X X X X f X f X f X X X X X X ⎧⎫∂∂∂⎪⎪∂∂∂∂∂⎪⎪⎪⎪∂∂∂⎪⎪=∂∂∂∂∂⎨⎬⎪⎪⎪⎪⎪⎪∂∂∂⎪⎪∂∂∂∂∂⎩⎭由于各二阶偏导数连续,即22(,1,2,,)i j j if fi j n x x x x ∂∂==∂∂∂∂,所以0()f H X 为实对称矩阵。
多元函数的极值问题多元函数极值问题是数学中常见的一类问题,一般来说,我们希望在给定的变量限制条件下找到使得多元函数取得最大值或者最小值的变量值,这样的问题被称为多元函数的极值问题。
由于多元函数在不同的情况下可能存在很多局部最大值和局部最小值,因此我们需要在一定条件下,确保找到的最优解是全局最优解。
一阶必要条件根据微积分的一阶必要条件,我们可以求解多元函数的偏导数,寻找使偏导数等于零的点。
对于一个二元函数$f(x,y)$,偏导数为:$$\frac{\partial f}{\partial x}=0,\frac{\partial f}{\partial y}=0$$这些方程的解,就是函数的极值点。
而对于一个多元函数$f(x_1,x_2,...,x_n)$,我们需要找到使得所有偏导数为零的点,即:$$\frac{\partial f}{\partial x_1}=0,\frac{\partial f}{\partialx_2}=0,...,\frac{\partial f}{\partial x_n}=0$$这些方程的解,就是函数的极值点。
需要注意的是,这些点仅仅是可能的极值点,并不能确定是否为极大值或极小值点。
二阶必要条件在一阶必要条件得到的极值点处,我们希望进一步判断是极大值还是极小值。
此时,就需要使用微积分的二阶必要条件来判定。
对于二元函数$f(x,y)$,我们可以得到一个Hessian矩阵:$$H=\begin{bmatrix} \frac{\partial^2f}{\partial x^2} &\frac{\partial^2f}{\partial x\partial y}\\ \frac{\partial^2f}{\partialy\partial x} & \frac{\partial^2f}{\partial y^2}\\ \end{bmatrix}$$对于任意一个方向$\vec{v}=[x_1,y_1]$,我们可以得到一个二次型:$$Q(x_1,y_1)=\begin{bmatrix} x_1&y_1\\ \end{bmatrix} H\begin{bmatrix} x_1\\y_1\\ \end{bmatrix}$$二阶必要条件就是,如果Hessian矩阵在极值点处是正定的,则这个点是极小值点;如果是负定的,则是极大值点;如果是奇异的,则是鞍点;如果是不定的,则无法确定。
多元函数极值点的判别
多元函数极值点是指多元函数在一定范围内的局部极大值或极小值的点,其判别方法根据
函数是凸函数还是凹函数确定。
1. 如果函数是凸函数,则函数极值点为函数的局部极小值点,此时在该函数的极值点处
函数的一阶导数存在,并且永远大于或等于0;
2. 如果函数是凹函数,则函数极值点为函数的局部极大值点,此时在该函数的极值点处
函数的一阶导数存在,并且永远小于或等于0。
在判别多元函数极值点之前,需要求解该函数的一阶偏导数,并将一阶偏导数的值代入函数,如果函数的一阶偏导数的值为0,则代入函数得到的值即为多元函数极值点。
若不满足上述函数一阶偏导数等于零条件,则在该多元函数极值点处函数一阶导数不存在,此时只能采用函数的导数性质进行判别:
当多元函数的局部极大值点处,其一阶偏导数小于0;
当多元函数的局部极小值点处,其一阶偏导数大于0。
以上就是多元函数极值点的判断方法,要确定一个函数的极值点,需要先求出一阶偏导数,如果函数的一阶偏导数值等于0,则即为极值点。
若一阶偏导数值不等于0,则需要根据
其正负性判断多元函数极值点,大于零则为极小值,小于零则为极大值。
多元函数条件极值
一、多元函数条件极值
多元函数条件极值是研究多元函数的极大值或极小值在满足条
件时取得的结果。
1. 条件极值的定义
多元函数条件极值指的是满足给定条件的多元函数的极大值或
极小值,由此可知,条件极值并不一定存在,也可能不存在。
2. 条件极值的求法
条件极值的求法首先需要满足一定的条件,并且需要根据条件求出条件极值的方程,确定未知量,然后用极值律求解条件极值的结果。
在多元函数条件极值的求法中,需要利用多元函数分析法和极值律,多元函数分析法可以帮助确定条件极值的方程,而极值律则是用来决定条件极值的最终结果。
三、总结
多元函数条件极值是研究多元函数的极大值或极小值在满足条
件时取得的结果,它的求法需要满足一定的条件,并且需要根据条件求出条件极值的方程,确定未知量,然后用极值律求解条件极值的结果。
- 1 -。
