数据结构第五章
- 格式:ppt
- 大小:407.00 KB
- 文档页数:1
《数据结构与算法》第五章数组和广义表本章介绍的数组与广义表可视为线性表的推广,其特点是数据元素仍然是一个表。
本章讨论多维数组的逻辑结构和存储结构、特殊矩阵、矩阵的压缩存储、广义表的逻辑结构和存储结构等。
5.1 多维数组5.1.1 数组的逻辑结构数组是我们很熟悉的一种数据结构,它可以看作线性表的推广。
数组作为一种数据结构其特点是结构中的元素本身可以是具有某种结构的数据,但属于同一数据类型,比如:一维数组可以看作一个线性表,二维数组可以看作“数据元素是一维数组”的一维数组,三维数组可以看作“数据元素是二维数组”的一维数组,依此类推。
图5.1是一个m行n列的二维数组。
5.1.2 数组的内存映象现在来讨论数组在计算机中的存储表示。
通常,数组在内存被映象为向量,即用向量作为数组的一种存储结构,这是因为内存的地址空间是一维的,数组的行列固定后,通过一个映象函数,则可根据数组元素的下标得到它的存储地址。
对于一维数组按下标顺序分配即可。
对多维数组分配时,要把它的元素映象存储在一维存储器中,一般有两种存储方式:一是以行为主序(或先行后列)的顺序存放,如BASIC、PASCAL、COBOL、C等程序设计语言中用的是以行为主的顺序分配,即一行分配完了接着分配下一行。
另一种是以列为主序(先列后行)的顺序存放,如FORTRAN语言中,用的是以列为主序的分配顺序,即一列一列地分配。
以行为主序的分配规律是:最右边的下标先变化,即最右下标从小到大,循环一遍后,右边第二个下标再变,…,从右向左,最后是左下标。
以列为主序分配的规律恰好相反:最左边的下标先变化,即最左下标从小到大,循环一遍后,左边第二个下标再变,…,从左向右,最后是右下标。
例如一个2×3二维数组,逻辑结构可以用图5.2表示。
以行为主序的内存映象如图5.3(a)所示。
分配顺序为:a11 ,a12 ,a13 ,a21 ,a22,a23 ; 以列为主序的分配顺序为:a11 ,a21 ,a12 ,a22,a13 ,a23 ; 它的内存映象如图5.3(b)所示。
第5章:数组和广义表 1. 了解数组的定义;填空题:1、假设有二维数组A 6×8,每个元素用相邻的6个字节存储,存储器按字节编址。
已知A 的起始存储位置(基地址)为1000,则数组A 的体积(存储量)为 288 B ;末尾元素A 57的第一个字节地址为 1282 。
2、三元素组表中的每个结点对应于稀疏矩阵的一个非零元素,它包含有三个数据项,分别表示该元素的 行下标 、 列下标 和 元素值 。
2. 理解数组的顺序表示方法会计算数组元素顺序存储的地址;填空题:1、已知A 的起始存储位置(基地址)为1000,若按行存储时,元素A 14的第一个字节地址为 (8+4)×6+1000=1072 ;若按列存储时,元素A 47的第一个字节地址为 (6×7+4)×6+1000)=1276 。
(注:数组是从0行0列还是从1行1列计算起呢?由末单元为A 57可知,是从0行0列开始!) 2、设数组a[1…60, 1…70]的基地址为2048,每个元素占2个存储单元,若以列序为主序顺序存储,则元素a[32,58]的存储地址为 8950 。
答:不考虑0行0列,利用列优先公式: LOC(a ij )=LOC(a c 1,c 2)+[(j-c 2)*(d 1-c 1+1)+i-c 1)]*L 得:LOC(a 32,58)=2048+[(58-1)*(60-1+1)+32-1]]*2=8950选择题:( A )1、假设有60行70列的二维数组a[1…60, 1…70]以列序为主序顺序存储,其基地址为10000,每个元素占2个存储单元,那么第32行第58列的元素a[32,58]的存储地址为 。
(无第0行第0列元素)A .16902B .16904C .14454D .答案A, B, C 均不对 答:此题(57列×60行+31行)×2字节+10000=16902( B )2、设矩阵A 是一个对称矩阵,为了节省存储,将其下三角部分(如下图所示)按行序存放在一维数组B[ 1, n(n-1)/2 ]中,对下三角部分中任一元素a i,j (i ≤j), 在一维数组B 中下标k 的值是:A .i(i-1)/2+j-1B .i(i-1)/2+jC .i(i+1)/2+j-1D .i(i+1)/2+j3、从供选择的答案中,选出应填入下面叙述 ? 内的最确切的解答,把相应编号写在答卷的对应栏内。
数据结构——第五章查找:01静态查找表和动态查找表1.查找表可分为两类:(1)静态查找表:仅做查询和检索操作的查找表。
(2)动态查找表:在查询之后,还需要将查询结果为不在查找表中的数据元素插⼊到查找表中;或者,从查找表中删除其查询结果为在查找表中的数据元素。
2.查找的⽅法取决于查找表的结构:由于查找表中的数据元素之间不存在明显的组织规律,因此不便于查找。
为了提⾼查找效率,需要在查找表中的元素之间⼈为地附加某种确定的关系,⽤另外⼀种结构来表⽰查找表。
3.顺序查找表:以顺序表或线性链表表⽰静态查找表,假设数组0号单元留空。
