湖南雅礼中学高中尖子生培优——数学学科
- 格式:ppt
- 大小:1.33 MB
- 文档页数:12
湖南省长沙市雅礼中学2024-2025学年高三上学期入学考试数学试题学校:___________姓名:___________班级:___________考号:___________A .4B .5.以正方体的顶点为顶点的三棱锥的个数为(A .70B .64.已知定义域为R 的函数()f x 则( )A .()2e 11f -<C .1e 2f æö>ç÷èø三、填空题(1)当BD长度变化时,理由.(2)记ABD△的面积分别为△与BCD16.函数()e4sinxf x l=-(1)求l的值;()2*Δ0n a n =ÎN 或数列{}2Δna 是等比数列.(3)设数列{}n a 的前n 项和为n S ,如果{}na 和{}n S 都是“优分解”的,并且123346a a a ===,,,求{}n a 的通项公式.2212S S +有最大值为14.16.(1)1l =(2)()f x 在(0,)+¥上仅有1个零点【分析】(1)利用导数的几何意义,求得切线的斜率,和切点,然后得到切线方程,利用对应相等,即可求得l 的值;(2)利用一次求导和二次求导分析原函数和导函数的单调性,分πx ³与0πx <<两种情况讨论,结合单调性和零点存在性定理,即得证.【详解】(1)因为()e 4sin 2,()e 4cos x x f x x f x x l l l l ¢=-+-=-,所以(0)4f l ¢=-,所以切线斜率为4l -,即4a l =-,所切线方程为()41y x l l =--+又(0)1f l =-,所以切点坐标为(0,1)l -,代入得则11l l -=-+,解得1l =.(2)由(1)得()e 4sin 1,()e 4cos x x f x x f x x ¢=--=-,令()()e 4cos x g x f x x ==-¢,则()e 4sin x g x x =+¢,当πx ³时,()e 4cos 0x f x x ¢=->恒成立,所以()f x 在[)π,+¥上递增,所以ππ()(π)e 4sin 1e 50f x f x ³=--³->,因此()f x 在[π,)+¥无零点;当0πx <<时,()e 4sin 0x g x x ¢=+>恒成立,所以()f x ¢单调递增,(3)设()*n n n S B C n =+ÎN ,可得{}2Δn S 是首项为2,公比为()1Q Q ¹的等比数列,设()*n n n a b c n =+ÎN ,可得()21Δ1nn S d c q q =+-,可得()()()223111111d c q q d c q q d c q q éùéùéù+-=+-×+-ëûëûëû,可得数列{}Δn a 是首项121Δ1a a a =-=,公比为q 的等比数列,可求{a n)的通项公式.【详解】(1){}naQ 是等差数列,\设()()111111n a a n d a n d éù=+-=-+-+ëû,令()111,1n n b a n d c =-+-=,则{b n)是等差数列,{}nc 是等比数列,所以数列{a n)是“优分解”的.(2)因为数列{a n)是“优分解”的,设()*n n n a b c n =+ÎN ,其中()()11111,0,0n n n b b n d c c q c q -=+-=¹¹,则()12121111Δ1,ΔΔΔ(1)n n n n n n n n a a a d c qq a a a c q q --++=-=+-=-=-.当1q =时,()2*Δ0n a n =ÎN ;当1q ¹时,{}2Δna 是首项为21(1)c q -,公比为q 的等比数列.(3)一方面,Q 数列{}nS是“优分解”的,设()*n n n S B C n =+ÎN ,其中()()11111,0,0n n n B B n D C C Q C Q -=+-=¹¹,由(2)知2121Δ(1)n n S C Q Q -=-因为12122323Δ4,Δ6S S S a S S S a =-===-==,所以2121ΔΔΔ2S S S =-=.{}221(1)2,1,Δn C Q Q S \-=\¹\是首项为2,公比为()1Q Q ¹的等比数列.另一方面,因为{a n)是“优分解”的,设()*n n n a b c n =+ÎN ,其中()()11111,0,0n n n b b n d c c q c q -=+-=¹¹,()2111211Δ,ΔΔΔ1n n n n n n n n n n S S S a S S S a a d c q q +++++=-==-=-=+-{}2Δn S Q 是首项为2,公比为()1Q Q ¹的等比数列,0,1q q \¹¹,且()()()2222213ΔΔΔS S S =×,()()()223111111d c q q d c q q d c q q éùéùéù\+-=+-×+-ëûëûëû化简得()311111(1)0,0,0,1,0,Δ1n n n n c dq q c q q d a a a c q q -+-=¹¹¹\=\=-=-Q ,即数列{}Δna是首项121Δ1a a a =-=,公比为q 的等比数列.又232Δ2,2a a a q =-=\=Q ,又()211Δ2,12,0,2,S d c q q d q =\+-===\Q Q 解得11111,312c b a c =\=-=-=,综上所述,()1111122n n n a b n d c q --=+-+=+.【点睛】关键点点睛:本题考查数列新定义,弄清题意,并充分应用等比和等差数列的性质是解题的关徤.。
时量:120雅礼中学2023年下学期入学检测试题高二数学分钟 满分:150分一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数=-++λz i i 11)()(是纯虚数,则实数=λ( )A.-2B.-1C.0D.12.已知集合==A x y x y ,}{)(,==-B x y y x ,8}{)(,则=AB ( )A.4}{B.4,4}{)(C.1,4}{D.1,1,4,4}{)()(3.已知∈x R ,则≥x 1且≥y 4是+≥x y 5且≥xy 4成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.有一个人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是( )A.至多有1次中靶B.2次都中靶C.2次都不中靶D.只有1次中靶5.已知样本数据x 1,x 2,…,x 2022的平均数和方差分别为3和56,若=+=y x i i i 231,2,,2022)(,则y 1,y 2,…y 2022的平均数和方差分别是( )A.12,115B.12,224C.9,115D.9,2246.某中学举行了一次“网络信息安全”知识竞赛,将参赛的100名学生成绩分为6组,绘制了如图所示的频率分布直方图,则成绩在区间75,80)[内的学生有( )A.15名B.20名C.25名D.40名7.已知函数f x )(的定义域为R ,且++-=f x y f x y f x f y )()()()(,=f 11)(,则∑==f k k 122)(( )A.-3B.-2C.0D.18.如图,正方体1111ABCD A B C D -中,点E ,F ,分别是AB ,BC 的中点,过点1D ,E ,F 的截面将正方体分割成两个部分,记这两个部分的体积分别为1V ,()212V V V <,则12:V V =( )A.13 B.35 C.2547 D.79二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知236a b ==,则a ,b 满足( )A.a b >B.111a b+< C.4ab > D.4a b +>10.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,根据下列条件解三角形,其中有两解的是( )A.10b =,45A =︒,60C =︒B.b =4c =,60B =︒C.a =2b =,45A =︒D.8a =,4b =,80A =︒11.下列四个命题中,假命题有( )A.对立事件一定是互斥事件B.若A ,B 为两个事件,则()()()P AB P A P B =+C.若事件A ,B ,C 彼此互斥,则()()()1P A P B P C ++=D.