新古典增长模型(Neoclassical Growth Model)完整推导
- 格式:pdf
- 大小:242.11 KB
- 文档页数:14
新古典增长模型的推导
新古典增长模型是一种理论有效经济增长模型,这种模型的推导主要是基于技术进步和投资支出的不断发展,以及以资本库存量调节实现经济增长的观点。
该模型假设经济体存在完全竞争市场,企业可以自由流通资本,具有良好的市场机制和完善的政府政策,技术进步会持续改善企业的生产技术,投资支出会增加资本库存量,进而促进经济增长。
新古典增长模型的推导可以看作是关于经济增长的一个过程,即生产函数的变化,在这个过程中把技术的进步和投资的变化结合起来,用来解释实际经济的增长。
假设在一个期间内,以技术应用来表示时间t的技术水平为$A_t$,投资状况为$I_t$,整体经济产出为$Y_t$,资本库存量为$K_t$,人均经济产出为$Y_t/N_t$,在这个模型中假定有以下基本假设:
1)技术进步:技术进步能够改善资源的生产效率,因此可以认为$A_t$和$A_{t-1}$之间存在技术进步;
2)投资支出:投资支出增加了经济体的生产能力,即$I_t$会增加资本库存量,从而提高生产率和经济产出;
3)资本库存量:增加的资本库存量可能会引起对人力资源和生产要素的放大增补,这一过程。
索洛-斯旺模型)索洛-斯旺模型是哈罗德―多马模型的发展,发展点是改变了的生产函数,改为可以平滑替代的生产函数,又称为新古典增长模型。
(一)新古典增长理论的分析目的、基本假定(二)稳定状态(三)动态分析(一)新古典增长理论的分析目的、基本假定(一)新古典增长理论的分析目的、基本假定(1.分析目的:新古典增长理论分析资本积累、人口增长及技术进步对经济增长的作用,着重分析储蓄对资本存量变化的影响,揭示经济长期增长的产出水平和资本水平实现稳态均衡的条件,以及如何从当时的状态向稳态均衡状态调整。
2.模型的假设索洛-斯旺模型保留了哈罗德―多马模型的假设,不同之处两点,生产函数不同,资本折旧率不再是0。
(1)新古典生产函数假定 ①新古典生产函数的性质:),(L K F Y ,有连续的一阶和二阶导数。
ⅰ各要素的边际产出大于0且递减,即一阶导数大于0二阶导数小于020,0F F K K∂∂<>∂∂ 3.1a 20,0F F L L ∂∂><∂∂ 3.1bⅱ规模报酬不变,即生产函数有一次齐次性 ).(),(L K F L K F λλλ=,0 λ成立 )()1,()1,/(),(k f L k F L L K F L L K F Y ⋅=⋅=⋅==3.2 显然L K k /=为人均资本 令L Y y /=,人均产出,则3.2式为)(k f y =ⅲ稻田条件(Inada Conditions )资本(或劳动)趋向于0时,其边际产出趋向于无穷大。
资本(或劳动)趋向于∞时,其边际产出趋向于零。
0→k ,∞→∂∂K F 3.3a0→L ,∞→∂∂KF 3.3b 上两式可写成∞==→→L L k k F F lim lim 00∞→k ,0→∂∂K F∞→L ,0→∂∂K F上两式可写成0lim lim ==∞→∞→L L k k F F②固定折旧比例假定 假设资本以一个固定比例折旧,0δ>,为常数,如总资本为K ,则折旧为K δ。
第十一章新古典增长理论——索洛模型(3)本次授课框架:总结波动理论,引出增长理论。