目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)引言 (1)1定理中用到的定义 (2)2函数极值的判定定理.............................................................. .. (5)3多元函数极值判定定理的应用 (7)参考文献 (8)多元函数极值的判定摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值.关键词:极值;条件极值;偏导数;判定The judgement of the extremum of the function of manyvariablesAbstract :This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of the function of many variables and the conditional extremum of the function of many variables .Keywords : extremum; conditional ;partial derivative引言在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去.1 定理中用到的定义定义 1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点0(,)()P x y U P ∈,成立不等式0()()f P f P ≤(或0()()f P f P ≥),则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点.定义1.2[]1设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在0x 的某一领域有定义,则当极限0000000(,)(,)(,)limx xf x y f x x y f x y x x→+-=V V V V V 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作00(,)x y fx∂∂.定义1.3[]3 设n D R ⊂为开集,12(,,,)n P x x x D ∈L ,0000122(,,,)P x x x D ∈L :f D R →,若在某个矩阵A ,使当0()P U P ∈时,有000()()()limP P f P f P A P P P P →----,则称n 元函数12(,,,)n f x x x L 在点0P 可导.称A 为在点0P 处的导数,记为0()f P '.注1:01122(,,,)T n n P P x x x x x x '''-=---L 为n 维列向量. 注2:0P P -=注3:在导数存在的条件下,可求得:012()(,,,)nf f f f P A x x x ∂∂∂'==∂∂∂L ,它是一个n 维向量函数.定义 1.4[]3(二阶导数)若n 元函数f 的一阶导数f '在D (或D 某一点)上可微,则称f 在D (或D 某一点)上二阶可微,并定义n 维向量函数()T f '的导数为f 的二阶导数,记作()f P '',并可求得2222121122222122222212()n n nnn ff f x x x x x f f f f P x x x x x f f f x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂ ⎪ ⎪∂∂∂⎪''=∂∂∂∂∂ ⎪ ⎪⎪ ⎪∂∂∂⎪∂∂∂∂∂⎝⎭L L L L L L L此矩阵为f 在P 点的Hesse 矩阵.在二阶混合偏导数连续的条件下,它是一个对称矩阵. n 元函数f 在点0P 的二阶Taylor 公式可简单地写成:00000001()()()()()()()()2T n f P f P f P P P P P f P P P O P P '=+-+--+-.2 函数极值的判定定理对于二元函数的无条件极值的判定,先给出数学分析教材中有的相应的判定定理.定理2.1[]1 (必要条件)若函数(,)z f x y =在点00(,)x y 的某领域偏导数存在,切点00(,)x y 是是其极值点,则0000(,)(,)0f x y f x y x y∂∂==∂∂. 定理2.2[]1 (充分条件)设点00(,)x y 是函数(,)z f x y =的驻点,且在点00(,)x y 的某领域有二阶连续偏导数存在.记222200000022(,)(,)(,),,,,f x y f x y f x y A B C AC B x x y y∂∂∂====-∂∂∂∂V 则1)当0<V 时,点00(,)x y 不是函数的极值点;2)当0>V 是,若0A >,则点00(,)x y 是函数的极小值点,若0A <,则点00(,)x y 是函数的极大指点;3)当0=V 时,该方法不能判断其是不是极值点.注3:对于二阶导数存在的二元函数的极值,这两个定理能解决绝大多数的我们碰到的问题(除了0=V 的情形).利用定义1.3和定义1.4,我们可以将这定理2.1和定理2.2推广到二元以上的函数中去.