若事件A ,B 满足()()1P A P B +=,则A ,B 是对立事件12.如图,正方体1111ABCD A B C D -的棱长为,E ,F ,G 分别为BC ,1CC ,1BB 的中点,则( )A.直线1D D 与直线AF 垂直B.直线1A G 与平面AEF 平行C.平面AEF 截正方体所得的截面面积为98D.点C 与点G 到平面AEF 的距离相等三、填空题:本大题共4小题,每小题5分,共20分.13.2023年是全面贯彻党的二十大精神的开局之年,某中学为了解教师学习“党的二十大精神”的情况,采用比例分配分层随机抽样的方法从高一、高二、高三的教师中抽取一个容量为30的样本,已知高一年级有教师80人,高二年级有教师72人,高三年级有教师88人,则高一年级应抽取________人.14.在平行六面体1111ABCD A B C D -中,11AB AD AA ===,1160A AB A AD BAD ∠=∠=∠=︒,则1AC =________.15.已知()32,,x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是________.16.如图,正四棱锥P ABCD -的底面边长和高均为2,M 是侧棱PC 的中点.若过AM 作该正四棱锥的截面,分别交棱PB 、PD 于点E 、F (可与端点重合),则四棱锥P AEMF -的体积的取值范围是________.四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分10分)已知函数()()()sin 0,0,f x A x A ωϕωϕπ=+>><的部分图像如图所示.(1)求()f x 的解析式及对称中心; (2)先将()f x 的图像纵坐标缩短到原来的12倍,再向右平移12π个单位后得到()g x 的图像,求函数()y g x =在3,124x ππ⎡⎤∈⎢⎥⎣⎦上的单调减区间和最值.如图,在正方体1111ABCD A B C D -中,E ,F 分别是棱BC ,DC 的中点.(1)求证:11D E AB ⊥;(2)若点M ,N 分别在1C D ,AF 上,且1MN C D ⊥,MN AF ⊥.求证:1//MN D E ;(3)棱1CC 上是否存在点P ,使平面1CD E ⊥平面AFP ?若存在,确定点P 的位置,若不存在,说明理由.19.(本小题满分12分)某足球俱乐部举办新一届足球赛,按比赛规则,进入淘汰赛的两支球队如果在120分钟内未分出胜负,则需进行点球大战.点球大战规则如下:第一阶段,双方各派5名球员轮流罚球,双方各罚一球为一轮,球员每罚进一球则为本方获得分,未罚进不得分,当分差拉大到即使落后一方剩下的球员全部罚进也不能追上的时候,比赛即宣告结束,剩下的球员无需出场罚球.若5名球员全部罚球后双方得分一样,则进入第二阶段,双方每轮各派一名球员罚球,直到出现某一轮一方罚进而另一方未罚进的局面,则罚进的一方获胜.设甲、乙两支球队进入点球大战,由甲队球员先罚球,甲队每位球员罚进点球的概率均为12,乙队每位球员罚进点球的概率均为23.假设每轮罚球中,两队进球与否互不影响,各轮结果也互不影响. (1)求每一轮罚球中,甲、乙两队打成平局的概率;(2)若在点球大战的第一阶段,甲队前两名球员均得分而乙队前两名球员均未得分,甲队暂时以2:0领先,求甲队第5个球员需出场罚球的概率.如图、四棱锥P ABCD -中,PD ⊥平面ABCD ,梯形ABCD 满足//AB CD ,90BCD ∠=︒,且2PD AD DC ===,3AB =,E 为PC 中点,13PF PB =,2PG GA =. (1)求证:D ,E ,F ,G 四点共面;(2)求二面角F DE P --的正弦值.21.(本小题满分12分)某校兴趣小组在如图所示的矩形区域ABCD 内举行机器人拦截挑战赛,在E 处按EP 方向释放机器人甲,同时在A 处按AQ 方向释放机器人乙,设机器人乙在M 处成功拦截机器人甲,两机器人停止运动.若点M 在矩形区域ABCD 内(包含边界),则挑战成功,否则挑战失败.已知6AB =米,E 为AB 中点,比赛中两机器人均匀速直线运动方式行进,记EP 与EB 的夹角为()0θθπ<<,AQ 与AB 的夹角为02παα⎛⎫<<⎪⎝⎭. (1)若两机器人运动方向的夹角为3π,AD 足够长,机器人乙挑战成功,求两机器人运动路程和的最大值;(2)已知机器人乙的速度是机器人甲的速度的2倍. (i)若3πθ=,AD 足够长,机器人乙挑战成功,求sin α.(ii)如何设计矩形区域ABCD 的宽AD 的长度,才能确保无论θ的值为多少,总可以通过设置机器人乙的释放角度α使机器人乙挑战成功?定义:()()()222102001sin sin sin n nμθθθθθθ⎡⎤=-+-++-⎣⎦为实数1θ,2θ,…,n θ对0θ的“正弦方差”.(1)若13πθ=,223πθ=,3θπ=,证明:实数1θ,2θ,3θ对0θ的“正弦方差”μ的值是与0θ无关的定值;(2)若14πθ=,2θα=,3θβ=,,2παπ⎛⎫∈⎪⎝⎭,(),2βππ∈,若实数1θ,2θ,3θ对0θ的“正弦方差”μ的值是与0θ无关的定值,求α,β值.一、单项选择雅礼中学2023年下学期入学检测试题高二数学 参考答案题7.【答案】A【解析】因为++-=f x y f x y f x f y )()()()(,令=x 1,=y 0, 可得,=f f f 2110)()()(, 所以=f 02)(,令=x 0,可得,+-=f y f y f y 2)()()(, 即=-f y f y )()(, 所以函数f x )(为偶函数,令=y 1得,++-==f x f x f x f f x 111)()()()()(, 即有++=+f x f x f x 21)()()(,从而可知+=--f x f x 21)()(,-=--f x f x 14)()(, 故+=-f x f x 24)()(, 即=+f x f x 6)()(,所以函数f x )(的一个周期为6.因为=-=-=-f f f 210121)()()(,=-=--=-f f f 321112)()()(,=-==-f f f 4221)()()(,=-==f f f 5111)()()(,==f f 602)()(,所以一个周期内的+++=f f f 1260)()()(.由于22除以6余4, 所以∑=+++=---=-=f k f f f f k 123411213122)()()()()(.8.【答案】C【解析】作直线EF ,分别交DA ,DC 于M ,N 两点,连接1D M ,1D N 分别交1A A ,1C C 于H ,G 两点,如图所示,过点1D ,E ,F 的截面即为五边形1D HEFG ,设正方体的棱长为2a ,因为点E ,F ,分别是AB ,BC 的中点. 所以1AE AM BE BF ==,1CN CFBE BF==, 即AM CN a ==,因为113AM AH MD DD ==,113CN CG DN DD ==, 所以23a AH CG ==. 则过点1D ,E ,F 的截面下方体积为:3111112253322323239a V a a a a a a =⋅⋅⋅⋅-⋅⋅⋅⋅⋅=, ∴另一部分体积为33322547899V a a a =-=, ∴1225:47V V =. 故选:C.二、多项选择题12.【答案】BC【解析】对于选项A ,以D 点为坐标原点,DA ,DC ,1DD 所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,则()0,0,0D ,()1,0,0A ,10,1,2F ⎛⎫⎪⎝⎭,()10,0,1D . 从而()10,0,1DD =,11,1,2AF ⎛⎫=- ⎪⎝⎭,从而1102DD AF ⋅=≠,所以直线1DD 与直线AF 不垂直,选项A 错误; 对于选项B ,取11B C 的中点为M ,连接1A M ,GM ,则易知1//A M AE , 又1A M ⊂/平面AEF ,AE ⊂平面AEF , 故1//A M 平面AEF ,又//GM EF ,GM ⊂/平面AEF ,EF ⊂平面AEF , 所以//GM 平面AEF , 又1A MGM M =,1A M ,GM ⊂平面1A GM ,故平面1//A MG 平面AEF ,又1A G ⊂平面1A MG ,从而1//A G 平面AEF , 选项B 正确;对于选项C ,连接1AD ,1D F ,如图所示, ∵正方体中11////AD BC EF , ∴A ,E ,F ,1D 四点共面,∴四边形1AEFD 为平面AEF 截正方体所得的截面四边形,且截面四边形1AEFD 为梯形,又由勾股定理可得12D F AE ==,1AD =2EF =,∴梯形1AEFD=,∴11928AEFD S =⨯=⎭梯形, 选项C 正确;对于选项D ,由于1111224GEF S =⨯⨯=△,11112228ECF S =⨯⨯=△, 而13A GEFEFG V S AB -=⋅△,13A ECF BCF V S AB -=⋅△, ∴2A GEF A BCF V V --=,即2G AEFC AEF V V --=,选项D 错误. 