表冷器计算
- 格式:xls
- 大小:16.50 KB
- 文档页数:3
表冷器制冷量计算公式英文回答:Evaporative condenser refrigeration capacity calculation formula.The refrigeration capacity of an evaporative condenser is determined by several factors, including the mass flow rate of the refrigerant, the specific heat of the refrigerant, the temperature difference between the refrigerant entering and leaving the condenser, and the efficiency of the condenser. The following formula can be used to calculate the refrigeration capacity of an evaporative condenser:Q = m Cp (T1 T2) ε。
where:Q is the refrigeration capacity in watts.m is the mass flow rate of the refrigerant in kilograms per second.Cp is the specific heat of the refrigerant in joules per kilogram-kelvin.T1 is the temperature of the refrigerant entering the condenser in kelvins.T2 is the temperature of the refrigerant leaving the condenser in kelvins.ε is the efficiency of the condenser.The efficiency of an evaporative condenser is typically between 0.8 and 0.9. The mass flow rate of the refrigerant can be measured using a flow meter. The specific heat of the refrigerant can be found in a refrigerant properties table. The temperature of the refrigerant entering and leaving the condenser can be measured using thermocouples.中文回答:蒸发冷凝器制冷量计算公式。
表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量q mg=(14000×1.2)/3600≈4.667kg/s空气体积流量q vg=14000/3600≈3.889m3/s②空气进、出口温度:干球:35/17℃湿球:30.9/16.5℃③空气进、出口焓值:105.26/46.52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(t g1-t s1)=1-(17-16.5)/(35-30.9)≈0.878②查《部分空气冷却器的接触系数ε2》表:当Vy=2.3~2.5m/s时:GLⅡ六排的ε2=0.887~0.875从这我们可以看出:六排管即可满足要求。
(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。
我近30遍的手工计算也证明了这一点。
提高水流速和降低水温对提高换热总量有更为积极的贡献。
通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。
于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。
这样就出现了大流量小温差的情况,水流速ω可以提高。
在冷冻水里添加乙二醇,使冷冻水的冰点下降。
很容易我们发现对数平均温差提高了很多。
从而达到了提高换热总量的目的。
)③选型分析:⊙冷负荷Q= q mg×(h1-h2)4.667×(105.26-46.52)≈274.14Kw(235760Kcal/h)⊙由六排管的水阻△Pw=64.68ω1.854≤70Kpa得:管内水流速ω≤1.04356m/s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。
推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。
表冷器计算书文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量 qmg=(14000×/3600≈s空气体积流量 qvg=14000/3600≈s②空气进、出口温度:干球:35/17℃湿球:℃③空气进、出口焓值:㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(tg2-ts2)/(tg1-ts1)=1-/≈②查《部分空气冷却器的接触系数ε2》表:当Vy=~s时:GLⅡ六排的ε2=~从这我们可以看出:六排管即可满足要求。
(可得出如下结论:在表冷器外型尺寸受到限制的情况下,我们从增大换热面积来提高换热总量总是不大理想,即使强行增加排数仍旧帮助不大。
我近30遍的手工计算也证明了这一点。
提高水流速和降低水温对提高换热总量有更为积极的贡献。
通过计算我们可以发现钢管的水阻实在太大,稍微增加一点,水阻就大的吓人。
于是我设计采用了两组双排供、双排回的表冷器,在两组总排数仅8排的表冷器里同时供回水达四排之多,水程就一个来回。
这样就出现了大流量小温差的情况,水流速ω可以提高。
在冷冻水里添加乙二醇,使冷冻水的冰点下降。
很容易我们发现对数平均温差提高了很多。
从而达到了提高换热总量的目的。
)③选型分析:⊙冷负荷 Q= qmg ×(h1-h2)×-≈(235760Kcal/h)⊙由六排管的水阻△Pw=ω≤70Kpa得:管内水流速ω≤s[水阻的大小和水程的长短也有密切的关系,经验公式没有对此给个说法。
推论:八排管(即实际上的二排管)在流速一定时的水阻必为六排管的1/3。
理论上可以使△Pw=ω≤70Kpa,有ω≤s,但常识告诉我们:不能如此取值,可以判定八排管(即实际上的二排管)的ω≤s为合理。
表冷器计算书(一)前表冷器a.已知:①风量:14000CMH空气质量流量qmg=(14000×1、2)/3600≈4、667kg/s空气体积流量qvg=14000/3600≈3、889m3/s②空气进、出口温度:干球:35/17℃湿球:30、9/16、5℃③空气进、出口焓值:105、26/46、52KJ/㎏④进水温度:6℃,流量:110CMH(前、后冷却器)⑤阻力:水阻<70KPa,风阻700Pa(前后冷却器)b.计算:①接触系数ε2:ε2= 1-(t g2-t s2)/(tg1-t s1)=1-(17-16、5)/(35-30、9)≈0、878②查《部分空气冷却器得接触系数ε2》表:当Vy=2、3~2、5m/s时:GLⅡ六排得ε2=0、887~0、875从这我们可以瞧出:六排管即可满足要求。
(可得出如下结论:在表冷器外型尺寸受到限制得情况下,我们从增大换热面积来提高换热总量总就是不大理想,即使强行增加排数仍旧帮助不大。
我近30遍得手工计算也证明了这一点。
提高水流速与降低水温对提高换热总量有更为积极得贡献。
通过计算我们可以发现钢管得水阻实在太大,稍微增加一点,水阻就大得吓人。
于就是我设计采用了两组双排供、双排回得表冷器,在两组总排数仅8排得表冷器里同时供回水达四排之多,水程就一个来回。
这样就出现了大流量小温差得情况,水流速ω可以提高。
在冷冻水里添加乙二醇,使冷冻水得冰点下降。
很容易我们发现对数平均温差提高了很多。
从而达到了提高换热总量得目得。
)③选型分析:⊙冷负荷Q= q mg×(h1-h2)4、667×(105、26-46、52)≈274、14Kw(235760Kcal/h)⊙由六排管得水阻△Pw=64、68ω1、854≤70Kpa得:管内水流速ω≤1、04356m/s[水阻得大小与水程得长短也有密切得关系,经验公式没有对此给个说法。
推论:八排管(即实际上得二排管)在流速一定时得水阻必为六排管得1/3。