定理2.3 (必要条件)设n D R ⊂为开集,n 元实值函数12(,,,)n y f x x x =L 在点0P D ⊂可微,且在该点取得极值,则0()0f P '=(此0表示n 维向量(0,0,,0)L ).证明 由费马定理知当f 在0P 点取得极值时,012()(,,,)0nf f ff P x x x ∂∂∂'==∂∂∂L . 定理2.4(充分条件)设n D R ⊂为开集,n 元实函数12(,,,)n y f x x x =L 在0()U P D ⊂上存在二阶连续偏导数,且0()0f P '=,则当0()n f P 为正定或半正定时,f 在0P 点取得极小值,当0()n f P 为负定或半负定时,f 在0P 点取得极大值.证明 0P ,P 点坐标分别满足00012(,,,)n x x x L 与12(,,,)n x x x L ,且0()P U P ⊂,0i i i x x x =-V ,当0()0f P '=时,由Taylor 公式,有000000212012121211()()()()()()21(,,,)()(,,,)(())2(,,,)()T n nT nn n i i i nn i i f f P f P P P f P P P O P P x x x f P x x x o x x g x x x o x ===-=--+-=+-=+∑∑V V V L V V V L V V V L V V 当0()U P 充分小时,只要0()P U P ⊂,则该式子的符号由12(,,,)n g x x x V V L V 确定.当0()n f P 为正定时,二次型12(,,,)0n g x x x >V V L V ,当0()n f P 为半正定时,二次型12(,,,)0n g x x x ≥V V L V .故当0()n f P 为正定或半正定时,0()()0f f P f P =-≥V ,所以0()()f P f P ≥,故0P 点是f 的极小值点.同理可证,当0()n f P 为负定或半负定时,0P 点是f 的极大值点.定理 2.5[]1 设在条件12(,,,)0,1,2,,()k n x x x k m m n ϕ==<L L 的限制下,求函数12(,,,)n y f x x x =L 的极值问题,其中f 与(1,2,,)k k m ϕ=L 在区域D 有连续的一阶偏导数.若D 的点000012(,,,)n P x x x L 是上述问题的极值点,且雅可比矩阵01111n m m n P x x x x ϕϕϕϕ∂∂⎛⎫ ⎪∂∂ ⎪⎪ ⎪∂∂ ⎪ ⎪∂∂⎝⎭K M O M L的秩为m ,则存在m 个常数(0)(0)(0)12,,,mλλλL ,使得000(0)(0)(0)1212(,,,,,,,)n m x x x λλλL L 为拉格朗日函数121212121(,,,,,,)(,,,)(,,,)mn m n k k n k L x x x f x x x x x x λλλλϕ==+∑L L L L的稳定点,即000(0)(0)(0)1212(,,,,,,,)n m x x x λλλL L 为下述n m +个方程: 111111112120(,,,)0(,,,)0n mmx k k mx k k n nn m n f L x x f L x xL x x x L x x x λλϕλϕλϕϕ==∂∂⎧=+=⎪∂∂⎪⎪⎪∂∂⎪=+=⎨∂∂⎪⎪==⎪⎪⎪==⎩∑∑L L L L L L L L L L L L L L L L L L L L 的解.此定理的证明可参阅文献[1]第二十三章的定理23.19的证明. 由定理5可见条件极值的问题都可以通过拉格朗日数乘法转化为无条件极值的形式来求解,即上述判定无条件极值的定理都可以用来判定条件极值.除此之外,我们用二阶全微分的符号来判定其是极大值还是极小值.定理 2.6[]2 设n D R ⊂为开集,n 元实值函数12(,,,)n y L x x x =L 在0()U P D ⊂存在二阶连续偏导数,且0()0L P '=,则当20()0d L P >时,12(,,,)n y L x x x =L 在0P 点取得极小值;20()0d L P <时,12(,,,)n y L x x x =L 在0P 点取得极大值.证明 11n nL LdL dx dx x x ∂∂=++∂∂L , 2121222212121211()()n nn n L L Ld L d dL ddx d dx d dx x x x L L Ldx dx dx dx x x x x x ∂∂∂==+++∂∂∂∂∂∂=+++∂∂∂∂∂L L22212221222222122212()()n n n n n nL L L dx dx dx dx x x x x x L L L dx dx dx dx x x x x x ∂∂∂++++++∂∂∂∂∂∂∂∂+++∂∂∂∂∂L L L22211112221(,,)n n n nn L L x x x dx dx dx dx L L x x x ⎛⎫∂∂ ⎪∂∂∂⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪∂∂ ⎪⎝⎭ ⎪∂∂∂⎝⎭K L MO M L L11(,,)()n n dx dx dx f P dx ⎛⎫⎪''= ⎪ ⎪⎝⎭L L .