Ф16铜管表冷器设计计算书
- 格式:xls
- 大小:35.00 KB
- 文档页数:53
表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈4.667kg/s空气体积流量 q vg=14000/3600≈3.889m3/s②空气进、出口温度:干球:35/17℃湿球:30.9/16.5℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0.887~0.875从这我们可以看出:六排管即可满足要求。
(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。
我近30遍的手工计算也证明了这一点。
提高水流速和降低水温对提高换热总量有更为积极的贡献。
通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。
于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。
这样就出现了大流量小温差的情况,水流速ω可以提高。
在冷冻水里添加乙二醇,使冷冻水的冰点下降。
很容易我们发现对数平均温差提高了很多。
从而达到了提高换热总量的目的。
)③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×(105.26-46.52)≈274.14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64.68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。
推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。
《化工原理》课程设计说明书题目:煤油冷却器的设计学院:化工学院专业:化学工程与工艺*名:***学号:**********指导老师:***同组人员郑莉张冲冲涂袁睿翔完成时间:2011年1月13日目录(按毕业论文格式要求书写)第一部分设计任务书 (1)第二部分设计方案简介评述 (2)第三部分换热器设计理论计算····························································1、试算并初选换热器规格···································································2、核算总传热系数K0·········································································3、计算压强降······················································································第四部分换热器主要结构尺寸····························································1、管子的规格和排列方法···································································2、管程和壳程数的确定·······································································3、外壳直径的确定·················································································4、折流板形式的确定············································································5、主要附件的尺寸设计·········································································第五部分工艺设计计算结果汇总表及其它············································1、工艺设计计算结果汇总表······························································(页码)2、设计图·····························································································3、参考文献··························································································(页码)第一部分设计任务书一、设计题目煤油冷却器的设计二、设计任务1. 处理能力:G1=16T/h煤油2. 设备形式:列管式换热器三、操作条件①煤油:入口温度160℃,出口温度60℃②冷却介质:自来水,入口温度20℃,出口温度40℃③煤油的运行表压为0.1MPa,冷却水的运行表压为0.3MPa四、设计内容①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。
表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈4.667kg/s空气体积流量 q vg=14000/3600≈3.889m3/s②空气进、出口温度:干球:35/17℃湿球:30.9/16.5℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0.887~0.875从这我们可以看出:六排管即可满足要求。
(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。
我近30遍的手工计算也证明了这一点。
提高水流速和降低水温对提高换热总量有更为积极的贡献。
通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。
于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。
这样就出现了大流量小温差的情况,水流速ω可以提高。
在冷冻水里添加乙二醇,使冷冻水的冰点下降。
很容易我们发现对数平均温差提高了很多。
从而达到了提高换热总量的目的。
)③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×(105.26-46.52)≈274.14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64.68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。
推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。
表冷器计算书之欧侯瑞魂创作(一)前表冷器a.已知:①风量:14000CMH空气质量流量 q mg=(14000×1.2)/3600≈空气体积流量 q vg=14000/3600≈3/s②空气进、出口温度:干球:35/17℃℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2=1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈②查《部分空气冷却器的接触系数ε2》表:当时:GLⅡ六排的ε2从这我们可以看出:六排管即可满足要求。
(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮忙不大。
我近30遍的手工计算也证明了这一点。
提高水流速和降低水温对提高换热总量有更为积极的贡献。
通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。
于是我设计采取了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。
这样就出现了大流量小温差的情况,水流速ω可以提高。
在冷冻水里添加乙二醇,使冷冻水的冰点下降。
很容易我们发现对数平均温差提高了很多。
从而达到了提高换热总量的目的。
)③选型分析:⊙冷负荷 Q= q mg×(h1-h2)4.667×(105.26-46.52)≈(235760Kcal/h)⊙由六排管的水阻△Pω≤70Kpa得:管内水流速ω≤[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。
推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。
理论上可以使△Pω≤70Kpa,有ω≤1.8874m/s,但知识告诉我们:不克不及如此取值,可以判定八排管(即实际上的二排管)的ω≤1.5m/s为合理。