故选:BC.三、填空题13.1015.()(),01,-∞+∞16.8,19⎡⎤⎢⎥⎣⎦16.【答案】8,19⎡⎤⎢⎥⎣⎦【解析】首先证明一个结论:在三棱锥S ABC -中,棱SA ,SB ,SC 上取点1A ,1B ,1C ,则111111S A B C S ABCV SA SB SC V SA SB SC--⋅⋅=⋅⋅,设SB 与平面SAC 所成角为θ,则11111111111111sin sin 3211sin sin 32S A B C B SA C S ABC B SAC SA SC SB ASC V V SA SB SC V V SA SB SC SA SC SB ASC θθ----⋅⋅⋅⋅⋅⋅∠⋅⋅===⋅⋅⋅⋅⋅⋅⋅⋅∠;现业解答本题:设PE x PB =,PF y PD =,184233P ABCD V -=⨯⨯=, 则43P AEF P ABD V x y V xy --=⋅⋅=,1223P MEF P BCD V x y V xy --=⋅⋅⋅=,223P AFM P ACD y V V y --=⋅=,223P AEM P ABC x V V x --=⋅=,∴()223P AEMF P AEF P MEF P AFM P AEM V V V V V xy x y -----=+=+==+,则3x y xy +=, ∴31yx y =-, ∴010131x y y x y ≤≤⎧⎪≤≤⎪⎨⎪=⎪-⎩, 则112y ≤≤, ∴()222233331331P AEMFy y V x y y y y -⎛⎫=+=+=⋅⎪--⎝⎭,令31t y =-,则()2211123199t yt y t t +⎛⎫==++ ⎪-⎝⎭, ∵1,12y ⎡⎤∈⎢⎥⎣⎦,∴1,22t ⎡⎤∈⎢⎥⎣⎦,当112t ≤<时,函数1y t t =+单调递减,当12t <≤时,函数1y t t=+单调递增, 故1y t t =+最小值为2,当12t =,2时,1y t t =+都取到最大值52,则()22111412,319992t y t y tt +⎛⎫⎡⎤==++∈ ⎪⎢⎥-⎝⎭⎣⎦(当且仅当1t =时,取最小值), ∴282,1319P AEMFy V y -⎡⎤=⋅∈⎢⎥-⎣⎦,故答案为:8,19⎡⎤⎢⎥⎣⎦.四、解答题17.【解析】(1)根据函数()()()sin 0,0,f x A x A ωϕωϕπ=+>><的部分图像,可得2A =,3254123πππω⋅=+, ∴2ω=.再根据五点法作图,52122ππϕ⨯+=, ∴3πϕ=-,故有()2sin 23f x x π⎛⎫=-⎪⎝⎭. 根据图像可得,,03π⎛⎫-⎪⎝⎭是()f x 的图像的一个对称中心, 故函数的对称中心为,03k ππ⎛⎫-⎪⎝⎭,k Z ∈. (2)先将()f x 的图像纵坐标缩短到原来的12,可得sin 23y x π⎛⎫=- ⎪⎝⎭的图像,再向右平移12π个单位,得到sin 2sin 2cos 21232y x x x πππ⎡⎤⎛⎫⎛⎫=--=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图像,即()cos 2g x x =-,令222k x k πππ-≤≤,k Z ∈, 解得2k x k πππ-≤≤,k Z ∈,可得()g x 的减区间为,2k k πππ⎡⎤-⎢⎥⎣⎦,k Z ∈, 结合3,124x ππ⎡⎤∈⎢⎥⎣⎦,可得()g x 在3,124ππ⎡⎤⎢⎥⎣⎦上的单调递减区间为3,24ππ⎡⎤⎢⎥⎣⎦. 又32,62x ππ⎡⎤∈⎢⎥⎣⎦, 故当2,2x x ππ==时,()g x 取得最大值,即()max 1g x =; 当26x π=,12x π=时,()g x 取得最小值,即()min2g x =-.18.(1)【证明】如图,连接1A B ,1CD ,∵正方体1111ABCD A B C D - ∴四边形11ABB A 为正方形, ∴11AB B A ⊥,又∵正方体1111ABCD A B C D -, ∴BC ⊥平面11ABB A ,1AB ⊂平面11ABB A ,所以1BC AB ⊥, 又11B CA B B =,∴1AB ⊥平面11A D CB ,又∵1D E ⊂平面11A D CB , ∴11AB D E ⊥.(2)【证明】如图,连接DE ,1CD ,AD DC =,DF EC =,ADF DCE ∠=∠,∴ADF DCE ≌△△, ∴DAF CDE ∠=∠. ∵90CDE ADE ∠+∠=︒, ∴90DAF ADE ∠+∠=︒, 即DE AF ⊥.又∵正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AF ⊂平面ABCD , ∴1AF DD ⊥, ∵1DD DE D =,1,D D DE ⊂平面1D DE ,∴AF ⊥平面1D DE . 又∵1D E ⊂平面1D DE , ∴1AF D E ⊥. 由(1)可知11AB D E ⊥ 又∵1AB AF A =,1AB ,AF ⊂平面1AB F ,∴1D E ⊥平面1AB F .又∵1MN C D ⊥,11//AB C D , ∴1MN AB ⊥,, 又∵MN AF ⊥,1AB AF A =,1AB ,AF ⊂平面1AB F所以MN ⊥平面1B AF 所以1//MN D E .(3)【解析】存在.如图,当点P 为棱1CC 的中点时,平面1CD E ⊥平面AFP . 连接FP ,AP ,∵点P ,F 分别为棱1CC ,CD 的中点, ∴1//FP C D ,∵正方体1111ABCD A B C D -, ∴11//AD B C , ∴11AB C D∴11//C D AB , ∴1//FP AB ,∴FP 与1AB 共面于平面1AB PF .由(2)知1D E ⊥平面1B AF ,即1D E ⊥平面AFP . 又因为1D E ⊂平面1CD E , ∴平面1CD E ⊥平面AFP .19.【解析】(1)设每一轮罚球中,甲队球员罚进点球的事件为A ,未罚进点球的事件为A ;乙队球员罚进点球的事件为B ,未罚进点球的事件为B .设每一轮罚球中,甲、乙两队打成平局的事件为C ,由题意,得在每一轮罚球中两队打成平局的情况有两种:甲、乙均未罚进点球,或甲、乙均罚进点球,则()()()()()1212111112323632P C P A P B P A P B ⎛⎫⎛⎫=⨯+⨯=-⨯-+⨯=+= ⎪ ⎪⎝⎭⎝⎭, 故每一轮罚球中,甲、乙两队打成平局的概率为12. (2)因为甲队第5个球员需出场罚球,则前四轮罚球甲、乙两队分差不能超过1分, 即四轮罚球结束时比分可能为2:1或2:2或3:2. ①比分为2:1的概率为()()()()()()()()P A P B P A P B P A P B P A P B ⋅⋅⋅+⋅⋅⋅121212121111111112323232318189⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯⨯-⨯-+-⨯-⨯-⨯=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. ②比分为2:2的概率为()()()()121211123239P A P B P A P B ⎛⎫⎛⎫⋅⋅⋅=-⨯⨯-⨯= ⎪ ⎪⎝⎭⎝⎭.③比分为3:2的概率为()()()()()()()()P A P B P A P B P A P B P A P B ⋅⋅⋅+⋅⋅⋅121221223239⎛⎫=⨯⨯-⨯⨯= ⎪⎝⎭. 综上,甲队第5个球员需出场罚球的概率为11249999++=. 20.