又因为0()0L P '=,固由定理4知当0()f P ''正定,即20()0d L P >时,0P 为L 的极小值点,当0()f P ''负定,即20()0d L P <时,0P 为L 的极小值点 .3 多元函数极值判定定理的应用由于函数的条件极值都可以通过定理5转化成无条件极值,也就是说在条件极值的判定中能充分体现无条件极值的判定.例 3.1[]2 求三元函数(,,)22f x y z x y z =-+在受约束条件2221x y z ++=限制下的极值.解 设222(,,,)22(1)L x y z x y z x y z λλ=-++++-,由0L L L L x y z λ∂∂∂∂====∂∂∂∂有:当32λ=-时,122(,,)(,,)333x y z =-,当32λ=时,122(,,)(,,)333x y z =--,现判断是极大值还是极小值 .方法1:对函数(,,)22f x y z x y z =-+用定理2,其中z 视为,x y 的函数,即(,)z z x y =,它由2221x y z ++=决定。
多元函数的极值概念及其应用在微积分领域中,极值是函数理论中一个重要的概念。
当我们研究多元函数时,我们也需要理解多元函数的极值概念以及应用。
本文将介绍多元函数的极值概念,并探讨其在实际问题中的应用。
一个多元函数可以定义为一个以多个变量为自变量的函数,通常表示为f(x₁, x₂, ..., xn)。
多元函数的极值概念是指函数取得的最大值或最小值。
对于单变量函数,我们可以使用导数来判断其极值点;而对于多元函数,我们可以利用偏导数和二阶偏导数来判断其极值。
在多元函数的极值问题中,我们首先要找到函数的临界点。
临界点是函数的偏导数等于零或者不存在的点。
对于一个具有n个自变量的多元函数,我们需要计算出这n个自变量的偏导数,然后令其等于零来求解各个自变量的值。
只有在这些值处取得的函数值才有可能是极值。
接下来,我们需要对求解得到的临界点进行判断,以确定是否为极值点。
我们可以使用二阶偏导数来判断这些点的性质。
如果所有二阶偏导数都存在且满足一定条件,我们可以通过计算二阶偏导数的行列式(即海森矩阵)来判断这些点是极小值、极大值还是鞍点。
除了求解多元函数的极值点,我们还可以利用极值概念来解决一些实际问题。
例如,在经济学中,我们可以利用多元函数的极值概念来最大化或最小化一个经济指标。
假设我们有一个多元函数表示一个企业的成本,我们可以通过求解该函数的最小值来确定最佳生产策略。
类似地,我们也可以利用多元函数的极值概念来解决最优控制问题、最优化问题等多个领域的实际问题。
此外,在物理学和工程学中,多元函数的极值概念也具有广泛的应用。
例如,在物理学中,我们可以通过求解多元函数的最小值来确定物体在重力作用下的平衡位置;在工程学中,我们可以利用多元函数的极大值来确定最优设计方案。
总之,多元函数的极值概念在数学和其他学科中都具有广泛的应用。
通过理解多元函数的极值概念,我们可以更好地解决实际问题,并优化我们的决策和设计。
因此,对于任何研究多元函数的学生或研究人员来说,深入理解和应用多元函数的极值概念是非常重要的。
. .. .目录摘要 (1)关键词 (1)Abstract............................................................................................................. .. (1)Keywords.......................................................................................................... .. (1)引言 (1)1定理中用到的定义 (2)2函数极值的判定定理.............................................................. .. (5)3多元函数极值判定定理的应用 (7)参考文献 (8)多元函数极值的判定摘要:通过引入多元函数的导数,给出了多种方法来判定多元函数的极值.