增长方程推导及对增长因素的讨论(包括索洛剩余)增长方程推导(总量形式),假设条件人均形式生产函数总量与人均量之间的关系索洛稳态方程推导过程索洛稳态定义根据均衡条件的推导稳态条件的存在性讨论(生产函数假设,INADA条件)储蓄线和投资持平线(补偿线)相互关系的讨论解释稳态调整路径比较静态分析储蓄率增加情况人口增长率增加情况总结“新古典增长理论”的关键结论(影响总量、人均增长率的因素(结合储蓄率)与各国收入趋同论)新古典增长理论评价一、增长方程推导假设生产函数:假设产品市场、要素市场完全竞争,规模收益不变。
根据欧拉定理:总量表达式总量与人均量的关系人均量表达式索洛发现:技术进步、劳动供给增加和资本积累按此顺序是GDP增长的重要决定因素,而技术进步和资本积累是人均GDP增长的重要因素。
在大部分历史中,两个重要的要素,当推资本积累(实物与人力)与技术进步。
我们对增长理论的研究重点集中于这两个因素。
索洛剩余产出增长中不能通过资本积累和劳动投入来解释的部分,可以理解为技术进步()带来的增长。
有时也被称作“全要素生产率”(TFP),这是一个比“技术进步”更为中性的术语。
实证研究表明:技术进步在产出增长中的贡献大约为80%左右。
由于产出和劳动、资本投入可以直接观察到,而却不能,经济学家测量“索洛剩余”利用:二、稳态分析当时,按照前面推导出的增长方程(不停地迭代下去),产量增长率会怎样变化?例如,是否会有这样一个稳态点,在这一点上人均产量和人均资本都变得固定?如果有这样的稳态点,在这一点上,又具有什麽特征?(稳态特征)现在考虑这个稳态点所具备的状态特性。
已知人口以速度n增长,为使人均资本保持不变,即经济达到上述定义的稳态,则资本必须和人口以相同速度增长。
即:关键的稳态特征是三个变量N、K、Y以相同速度n增长,人均资本水平k固定。
下一个问题是:那个固定的人均资本水平k为多少?利用波动理论中的供需平衡条件求出k。
索洛-斯旺模型)索洛-斯旺模型是哈罗德―多马模型的发展,发展点是改变了的生产函数,改为可以平滑替代的生产函数,又称为新古典增长模型。
(一)新古典增长理论的分析目的、基本假定(二)稳定状态(三)动态分析(一)新古典增长理论的分析目的、基本假定(一)新古典增长理论的分析目的、基本假定(1.分析目的:新古典增长理论分析资本积累、人口增长及技术进步对经济增长的作用,着重分析储蓄对资本存量变化的影响,揭示经济长期增长的产出水平和资本水平实现稳态均衡的条件,以及如何从当时的状态向稳态均衡状态调整。
2.模型的假设索洛-斯旺模型保留了哈罗德―多马模型的假设,不同之处两点,生产函数不同,资本折旧率不再是0。
(1)新古典生产函数假定 ①新古典生产函数的性质:),(L K F Y ,有连续的一阶和二阶导数。
ⅰ各要素的边际产出大于0且递减,即一阶导数大于0二阶导数小于020,0F F K K∂∂<>∂∂ 3.1a 20,0F F L L ∂∂><∂∂ 3.1bⅱ规模报酬不变,即生产函数有一次齐次性 ).(),(L K F L K F λλλ=,0 λ成立 )()1,()1,/(),(k f L k F L L K F L L K F Y ⋅=⋅=⋅==3.2 显然L K k /=为人均资本 令L Y y /=,人均产出,则3.2式为)(k f y =ⅲ稻田条件(Inada Conditions )资本(或劳动)趋向于0时,其边际产出趋向于无穷大。
资本(或劳动)趋向于∞时,其边际产出趋向于零。
0→k ,∞→∂∂K F 3.3a0→L ,∞→∂∂KF 3.3b 上两式可写成∞==→→L L k k F F lim lim 00∞→k ,0→∂∂K F∞→L ,0→∂∂K F上两式可写成0lim lim ==∞→∞→L L k k F F②固定折旧比例假定 假设资本以一个固定比例折旧,0δ>,为常数,如总资本为K ,则折旧为K δ。