(1)【证明】以点C 为坐标原点,向量CD 、CB 、DP 方向分别为x 、y 、z 轴的正方向建立坐标系,则()2,0,0D ,()2,0,2P ,()0,0,0C,()B,()A ,()1,0,1E ,所以()2PB =--, 因为13PF PB =,设(),,F a b c ,则()2,,2PF a b c =--, 所以()()12,,223a b c --=--,解得4343a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩所以4433F ⎛⎫ ⎪ ⎪⎝⎭,同理可得8233G ⎛⎫⎪ ⎪⎝⎭, ∴()1,0,1DE =-,2433DF ⎛⎫=- ⎪ ⎪⎝⎭,2233DG ⎛⎫=⎪ ⎪⎝⎭, 令DF xDE yDG =+,则()2422221,0,1333333x y x y y x y ⎛⎫⎛⎫⎛⎫-=-+=-+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴2233334233x y y x y ⎧-=-+⎪⎪⎪=⎨⎪⎪=+⎪⎩, ∴112x y =⎧⎪⎨=⎪⎩,∴12DF DE DG =+,∴D 、E 、F 、G 四点共面.(2)【解析】由(1)可知()2,0,0D ,()1,0,1E,4433F ⎛⎫ ⎪ ⎪⎝⎭, ∴()1,0,1DE =-,2433DF ⎛⎫=- ⎪ ⎪⎝⎭.设平面DEF 的一个法向量为(),,n x y z =,则0n DE n DF ⎧⋅=⎪⎨⋅=⎪⎩,即0240333x z x y z -+=⎧⎪⎨-++=⎪⎩,则x y z y ⎧=⎪⎪⎨⎪=⎪⎩, 令2y =,则(3,2,n =-取平面PDE 的一个法向量为()CB =,则2cos ,510n CB n CB n CB⋅===,所以215sin ,1cos ,5n CB nCB =-=,∴二面角F DE P --. 21.【解析】(1)如图,在AEM △中,由余弦定理得,2222cos93AE MA ME MA ME π=+-⋅=,所以()2293932MA ME MA ME MA ME +⎛⎫+=+⋅≤+⨯ ⎪⎝⎭,所以6MA ME +≤,(当且仅当3MA ME ==时等号成立), 故两机器人运动路程和的最大值为6.(2)(i)在AEM △中,由于机器人乙的速度是机器人甲的速度的2倍, 故2AM EM =,由正弦定理可得()sin sin AM EMπθα=-,所以()sin 11sin sin sin 223EM AMπθπαθ-====,(ii)设EM x =,则22AM EM x ==,()1,3x ∈, 由余弦定理可得()()222323cos 2322x x x xx πθ+--==-⨯⨯,所以3cos 22x xθ=-, 所以sin x θ=== 由题意得sin AD x θ≥对任意()1,3x ∈恒成立, 故()max sin 2AD x θ≥=,当且仅当x =.答:矩形区域ABCD 的宽AD 至少为2米,才能确保无论θ的值为多少,总可以通过设置机器人乙的释放角度使机器人乙在矩形区域ABCD 内成功拦截机器人甲. 22.【解析】(1)因为13πθ=,223πθ=,3θπ=, 所以()22200012sin sin sin 333ππμθθπθ⎡⎤⎛⎫⎛⎫=-+-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()2222200000131131cos sin sin sin cos 322322θθθθθ⎛⎫=++=⨯+= ⎪⎝⎭, 所以“正弦方差”μ的值是与0θ无关的定值12. (2)因为14πθ=,2θα=,3θβ=,,2παπ⎛⎫∈⎪⎝⎭,(),2βππ∈, 所以()()2220001sin sin sin 34πμθαθβθ⎡⎤⎛⎫=-+-+- ⎪⎢⎥⎝⎭⎣⎦()()0001cos 21cos 221cos 22123222πθαθβθ⎡⎤⎛⎫-- ⎪⎢⎥----⎝⎭⎢⎥=++⎢⎥⎢⎥⎣⎦()()00000sin 2cos2cos2sin 2sin 2cos2cos2sin 2sin 2126θαθαθβθβθ++++=-()()00sin 2sin 21sin 2cos 2cos 2cos 2126αβθαβθ++++=-, 因为实数1θ,2θ,3θ对0θ的“正弦方差”μ的值是与0θ无关的定值, 所以cos 2cos 20sin 2sin 21αβαβ+=⎧⎨+=-⎩,因为,2παπ⎛⎫∈⎪⎝⎭,(),2βππ∈, 所以()2,2αππ∈,()22,4βππ∈,由cos 2cos 20αβ+=,得225αβπ+=或22βαπ-=, 即52παβ+=或2πβα-=, 由()()22cos 2cos 2sin 2sin 21αβαβ+++=, 得()1cos 222βα-=-, 又因为()220,3βαπ-∈,所以2223πβα-=或4223πβα-=或8223πβα-=, 即3πβα-=或23πβα-=或43πβα-=,当523παβπβα⎧+=⎪⎪⎨⎪-=⎪⎩时,解得13121712παπβ⎧=⎪⎪⎨⎪=⎪⎩,经检验不符合题意;当5223παβπβα⎧+=⎪⎪⎨⎪-=⎪⎩时,解得11121912παπβ⎧=⎪⎪⎨⎪=⎪⎩,经检验符合题意;当5243παβπβα⎧+=⎪⎪⎨⎪-=⎪⎩时,解得7122312παπβ⎧=⎪⎪⎨⎪=⎪⎩,经检验符合题意.综上可知:11121912παπβ⎧=⎪⎪⎨⎪=⎪⎩或7122312παπβ⎧=⎪⎪⎨⎪=⎪⎩.。
2024-2025学年湖南省长沙市雅礼中学高三(上)月考数学试卷(一)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知集合A ={x |log 2x >1},B ={x |0<x <4},则A ∩B =( )A. {x |2<x <4}B. {x |2⩽x <4}C. {x |0<x⩽2}D. {x |x⩽2}2.已知复数z 满足(1―i )z =2i ,且z +ai (a ∈R )为实数,则a =( )A. 1B. 2C. ―1D. ―23.设向量a =(1,0),b =(12,12),则下列结论中正确的是( )A. |a |=|b | B. a ⋅b = 22 C. a ―b 与b 垂直 D. a //b4.已知a 是函数f (x )=2x ―log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A. f (x 0)=0B. f (x 0)>0C. f (x 0)<0D. f (x 0)的符号不确定5.若sinx +cosx =13,x ∈(0,π),则sinx ―cosx 的值为( )A. ± 173 B. ― 173 C. 13 D. 1736.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为( )A. 8B. 24C. 48D. 1207.函数y =f (x )的图象如图①所示,则如图②所示的函数图象所对应的函数解析式可能为( )A. y =f (1―12x )B. y =―f (1―12x )C. y =f (4―2x )D. y =―f (4―2x )8.刍曹是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某屋顶可视为五面体ABCDEF ,四边形ABFE 和CDEF 是全等的等腰梯形,△ADE 和△BCF 是全等的等腰三角形.若AB =25m ,BC =AD =10m ,且等腰梯形所在的面、等腰三角形所在的面与底面夹角的正切值均为145.为这个模型的轮廓安装灯带(不计损耗),则所需灯带的长度为( )A. 102mB. 112mC. 117mD. 125m二、多选题:本题共3小题,共18分。