关键词:极值;条件极值;偏导数;判定The judgement of the extremum of the function ofmany variablesAbstract:This paper passes to lead into the derivative of the function of many variables, and give several methods to judge the extremum of thefunction of many variables and the conditional extremum of the function of many variables .Keywords : extremum; conditional ;partial derivative引言在现行的数学分析教材中,关于多元函数的极值判定,一般只讲到二元函数的极值判定,在参考文献[1]和[3]中有关多元函数极值的判定是都是在实际情况中一定有极值的问题,本文将引入多元函数的偏导数把二元函数的极值判定推广到多元函数极值问题中去.1 定理中用到的定义定义1.1[]1 函数f 在点000(,)P x y 的某领域0()U P 有定义.若对于任何点0(,)()P x y U P ∈,成立不等式0()()f P f P ≤(或0()()f P f P ≥),则称函数f 在点0P 取得极大值(或极小值),点0P 称为f 的极大值(或极小值)点.定义1.2[]1 设函数(,)z f x y =, (,)x y D ∈.若00(,)x y D ∈,且0(,)f x y 在0x 的某一领域有定义,则当极限0000000(,)(,)(,)limx xf x y f x x y f x y x x→+-= 存在时,称这个极限为函数f 在点00(,)x y 关于x 的偏导数,记作00(,)x y f x∂∂.定义1.3[]3设n D R ⊂为开集,12(,,,)n P x x x D ∈,0000122(,,,)P x x x D ∈:f D R →,若在某个矩阵A ,使当0()P U P ∈时,有000()()()limP P f P f P A P P P P →----,则称n 元函数12(,,,)n f x x x 在点0P 可导.称A 为在点0P 处的导数,记为0()f P '.注1:01122(,,,)T n n P P x x x x x x '''-=---为n 维列向量.注2:0P P -=注3:在导数存在的条件下,可求得:012()(,,,)nf f f f P A x x x ∂∂∂'==∂∂∂,它是一个n 维向量函数.定义1.4[]3 (二阶导数)若n 元函数f 的一阶导数f '在D (或D 某一点)上可微,则称f 在D (或D 某一点)上二阶可微,并定义n 维向量函数()T f '的导数为f 的二阶导数,记作()f P '',并可求得2222121122222122222212()n n nnn f f f x x x x x f f f f P x x x x x f f f x x x x x ⎛⎫∂∂∂ ⎪∂∂∂∂∂ ⎪ ⎪∂∂∂⎪''=∂∂∂∂∂ ⎪ ⎪ ⎪ ⎪∂∂∂⎪∂∂∂∂∂⎝⎭此矩阵为f 在P 点的Hesse 矩阵.在二阶混合偏导数连续的条件下,它是一个对称矩阵. n 元函数f 在点0P 的二阶Taylor 公式可简单地写成:00000001()()()()()()()()2T n f P f P f P P P P P f P P P O P P '=+-+--+-.2 函数极值的判定定理对于二元函数的无条件极值的判定,先给出数学分析教材中有的相应的判定定理.定理2.1[]1(必要条件)若函数(,)z f x y =在点00(,)x y 的某领域偏导数存在,切点00(,)x y 是是其极值点,则0000(,)(,)0f x y f x y x y∂∂==∂∂.定理2.2[]1 (充分条件)设点00(,)x y 是函数(,)z f x y =的驻点,且在点00(,)x y 的某领域有二阶连续偏导数存在.记222200000022(,)(,)(,),,,,f x y f x y f x y A B C AC B x x y y∂∂∂====-∂∂∂∂ 则1)当0<时,点00(,)x y 不是函数的极值点;2)当0>是,若0A >,则点00(,)x y 是函数的极小值点,若0A <,则点00(,)x y 是函数的极大指点;3)当0=时,该方法不能判断其是不是极值点.注3:对于二阶导数存在的二元函数的极值,这两个定理能解决绝大多数的我们碰到的问题(除了0=的情形).利用定义1.3和定义1.4,我们可以将这定理2.1和定理2.2推广到二元以上的函数中去.定理2.3 (必要条件)设n D R ⊂为开集,n 元实值函数12(,,,)n y f x x x =在点0P D ⊂可微,且在该点取得极值,则0()0f P '=(此0表示n 维向量(0,0,,0)).证明 由费马定理知当f 在0P 点取得极值时,012()(,,,)0nf fff P x x x ∂∂∂'==∂∂∂. 定理2.4(充分条件)设n D R ⊂为开集,n 元实函数12(,,,)n y f x x x =在0()U P D ⊂上存在二阶连续偏导数,且0()0f P '=,则当0()n f P 为正定或半正定时,f 在0P 点取得极小值,当0()n f P 为负定或半负定时,f 在0P 点取得极大值.