算法如下:int location(SqList L, ElemType &elem){ i = 1; p = L.elem; while (i <= L.length && *(p++)!= e) { i++; } if (i <= L.length) { return i; } else { return 0; }}此算法每次循环都要判断数组下标是否越界,改进⽅法:加⼊哨兵,将⽬标值赋给数组下标为0的元素,并从后向前查找。
改进后算法如下:int Search_Seq(SSTable ST, KeyType kval) //在顺序表ST中顺序查找其关键字等于key的数据元素。
若找到,则函数值为该元素在表中的位置,否则为0。
{ ST.elem[0].key = kval; //设置哨兵 for (i = ST.length; ST.elem[i].key != kval; i--) //从后往前找,找不到则返回0 { } return 0;}4.顺序表查找的平均查找长度为:(n+1)/2。
5.上述顺序查找表的查找算法简单,但平均查找长度较⼤,不适⽤于表长较⼤的查找表。
若以有序表表⽰静态查找表,则查找过程可以基于折半进⾏。
算法如下:int Search_Bin(SSTable ST, KeyType kval){ low = 1; high = ST.length; //置区间初值 while (low <= high) { mid = (low + high) / 2; if (kval == ST.elem[mid].key) { return mid; //找到待查元素 } else if (kval < ST.elem[mid].key) { high = mid - 1; //继续在前半区间查找 } else { low = mid + 1; //继续在后半区间查找 } } return 0; //顺序表中不存在待查元素} //表长为n的折半查找的判定树的深度和含有n个结点的完全⼆叉树的深度相同6.⼏种查找表的时间复杂度:(1)从查找性能看,最好情况能达到O(logn),此时要求表有序;(2)从插⼊和删除性能看,最好情况能达到O(1),此时要求存储结构是链表。
《数据结构》第五章习题参考答案一、判断题(在正确说法的题后括号中打“√”,错误说法的题后括号中打“×”)1、知道一颗树的先序序列和后序序列可唯一确定这颗树。
( ×)2、二叉树的左右子树可任意交换。
(×)3、任何一颗二叉树的叶子节点在先序、中序和后序遍历序列中的相对次序不发生改变。
(√)4、哈夫曼树是带权路径最短的树,路径上权值较大的结点离根较近。
(√)5、用一维数组存储二叉树时,总是以前序遍历顺序存储结点。
( ×)6、完全二叉树中,若一个结点没有左孩子,则它必是叶子结点。
( √)7、一棵树中的叶子数一定等于与其对应的二叉树的叶子数。
(×)8、度为2的树就是二叉树。
(×)二、单项选择题1.具有10个叶结点的二叉树中有( B )个度为2的结点。
A.8 B.9 C.10 D.112.树的后根遍历序列等同于该树对应的二叉树的( B )。
A. 先序序列B. 中序序列C. 后序序列3、二叉树的先序遍历和中序遍历如下:先序遍历:EFHIGJK;中序遍历:HFIEJKG 。
该二叉树根的右子树的根是:( C )A. EB. FC. GD. H04、在下述结论中,正确的是( D )。
①具有n个结点的完全二叉树的深度k必为┌log2(n+1)┐;②二叉树的度为2;③二叉树的左右子树可任意交换;④一棵深度为k(k≥1)且有2k-1个结点的二叉树称为满二叉树。
A.①②③B.②③④C.①②④D.①④5、某二叉树的后序遍历序列与先序遍历序列正好相反,则该二叉树一定是( D )。
A.空或只有一个结点B.完全二叉树C.二叉排序树D.高度等于其结点数三、填空题1、对于一棵具有n个结点的二叉树,对应二叉链接表中指针总数为__2n____个,其中___n-1_____个用于指向孩子结点,___n+1___个指针空闲着。
2、一棵深度为k(k≥1)的满二叉树有_____2k-1______个叶子结点。
数据结构-第5章--数组练习题第5章数组一、选择题3.设有数组A[i,j],数组的每个元素长度为3字节,i的值为1到8,j的值为1到10,数组从内存首地址BA开始顺序存放,当用以列为主存放时,元素A[5,8]的存储首地址为(A)。
A.BA+141B.BA+180C.BA+222D.BA+2254.假设以行序为主序存储二维数组A=array[1..100,1..100],设每个数据元素占2个存储单元,基地址为10,则LOC[5,5]=(A)。
A.808B.818C.1010D.10205.数组A[0..5,0..6]的每个元素占五个字节,将其按列优先次序存储在起始地址为1000的内存单元中,则元素A[5,5]的地址是()。
1195A.1175B.1180C.1205D.12107.将一个A[1..100,1..100]的三对角矩阵,按行优先存入一维数组B[1‥298]中,A中元素A6665(即该元素下标i=66,j=65),在B数组中的位置K为()。