2025届湖南省长沙市雅礼教育集团高三考前热身数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若5(1)(1)ax x ++的展开式中23,x x 的系数之和为10-,则实数a 的值为( )A .3-B .2-C .1-D .12.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为1F 、2F ,过1F 的直线l 交双曲线的右支于点P ,以双曲线的实轴为直径的圆与直线l 相切,切点为H ,若113F P F H =,则双曲线C 的离心率为( ) A .132B .5C .25D .133.如图,在中,点M 是边的中点,将沿着AM 翻折成,且点不在平面内,点是线段上一点.若二面角与二面角的平面角相等,则直线经过的( )A .重心B .垂心C .内心D .外心4.已知复数z 满足()1i +z =2i ,则z =( )A 2B .1C .22D .125.已知数列{}n a 是公差为()d d ≠0的等差数列,且136,,a a a 成等比数列,则1a d=( ) A .4B .3C .2D .16.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-7.已知实数x 、y 满足不等式组2102100x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则3z x y =-+的最大值为( )A .3B .2C .32-D .2-8.已知函数13()4sin 2,0,63f x x x π⎛⎫⎡⎤=-∈π ⎪⎢⎥⎝⎭⎣⎦,若函数()()3F x f x =-的所有零点依次记为123,,,...,n x x x x ,且123...n x x x x <<<<,则123122...2n n x x x x x -+++++=( )A .503πB .21πC .1003πD .42π9.设函数()f x 在定义城内可导,()y f x =的图象如图所示,则导函数()y f x '=的图象可能为( )A .B .C .D .10.在ABC ∆中,60BAC ∠=︒,3AB =,4AC =,点M 满足2B M M C =,则AB AM ⋅等于( ) A .10B .9C .8D .711.我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献.这5部专著中有3部产生于汉、魏、晋、南北朝时期.某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( ) A .35B .710C .45D .91012.已知当m ,[1n ∈-,1)时,33sin sin22mnn m ππ-<-,则以下判断正确的是( )A .m n >B .||||m n <C .m n <D .m 与n 的大小关系不确定二、填空题:本题共4小题,每小题5分,共20分。
雅礼中学高一理科实验班选拔考试数学试卷一、选择题(每小题5分,共30分。
每小题均给出了A 、B 、C 、D 的四个选项,其中有且只有一个选项是正确的,不填、多填或错填均得0分)1、有一正方体,六个面上分别写有数字1、2、3、4、5、6,有三个人从不同的角度观察的 结果如图所示。
如果记6的对面的数字为a ,2的对面的数字为b ,那么b a +的值为A .3B .7C .8D .112、右图是某条公共汽车线路收支差额y 与乘客量x 的图像(收支差额=车票收入-支出费用) 由于目前本条线路亏损,公司有关人员提出两条建议:建议(1)是不改变车 票价格,减少支出费用;建议(2)是不改变支出费用,提高车票价格。
下面 给出四个图像(如图所示)则A .①反映了建议(2),③反映了建议(1)B .①反映了建议(1),③反映了建议(2)C .②反映了建议(1),④反映了建议(2)D .④反映了建议(1),②反映了建议(2)3、已知函数))((3n x m x y ---=,并且b a ,是方程0))((3=---n x m x 的两个根,则 实数b a n m ,,,的大小关系可能是A .n b a m <<<B .b n a m <<<C .n b m a <<<D .b n m a <<<4、记n S =n a a a +++Λ21,令12nnS S S T n+++=L ,称n T 为1a ,2a ,……,n a 这列数的“理想数”。
已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为A .2004B .2006C .2008D .20105、以半圆的一条弦BC (非直径)为对称轴将弧BC 折叠后1 1xyOA 1 1x yO A 1 1 xyO y1 1xO A A 1 1xyO ① ② ③④OD CBAFE D CBAxyE ODCBA 与直径AB 交于点D ,若32=DB AD ,且10=AB ,则CB 的 长为A . 54B .34C . 24D .46、某汽车维修公司的维修点环形分布如图。
雅礼中学2024届高三月考试卷(七)数学注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}{}{}2,4,6,8,10,12,4,6,8,8,10U M N ===,则集合{}2,12=( ) A.M N ∪ B.M N ∩ C.()U M N ∪ D.()U M N ∩ 2.下列命题正确的是( )A.“ln ln m n <”是“e e m n <”的充分不必要条件B.命题:0,ln 1x x x ∀>− 的否定是:0000,ln 1x x x ∃>−C.5πsin cos 2x x+=−D.函数21x y x +=+在()(),11,∞∞−−∪−+上是减函数 3.若复数z 满足|2i ||2i |8z z ++−=,则复数z 在复平面内所对应点的轨迹是( ) A.椭圆 B.双曲线 C.圆 D.线段4.已知D 是ABC 所在平面内一点,3255AD AB AC =+,则( )A.32BD BC =B.23BD BC =C.35BD BC =D.25BD BC =5.我们把由0和1组成的数列称为01−数列,01−数列在计算机科学和信息技术领域有着广泛应用,把斐波那契数列{}()12211,n n n n F F F F F F ++===+中的奇数换成0,偶数换成1可得到01−数列{}n a ,记数列{}n a 的前n 项和为n S ,则100S 的值为( )A.32B.33C.34D.356.我国元代瓷器元青花团菊花纹小盏如图所示,撇口,深弧壁,圈足微微外撇,底心有一小乳突.器身施白釉,以青花为装饰,釉质润泽,底足露胎,胎质致密.碗内口沿饰有一周回纹,内底心书有一文字,碗外壁绘有一周缠枝团菊纹,下笔流畅,纹饰洒脱.该元青花团菊花纹小盏口径8.4厘米,底径2.8厘米,高4厘米,它的形状可近似看作圆台,则其侧面积约为(单位:平方厘米)( )A.34πB.27πC.20πD.18π7.已知椭圆22221(0)x y a b a b +=>>与双曲线22221(0,0)x y m n m n−=>>有共同的焦点12,F F ,且在第一象限内相交于点P ,椭圆与双曲线的离心率分别为12,e e .若12π3F PF ∠=.则12e e ⋅的最小值是( )A.1232 8.求值:2cos40cos80sin80+=( )二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某市7天国庆节假期期间的楼房日认购量(单位:套)与日成交量(单位:套)的折线图如下图所示,小明同学根据折线图对这7天的日认购量与日成交量作出如下判断,则下列结论正确的是( )A.日认购量与日期正相关B.日成交量的中位数是26C.日成交量超过日平均成交量的有2天D.10月7日日认购量的增量大于10月7日日成交量的增量10.抛物线的弦与弦的端点处的两条切线形成的三角形称为阿基米德三角形,该三角形以其深刻的背景、丰富的性质产生了无穷的魅力.设,A B 是抛物线2:4C x y =上两个不同的点,以()()1122,,,A x y B x y 为切点的切线交于P 点.若弦AB 过点()0,1F ,则下列说法正确的有( ) A.124x x =−B.若12x =,则A 点处的切线方程为10x y −−=C.存在点P ,使得0PA PB ⋅>D.PAB 面积的最小值为4 10.已知函数()()()1e 1x f x x x =+−−,则下列说法正确的有Λ.()f x 有唯一零点B.()f x 无最大值C.()f x 在区间()1,∞+上单调递增D.0x =为()f x 的一个极小值点三、填空题:本题共3小题,每小题5分,共15分.12.雅礼中学将5名学生志愿者分配到街舞社、戏剧社、魔术社及动漫社4个社团参加志愿活动,每名志愿者只分配到1个社团、每个社团至少分配1名志愿者,则不同的分配方案共有__________种13.已知圆221:(2)1C x y +−=与圆222:(2)(1)4C x y −+−=相交于,A B 两点,则()1211C C C A C B =⋅+__________.14.