证明 0P ,P 点坐标分别满足0012(,,,)n x x x 与12(,,,)n x x x ,且0()P U P ⊂,0i i i x x x =-,当0()0f P '=时,由Taylor 公式,有000000212012121211()()()()()()21(,,,)()(,,,)(())2(,,,)()T n nT nn n i i i nn i i f f P f P P P f P P P O P P x x x f P x x x o x x g x x x o x ===-=--+-=+-=+∑∑ 当0()U P 充分小时,只要0()P U P ⊂,则该式子的符号由12(,,,)n g x x x 确定.当0()n f P 为正定时,二次型12(,,,)0n g x x x >,当0()n f P 为半正定时,二次型12(,,,)0n g x x x ≥.故当0()n f P 为正定或半正定时,0()()0f f P f P =-≥,所以0()()f P f P ≥,故0P 点是f 的极小值点.同理可证,当0()n f P 为负定或半负定时,0P 点是f 的极大值点.定理 2.5[]1 设在条件12(,,,)0,1,2,,()k n x x x k m m n ϕ==<的限制下,求函数12(,,,)n y f x x x =的极值问题,其中f 与(1,2,,)k k m ϕ=在区域D 有连续的一阶偏导数.若D 的点00012(,,,)n P x x x 是上述问题的极值点,且雅可比矩阵1111n m m n P x x x x ϕϕϕϕ∂∂⎛⎫⎪∂∂ ⎪⎪ ⎪∂∂ ⎪ ⎪∂∂⎝⎭的秩为m ,则存在m 个常数(0)(0)(0)12,,,m λλλ,使得000(0)(0)(0)1212(,,,,,,,)n m x x x λλλ为拉格朗日函数121212121(,,,,,,)(,,,)(,,,)mn m n k k n k L x x x f x x x x x x λλλλϕ==+∑的稳定点,即00(0)(0)(0)1212(,,,,,,,)n m x x x λλλ为下述n m +个方程:111111112120(,,,)0(,,,)0n mmx k k mx k k n nn m n f L x x f L x xL x x x L x x x λλϕλϕλϕϕ==∂∂⎧=+=⎪∂∂⎪⎪⎪∂∂⎪=+=⎨∂∂⎪⎪==⎪⎪⎪==⎩∑∑ 的解.此定理的证明可参阅文献[1]第二十三章的定理23.19的证明.由定理5可见条件极值的问题都可以通过拉格朗日数乘法转化为无条件极值的形式来求解,即上述判定无条件极值的定理都可以用来判定条件极值.除此之外,我们用二阶全微分的符号来判定其是极大值还是极小值.定理 2.6[]2 设n D R ⊂为开集,n 元实值函数12(,,,)n y L x x x =在0()U P D ⊂存在二阶连续偏导数,且0()0L P '=,则当20()0d L P >时,12(,,,)n y L x x x =在0P 点取得极小值;20()0d L P <时,12(,,,)n y L x x x =在0P 点取得极大值.证明 11n nLLdL dx dx x x ∂∂=++∂∂, 2121222212121211()()n nn n L L Ld L d dL ddx d dx ddx x x x L LLdx dx dx dx x x x x x ∂∂∂==+++∂∂∂∂∂∂=+++∂∂∂∂∂22212221222222122212()()n n n n nnL L Ldx dx dx dx x x x x x L L Ldx dx dx dx x x x x x ∂∂∂++++++∂∂∂∂∂∂∂∂+++∂∂∂∂∂22211112221(,,)n n n n nL L x x x dx dx dx dx L L x x x ⎛⎫∂∂ ⎪∂∂∂⎛⎫⎪ ⎪⎪= ⎪ ⎪ ⎪∂∂ ⎪⎝⎭ ⎪∂∂∂⎝⎭11(,,)()n n dx dx dx f P dx ⎛⎫ ⎪''= ⎪ ⎪⎝⎭.又因为0()0L P '=,固由定理4知当0()f P ''正定,即20()0d L P >时,0P 为L 的极小值点,当0()f P ''负定,即20()0d L P <时,0P 为L 的极小值点 .3 多元函数极值判定定理的应用由于函数的条件极值都可以通过定理5转化成无条件极值,也就是说在条件极值的判定中能充分体现无条件极值的判定.例 3.1[]2 求三元函数(,,)22f x y z x y z =-+在受约束条件2221x y z ++=限制下的极值.解 设222(,,,)22(1)L x y z x y z x y z λλ=-++++-,由0L L L L x y z λ∂∂∂∂====∂∂∂∂有:当32λ=-时,122(,,)(,,)333x y z =-,当32λ=时,122(,,)(,,)333x y z =--,现判断是极大值还是极小值 .方法1:对函数(,,)22f x y z x y z =-+用定理2,其中z 视为,x y 的函数,即(,)z z x y =,它由2221x y z ++=决定。