Neoclassical Growth Model新古典增长模型新古典增长模型是经济学中用于解释和分析经济增长的一种理论框架。
它基于一些基本假设,如生产函数、储蓄和投资、技术进步等,来描述一个国家或地区经济增长的过程和机制。
在新古典增长模型中,生产函数是一个关键的概念。
它描述了生产要素(如资本、劳动力和技术)如何组合在一起,以生产出商品和服务。
新古典增长模型通常假设生产函数是规模报酬不变的,即生产要素的增加会导致产出以相同的比例增加。
储蓄和投资是新古典增长模型中的另一个重要概念。
储蓄是指个人、企业或政府将一部分收入用于未来消费或投资,而不是立即消费。
投资是指将储蓄用于购买资本品,如机器、设备、建筑物等,以增加未来的生产能力。
在新古典增长模型中,储蓄和投资是经济增长的主要驱动力。
技术进步是新古典增长模型中的另一个关键因素。
技术进步是指生产过程中使用的生产要素(如资本、劳动力和技术)的效率提高。
技术进步可以通过创新、研发、教育、培训等方式实现。
在新古典增长模型中,技术进步被视为经济增长的长期驱动力。
新古典增长模型还考虑了人口增长和资本积累对经济增长的影响。
人口增长会增加劳动力供给,从而提高生产能力。
资本积累是指通过投资增加资本存量,以提高未来的生产能力。
新古典增长模型通常假设人口增长和资本积累是经济增长的短期驱动力。
总的来说,新古典增长模型提供了一个理论框架,用于解释和分析经济增长的过程和机制。
它强调了生产函数、储蓄和投资、技术进步、人口增长和资本积累等因素对经济增长的影响。
然而,新古典增长模型也有一些局限性,如它没有考虑制度、政策、文化等因素对经济增长的影响。
因此,在实际应用中,需要结合其他理论和方法来更全面地分析经济增长问题。
Neoclassical Growth Model新古典增长模型新古典增长模型是经济学中用于解释和分析经济增长的一种理论框架。
它基于一些基本假设,如生产函数、储蓄和投资、技术进步等,来描述一个国家或地区经济增长的过程和机制。
新古典增长模型公式新古典增长模型(Neoclassicalgrowthmodel)是经济学中一种最重要的增长模型,可以用来解释经济增长的机制及其结果。
它最初发展于20世纪50年代,由威廉沃顿(William Vickrey)、乔治沃里夫(George Ricardo)和埃德温塞尔(Edwin Vansler)提出。
它将经济增长视为一个基于投资、技术进步和人口增长的自然演化过程,它的本质是一个可以用数学方程表达的模型,其公式如下所示:Y=AKα(L/K)1α其中,Y表示当前的经济规模;A表示Ao期间的技术进步率;K 表示当前的资本资产;L表示工作人口;α表示资本和劳动输入的弹性。
由此可以看出,新古典增长模型主要考虑了资本财富、机械设备和其他物质资本(K),以及可用于生产的劳动(L)。
新古典增长模型认为,再生产效率的提高(A)受存量资本和劳动的投入影响,因此,α的值会影响到经济投资及技术进步的结果,从而影响到经济增长的速度。
新古典增长模型是一个强有力的经济增长模型,它被广泛应用在发展中国家,以帮助它们解决经济增长和发展的问题。
它也被广泛用在世界各国的经济分析和计划当中,已经广泛应用在世界各国的政府政策分析和决策中。
新古典增长模型已经成为经济增长与发展领域的一种基础理论,可以提供经济分析人员和政策制定者一种可用于估计经济发展趋势和可能影响经济增长的各种因素的框架。
尽管新古典增长模型并不能完全反映实际经济形势,但它为分析和预测经济增长提供了基础。
新古典增长模型的最明显的特点是将投资、技术进步和人口增长视为经济增长的重要条件,其中,资本资产起着十分重要的作用。