某同学在学习和探索三角形相关知识时,发现了一个有趣的性质:将锐角三角形三条边所对的外接圆的三条圆弧(劣弧)沿着三的形的边进行翻折,则三条圆弧交于该三角形内部一点,且此交点为该三角形的垂心(即三角形三条高线的交点).如图,已知锐角ABC 外接圆的半径为2,且三条圆弧沿ABC 三边翻折后交于点P .(1)若3AB =,则sin PAC ∠=__________.(2)若::6:5:4AC AB BC =,则PA PB PC ++的值为__________.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)人工智能正在改变我们的世界,由OpenAI 开发的人工智能划时代的标志ChatGPT 能更好地理解人类的意图,并且可以更好地回答人类的问题,被人们称为人类的第四次工业革命.它渗透入类社会的方方面面.让人类更高效地生活.现对130人的样本人群就“广泛使用ChatGPT 对服务业芳动力市场的潜在影响”进行调查,其数据的统计结果如下表所示: ChatGPT 应用的广泛性 服务业就业人数的合计减少 增加 广泛应用6010 70 没广泛应用 40 20 60 合计10030130(1)根据小概率值0.01α=的独立性检验,是否有99%的把握认为ChatGPT 应用的广泛性与服务业就业人数的增减有关?(2)现从“服务业就业人数会减少”的100人中按分层随机抽样的方法抽取5人,再从这5人中随机抽取3人,记抽取的3人中有X 人认为ChatGPT 会在服务业中广泛应用,求X 的分布列和均值.附:()()()()22()n ad bc a b c d a c b d χ−=++++,其中n a b c d =+++.α 0.10.05 0.01x α 2.706 3.841 6.63516.(本小题满分15分)如图,在四棱锥P ABCD −中,PA ⊥平面,2,,120ABCD PA AB BC AD CD ABC ∠===== .(1)求证:平面PAC ⊥平面PBD ;(2)若点M 为PB 的中点,线段PC 上是否存在点N ,使得直线MN 与平面PAC.若存在,求PNPC的值;若不存在,请说明理由. 17.(本小题满分15分)如图,圆C 与x 轴相切于点()2,0T ,与y 轴正半轴相交于两点,M N (点M 在点N 的下方),且3MN =.(1)求圆C 的方程;(2)过点M 任作一作直线与椭圆22184x y +=相交于,A B 两点,连接,AN BN ,求证:ANM BNM ∠∠=.18.(本小题满分17分)已知函数()()2ln 3f x x x ax x a =−−∈R .(1)若1x =是函数()f x 的一个极值点,求实数a 的值; (2)若函数()f x 有两个极值点12,x x ,其中12x x <, ①求实数a 的取值范围;②若不等式122ln 31ax k x k +>+恒成立,求实数k 的取值范围. 19.(本小题满分17分)对于无穷数列{}n c ,若对任意*,m n ∈N ,且m n ≠,存在*k ∈N ,使得m n k c c c +=成立,则称{}n c 为“G 数列”.(1)若数列{}n b 的通项公式为2n b n =,试判断数列{}n b 是否为“G 数列”,并说明理由; (2)已知数列{}n a 为等差数列,①若{}n a 是“G 数列”,*128,a a N =∈,且21a a >,求2a 所有可能的取值; ②若对任意*n N ∈,存在*k N ∈,使得k n a S =成立,求证:数列{}n a 为“G 数列”.雅礼中学2024届高三月考试卷(七)数学参考答案一、二、选择题题号 1 2 3 4 5 6 7 8 9 1011答案CAADBBCABDABD BCD1.C 【解析】{}{}(){}(){}U U 4,6,8,10,8,2,12,2,4,6,10,12MN MN M N M N ∪=∩=∪=∩= ,故选C.2.A 【解析】对于A 中,由函数ln y x =为单调递增函数,因为ln ln m n <,可得0m n <<, 又因为函数e x y =为单调递增函数,可得e e m n <,即充分性成立;反之:由e e m n <,可得m n <,当,m n 小于0时,此时ln ,ln m n 没意义,即必要性不成立,所以“ln ln m n <”是“e e m n <”的充分不必要条件,故A 正确;对于B ,命题:0,ln 1x x x ∀>− 的否定是:0000,ln 1x x x ∃>>−,故B 不正确; 对于5ππC,sin sin cos 22x x x +=+=,故C 不正确; 对于D :当2x =−时0y =,当0x =时2y =,但20−<,可得02<, 所以函数21x y x +=+在()(),11,∞∞−−∪−+上不是减函数,故D 不正确;故选A. 3.A 【解析】设()()()12,,0,2,0,2P x y F F −,复数z 对应点P ,由题意复数z 满足|2i ||2i |8z z ++−=,即21128242PF PF a F F c +==>==,可知复数z 满足椭圆的定义.故选A . 4.D 【解析】由3255AD AB AC =+ ,得3255AB BD AB AC +=+ ,得2255BD AB AC =−+,得25BD = (2)5AB AC BC −+= ,故选D.5.B 【解析】因为12211,n n n F F F F F ++===+,所以34567892,3,5,8,13,21,34,F F F F F F F ======= ,所以数列{}n a 的前若干项为:1231567890,1,0,0,1,0,0,1,a a a a a a a a a ========= ,则1234567891a a a a a a a a a ++=++=++== ,所以100331033S =×+=.故选B.6.B 【解析】设该圆台的上底面、下底面的半径分别为,R r ,若当29,23R r ==时,则圆台的母线长5l ==,所以其侧面积为()π 4.5 1.5530π×+×=, 若当28,22R r ==时,则圆台的母线长5l =,所以其侧面积为()π41525π×+×=,所以其侧面积S 满足25π30πS <<.故选B. 7.C 【解析】设共同的焦点为()(),0,,0c c −,设12,PF s PF t ==, 由椭圆和双曲线的定义可得2,2s t a s t m +=−=,解得,s a m t a m =+=−, 在12PF F 中,12π3F PF ∠=,可得222121212122cos F F PF PF PF PF F PF ∠=+−⋅⋅, 即为()()222224()()3c a m a m a m a m a m =++−−+−=+,即有222234a m c c +=,即2212134e e +=,由221213e e +,可得12e e ⋅,当且仅当21e =,故选C. 8.A 【解析】()()2cos 12080cos802cos120cos80sin120sin80cos802cos40cos80sin80sin80sin80−++++===.故选A.9.BD【解析】由题图可以看出,数据点并不是从左下至右上分布,所以A 错;将成交量数据按大小顺序排列,中.位数为26,所以B 对;日平均成交量为1383216263816642.77++++++≈,超过42.7的只有一天,所以C 错;10月7日认购量的增量为276112164−=,成交量的增量为16638128−=,所以D 对,故选BD.10.ABD 【解析】对于A ,由题意,设直线:1AB y kx =+, 联立21,4,y kx x y =+ = 消去y 整理得:2440x kx −−=,又()()1122,,,A x y B x y ,则12124,4x x k x x +=⋅=−,所以A 正确; 对于B ,由抛物线24x y =.可得214y x =,则12y x ′=, 则过点A 的切线斜率为112x ,易知2114y x =,即2111,4A x x, 则切线方程为:()21111142y x x x x −=−,即2111124y x x x =−, 若12x =时,则过点A 的切线方程为:10x y −−=,所以B 正确; 对于C ,由选项B 可得:直线AP 的斜率为112x ,直线BP 的斜率为212x ,因为12121111224x x x x ⋅==−,所以AP BP ⊥,即0PA PB ⋅=,所以C 错误; 对于D ,由选项B 可知,过点B 的切线方程为2221124yx x x −,联立直线,PA PB 的方程可得()12,1,,1,PF PF ABP k k k k PF AB k−=−⋅=−⊥,所以12ABPS AB PF =⋅ ,()2241AB x k =−===+,PF =,则()32241ABPS k =+ ,当0k =时,ABP S 有最小值为4,D 正确.