供选择的答案:A.198B.195C.1972+64某3=19410.若对n阶对称矩阵A以行序为主序方式将其下三角形的元素(包括主对角线上所有元素)依次存放于一维数组B[1..(n(n+1))/2]中,则在B中确定aij(iA.i某(i-1)/2+jB.j某(j-1)/2+iC.i某(i+1)/2+jD.j某(j+1)/2+i11.设A是n某n的对称矩阵,将A的对角线及对角线上方的元素以列为主的次序存放在一维数组B[1..n(n+1)/2]中,对上述任一元素aij(1≤i,j≤n,且i≤j)在B中的位置为(C)。
A.i(i-l)/2+jB.j(j-l)/2+iC.j(j-l)/2+i-1D.i(i-l)/2+j-112.A[N,N]是对称矩阵,将下面三角(包括对角线)以行序存储到一维数组T[N(N+1)/2]中,则对任一上三角元素a[i][j]对应T[k]的下标k是(AB)。
数据结构第五章数组和广义表(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第五章数组和广义表:习题习题一、选择题1.假设以行序为主序存储二维数组A[1..100,1..100],设每个数据元素占两个存储单元,基地址为10,则LOC(A[5,5])=( )。
A. 808B. 818C. 1010D. 10202.同一数组中的元素( )。
A. 长度可以不同 B.不限 C.类型相同 D. 长度不限3.二维数组A的元素都是6个字符组成的串,行下标i的范围从0到8,列下标j的范圈从1到10。
从供选择的答案中选出应填入下列关于数组存储叙述中( )内的正确答案。
(1)存放A至少需要( )个字节。
(2)A的第8列和第5行共占( )个字节。
(3)若A按行存放,元素A[8]【5]的起始地址与A按列存放时的元素( )的起始地址一致。
供选择的答案:(1)A. 90 B. 180 C. 240 D. 270(2) A. 108 B. 114 C. 54 D. 60(3)[8][5] B. A[3][10] [5][8] [O][9]4.数组与一般线性表的区别主要是( )。
A.存储方面B.元素类型方面C.逻辑结构方面D.不能进行插入和删除运算5.设二维数组A[1..m,1..n]按行存储在数组B[1..m×n]中,则二维数组元素A[i,j]在一维数组B中的下标为( )。
A. (i-l)×n+jB. (i-l)×n+j-lC.i×(j-l) D. j×m+i-l6.所谓稀疏矩阵指的是( )。
A.零元素个数较多的矩阵B.零元素个数占矩阵元素中总个数一半的矩阵C.零元素个数远远多于非零元素个数且分布没有规律的矩阵D.包含有零元素的矩阵7.对稀疏矩阵进行压缩存储的目的是( )。
A.便于进行矩阵运算B.便于输入和输出C.节省存储空间D. 降低运算的时间复杂度8.稀疏矩阵一般的压缩存储方法有两种,即( )。
第五章数组和广义表:习题习题一、选择题1.假设以行序为主序存储二维数组A[1..100,1..100],设每个数据元素占两个存储单元,基地址为10,则LOC(A[5,5])=( )。
A. 808B. 818C. 1010D. 10202.同一数组中的元素( )。
A. 长度可以不同 B.不限 C.类型相同 D. 长度不限3.二维数组A的元素都是6个字符组成的串,行下标i的范围从0到8,列下标j的范圈从1到10。
从供选择的答案中选出应填入下列关于数组存储叙述中( )内的正确答案。
(1)存放A至少需要( )个字节。
(2)A的第8列和第5行共占( )个字节。
(3)若A按行存放,元素A[8]【5]的起始地址与A按列存放时的元素( )的起始地址一致。
供选择的答案:(1)A. 90 B. 180 C. 240 D. 270(2) A. 108 B. 114 C. 54 D. 60(3)[8][5] B. A[3][10] [5][8] [O][9]4.数组与一般线性表的区别主要是( )。
A.存储方面B.元素类型方面C.逻辑结构方面D.不能进行插入和删除运算5.设二维数组A[1..m,1..n]按行存储在数组B[1..m×n]中,则二维数组元素A[i,j]在一维数组B中的下标为( )。
A. (i-l)×n+jB. (i-l)×n+j-lC.i×(j-l) D. j×m+i-l6.所谓稀疏矩阵指的是( )。
A.零元素个数较多的矩阵B.零元素个数占矩阵元素中总个数一半的矩阵C.零元素个数远远多于非零元素个数且分布没有规律的矩阵D.包含有零元素的矩阵7.对稀疏矩阵进行压缩存储的目的是( )。
A.便于进行矩阵运算B.便于输入和输出C.节省存储空间D. 降低运算的时间复杂度8.稀疏矩阵一般的压缩存储方法有两种,即( )。
A.二维数组和三维数组B.三元组和散列C.三元组和十字链表D.散列和十字链表9.有一个100×90的稀疏矩阵,非0元素有10个,设每个整型数占两字节,则用三元组表示该矩阵时,所需的字节数是( )。