模型中资本资产的作用可以用数学方程来表达:Y=AKα(L/K)1α。
新古典增长模型也强调了弹性α的重要性,它可以用来衡量资本资产和劳动输入的结果,从而定量估计经济增长的因素。
由此可见,资本资产和劳动资源的有效组合和调整是经济增长的关键。
新古典增长模型的另一个重要特征是技术进步的影响,技术进步是经济增长的重要动力。
新古典经济增长模型索洛经济增长模型概述索洛经济增长模型〔SolowGrowthModel〕是罗伯特·索洛所提出的开展经济学中著名的模型,又称作新古典经济增长模型、外生经济增长模型,是在新古典经济学框架内的经济增长模型。
正当1987年世界股票市场暴跌之时,瑞典皇家科学院宣布该年度诺贝尔经济学奖授于一直与里根政府的经济政策唱反调,主张政府必须有效地干预市场经济的美国麻省理工学院教授罗伯特·索洛〔RobertM·Solow〕许多经济学界人士认为,纽约股票市场的这场大动乱,恰恰证实了索洛坚持的理论,使他的经济增长理论成为当今世界热门研究课题之一。
可是,他的这一理论———说明各种不同因素是如何对经济增长和开展产生影响的长期经济增长模型,早在30年前他在一篇题为?对经济增长理论的奉献?的论文中就提出来了。
索洛模型变量外生变量:储蓄率、人口增长率、技术进步率内生变量:投资索洛模型的数学公式模型的根本假定索洛在构建他的经济增长模型时,既汲取了哈罗德—多马经济增长模型的优点,又屏弃了后者的那些令人疑惑的假设条件。
索洛认为,哈罗德—多马模型只不过是一种长期经济体系中的“刀刃平衡〞,其中,储蓄率、资本—产出比率和劳动力增长率是主要参数。
这些参数值假设稍有偏离,其结果不是增加失业,就是导致长期通货彭胀。
用哈罗德的话来说,这种“刀刃平衡〞是以保证增长率〔用Gw表示,它取决于家庭和企业的储蓄与投资的习惯〕和自然增长率〔用Gn表示,在技术不变的情况下,它取决于劳动力的增加〕的相等来支撑的。
索洛指出,Gw和Gn之间的这种脆弱的平衡,关健在于哈罗德—多马模型的劳动力不能取代资本,生产中的劳动力与资本比例是固定的假设。
倘假设放弃这种假设,Gw和Gn之间的“刀刃平衡〞也就随之消失。
基于这一思路,索洛建立了一种没有固定生产比例假设的长期增长模型。
该模型的假设条件包括:1.只生产一种复合产品。
2.产出是一种资本折旧后的净产出。
有外生技术变动的新古典增长模型的证明
Y =F (AN ,K ),A 以速率g 增长
稳态:k g n sy k )(δ++-=∆
由于k =K/AN ,y =Y/AN ,所以稳态时,K ,Y 都以(n +g )速度增长,而人均产出(Y/N )则以g 增长。
推导过程:Y =F (AN ,K )
γY =F (γAN ,γK )(Y 是K 和有效劳动AN 的一次齐次函数)
取γ=1/AN ,有
Y/AN =F (1,K/AN )
人均产量y =Y/AN ,k =K/AN
得到:y =f (k )=F (1,k )
新古典增长模型的基本方程
在一个只有两部门的简单经济中,经济的均衡为:
I =S (资本存量的增加等于储蓄)
K I K δ-=∆(折旧比率固定)
K sY K δ-=∆(储蓄率固定)
两边同除以AN ,得到
k sy AN
K δ-=∆ (1)
另一方面:
K =k ·A N
全微分:
A kN N kA k AN A A
K N N K k k K K ∆•+∆•+∆•=∆•∂∂+∆•∂∂+∆•∂∂≈
∆ 两边同除以AN :
gk nk k AN
K ++∆=∆ (2) 结合(1)和(2),得到:
k g n sy k )(++-=∆δ(新古典增长模型的基本方程)。