故选ABD.11.BCD 【解析】由题可知()()100f f −==,即1x =−和0x =是函数()()()1e 1x f x x x =+−−的零点,A 不正确;当0x >时,令()e 1xu x x =−−,求导得()e 10xu x −>′,函数()u x 在()0,∞+上递增,当2x 时,()2e 31u x −> ,而1y x =+在()0,∞+上递增,值域为()1,∞+,因此当2x 时,()1f x x >+,所以()f x 无最大值,B 正确;()()2e 22xf x x x ′=+−−,令()()2e 22xg x x x =+−−,求导得()()3e 2xg x x =+−′,当0x >时,令()()3e 2xh x x =+−,则()()4e 0xh x x =+>′, 即()()g x h x ′=在()0,∞+上递增,()()010g x g ′>=>′,则()()f x g x ′=在()0,∞+上递增,()()00f x f ′>=′,因此()f x 在()0,∞+上递增,即()f x 在()1,∞+上单调递增,C 正确; 当10x −<<时,()22e 2xx x x ϕ+=−+,求导得()22e (2)x x x ϕ=−+′,显然函数()x ϕ′在()1,0−上递增,而()()11120,00e 2ϕϕ′−′=−<=>,则存在()01,0x ∈−,使得()00x ϕ′=, 当()0,0x x ∈时,()0x ϕ′>,函数()x ϕ在()0,0x 上单调递增,当()0,0x x ∈时,()()00x ϕϕ<=, 即当()0,0x x ∈时,22e 2xx x +<+,则()()2e 220x f x x x ′=+−−<,又()00f ′=,因此0x =为()f x 的一个极小值点,D 正确,故选BCD.三、填空题:本题共3小题,每小题5分,共15分.12.240 【解析】根据题意,分2步进行分析: ①将5名学生志愿者分为4组,有25C 10=种分组方法,②将分好的4组安排参加4个社团参加志愿活动,有44A 24=种情况, 则有1024240×=种分配方案.13.2 【解析】由题意可知两圆公共弦AB 所在的直线方程为()()12210,0,2,2,1x y C C −+=,所以点1C 到直线210x y −+=的距离为2d C =,又12C C AB ⊥,所以向量1C A 在向量12C C方向上的投影为d =,所以1211C C C A ⋅= ,同理可得1211C C C B ⋅= ,所以()12112C C C A C B ⋅+= .;234 【解析】设外接圆半径为R ,则2R =,由正弦定理,可知324sin sin AB R ACB ACB∠∠===,即3sin 4ACB ∠=,由于ΛCB ∠是锐角,故cos ACB ∠= 又由题意可知P 为三角形ABC 的垂心,即AP BC ⊥,故π2PACACB ∠∠=−,所以sin cos PAC ACB∠∠==连接AP 并延长交BC 于D ,连接CP 并延长交AB 于E ,连接BP 并延长交AC 于F ,设,,CAB CBA ACB ∠θ∠α∠β===,则πππ,,222PAC PBA PAB ∠β∠θ∠α=−=−=−, 由于::6:5:4AC AB BC =,不妨假设6,5,4AC k AB k BC k ===, 由余弦定理知222222(6)(5)(4)3(4)(5)(6)1cos ,cos 26542458k k k k k k k k k k θα+−+−====××××, 222(4)(6)(5)9cos 24616k k k k k β+−=××, 如图所示,,,AD CE BF 为ABC 的三条高,由于ππ,22ECB EBCPCD CPD ∠∠∠∠+=+=, 故EBC CPD ∠∠=,则得πππAPC CPD EBC ABC ∠∠∠∠=−=−=−,所以24ππsin sin sin sin 22PC PA AC ACR APC ABC ∠∠βθ===== −− , 同理可得24πsin sin sin 2PB AB ABR APB ACB∠∠α==== −, 所以()319234cos cos cos 448164PA PB PC θαβ ++=++=×++=. 四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.【解析】(1)零假设为0H :ChatGPT 应用的广泛性与服务业就业人数的增减无关.根据表中数据得220.01130(60204010) 6.603 6.635706010030x χ××−×=≈<=×××,所以根据小概率值0.01α=的独立性检验,没有充分证据推断0H 不成立,因此可以认为无关. (2)由题意得,采用分层抽样抽取出的5人中, 有6053100×=人认为ChatGPT 会在服务业中广泛应用, 有4052100×=人认为ChatGPT 不会在服务业中广泛应用, 则X 的可能取值为1,2,3,又()()()1221332323333555C C C C C 3311,2,3C 10C 5C 10P X P X P X =========, 所以X 的分布列为X1 2 3 P 310 35 110所以()3319123105105E X =×+×+×=. 16.【解析】(1)设AC 的中点为O ,因为AB BC =,所以BO AC ⊥, 因为AD CD =,所以DO AC ⊥,所以,,B O D 三点共线,所以BD AC ⊥, 因为PA ⊥平面,ABCD BD ⊂平面ABCD ,所以BD PA ⊥, 因为,PA AC A PA ∩=⊂平面,PAC AC ⊂平面PAC ,所以BD ⊥平面PAC , 因为BD ⊂平面PBD .所以平面PAC ⊥平面PBD .(2)解:以,OC OD 所在的直线为x 轴和y 轴,过O 点作平行于AP 的直线为z 轴建立空间直角坐标系,则)()(),2,0,1,0C P B −, 因为M 为PB的中点,所以1,12M −,设()01PN PC λλ=,所以()22N λ−,所以1,122MN λ =−−,由(1)知BD ⊥平面PAC ,所以平面PAC 的一个法向量为()0,1,0n =, 设直线MN 与平面PAC 所成角为θ,则sin cos,MN nMN nMN nθ⋅===即当14PNPC=或38PNPC=时,直线MN与平面PAC.17.【解析】(1)设圆C的半径为(0)r r>,依题意知,圆心C的坐标为()2,r,因为3MN=,所以222325224r=+=,所以52r=,圆C的方程为22525(2)24x y−+−=.(2)把0x=代入方程22525(2)24x y−+−=,解得1y=或4y=,即点()()0,1,0,4M N.①当AB x⊥轴时,可知0ANM BNM∠∠==;②当AB与x轴不垂直时,可设直线AB的方程为1y kx=+.联立方程221,1,84y kxx y=++=消去y得()2212460k x kx++−=.()22Δ1624120k k=++>恒成立.设直线AB交椭圆22184x y+=于()()1122,,,A x yB x y两点,则12122246,1212kx x x xk k−−+==++,所以()12121212N2221121212234433112121212 AN Ikx x x xy y kx kx k k k kx x x x x x x x k k−+−−−−−+=+=+==+=++,所以ANM BNM∠∠=.综合①②知ANM BNM∠∠=.18.【解析】(1)()ln123ln22f x x ax x ax′=+−−=−−,又1x=是函数()fx的一个极值点,()10f ∴′=,即220,1a a −−=∴=−.()ln 22f x x x ∴=′+−,令()()1ln 22,20h x x x h x x=+−=+>′, ()()f x h x ∴′=在()0,∞+上单调递增,且()10f ′=,()f x ∴在()0,1上单调递减,在()1,∞+上单调递增,1x ∴=是()f x 的极小值点时,实数a 的值为-1.(2)①()ln 123ln 22f x x ax x ax ′=+−−=−−,由于()()2ln 3f x x x ax x a =−−∈R 有两个极值点12,x x , 所以方程()0f x ′=在()0,∞+上有两个不同的根,即方程ln 220x ax −−=有两个不同的正数根,转化为函数()ln 2x g x x−=与函数2y a =的图象在()0,∞+上有两个不同交点, 令()23ln x g x x −=′,令()23ln 0x g x x −==′,解得3x e =, 当3e x >时,()()0,g x g x ′<单调递减,当30e x <<时,()()0,g x g x ′>单调递增, 且当2e x >时,()()20,e 0g x g >=,故作出()g x 的图象如下: 由图象可得:3120,e a∈ ,即310,2e a ∈. ②由(1)知:12,x x 是ln 220x ax −−=的两个根,故11222ln 20,2ln 20x ax x ax −+−=−+−=,则1212ln ln 2x x a x x −=−, 不妨设()120,1x t x =∈,则21tx x =,则1222212ln ln ln 2ln 0ln 21x x t x x x x x t −−+−=⇒=+−−, 故由122ln 31ax k x k +>+可得,12122221222ln ln ln ln ln 31ln 31ln 311x x t t t x k x k tx k x k k x k x x tx x t −+>+⇒+>+⇒+>+−−−,ln ln 23111t t t k k t t ++>+ −− ,化简得ln 11ln 11t t t t t k t t −+−− > −− , 由于01t <<,所以等价于()ln 11ln 0t t t k t t −+−−−<对任意的01t <<恒成立, 令()()ln 11ln F t t t t k t t =−+−−−,故()0F t <对任意的01t <<恒成立, 则()ln k F t t k t=−+′, 设()ln k m t t k t=−+,则()221k t k m t l t t −=−=′, (i )当0k 时,()()()20,t k m t m t F t t−=>′=′单调遥增,故()()()10,F t F F t =′<′单调递减,故()()10F t F >=,不满足,舍去; (ii )当1k 时,()()()20,t k m t m t F t t−=<′=′单调递减,故()()()10,F t F F t =′>′单调递增,故()()10F t F <=,故()0F t <恒成立,符合题意;(iii )当01k <<时,令()20t k m t t−==′,则t k =,当1k t <<时,()()()0,m x m x F t =′>′单调递增,当0t k <<时,()()()0,m x m t F t =′<′单调递减,又()10F ′=,故1k t <<时,()()10F t F ′<=′,此时()F t 单调递减,故()()10F t F >=, 因此当1k t <<时,()0F t >,不符合题意,舍去.综上,实数k 的取值范围为[)1,∞+.19.【解析】(1)2n b n =,对任意的()*,,,2,2,222m n m n m n m n b m b n b b m n m n ∈≠==+=+=+N , 取k m n =+,则{},m n k n b b b b +=∴是“G 数列”.(2)数列{}n a 为等差数列,①若{}n a 是“G 数列”,*128,a a =∈N ,且*2121,0,a a d a a d >=−>∈N , 则()81n a n d =+−, 对任意的()()*,,,81,81m n m n m n a m d a n d ∈≠=+−=+−N , ()882m n a a m n d +=+++−,由题意存在*k ∈N ,使得m n k a a a +=, 即()()88281m n d k d +++−=+−,显然k m n + ,所以()()()281,18m n d k d k m n d +−+=−−−+=, 1k m n −−+∈′N .所以d 是8的正约数,即1,2,4,8d =, 1d =时,29,7a k m n ==++;2d =时2,10,3a k m n ==++;4d =时2,12,1a k m n ==++;8d =时2,16,a k m n ==+. 综上,2a 的可能值为9,10,12,16.②若对任意*n ∈N ,存在*k ∈N ,使得k n a S =成立, 所以存在*122,,3t t a a S a t ∈+==N ,设数列{}n a 公差为d ,则()()11121,2a d a t d a t d +=+−=−, ()()()213n a t d n d t n d =−+−=+−,对任意()()*,,,3,3m n m n m n a m d a n d ιι∈≠=+−=+−N , ()26m n a a t m n d +=++−,取*3k t m n =++−∈N ,则()()326k m n a t k d t m n d a a =−+=++−=+,所以数列{}n a 是“G 数列”.。
炎德·英才大联考雅礼中学2024届高三月考试卷(八)数学命题人李群丽审题人陈朝阳注意事顶:1.答卷前、考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时、选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动、用橡皮擦干净后、再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上、写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分、在每小题给出的四个选项中,只有一项是符合题目要求的。
1.定义差集{}M N x x M x N -=∈∉且,已知集合{}{}2,3,5,3,5,8A B ==,则()A A B -= ()A .∅B .{}2C .{}8D .{}3,52.已知一组数据12345,,,,x x x x x 的平均数为2,方差为12,则另一组数据1234532,32,32,32,32x x x x x -----的平均数、标准差分别为()A .12,2B .2,1C .324,2D .94,23.设复数z 满足i 2,z z +=这在复平面内对应的点为(),P x y ,则()A .()2214x y -+=B .()2212x y ++=C .()2212x y +-=D .()2214x y ++=4.向量的数量积可以表示为:以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的四分之一,即如图所示,()2214a b AD BC ⋅=- ,我们称为极化恒等式、已知在ABC △中,M 是BC 中点,3,10AM BC ==,则AB AC ⋅=()A .16-B .16C .8-D .85.南丁格尔玫瑰图是由近代护理学和护士教育创始人南丁格尔(FlorenceNightingale )设计的,图中每个扇形圆心角都是相等的,半径长短表示数量大小,某机构统计了近几年中国知识付费用户数量(单位:亿人次),并绘制成南丁格尔攻瑰图(如图所示)、根据此图,以下说法错误的是()A .2015年至2022年,知识付费用户数量逐年增加B .2015年至2022年,知识付费用户数量的逐年增加量在2018年最多C .2015年至2022年,知识付费用户数量的逐年增加量逐年递增D .2022年知识付费用户数量超过2015年知识付费用户数量的10倍6.已知函数()()sin 2(0)f x x ϕϕπ=+<<的图像关于点2,03π⎛⎫⎪⎝⎭中心对称,则()A .直线76x π=是函数()f x 图象的对称轴B .()f x 在区间11,1212ππ⎛⎫-⎪⎝⎭上有两个极值点C .()f x 在区间50,12π⎛⎫⎪⎝⎭上单调递减D .函数()f x 的图象可由cos2y x =向左平移6π个单位长度得到7.已知点O 为坐标原点,椭圆22195x y +=的左、右焦点分别为12,F F ,点P 在椭圆上,设线段1PF 的中点为M ,且2OF OM =,则12PF F △的面积为()A 15B .152C .37D .158.中国古建筑闻名于世,源远流长.如图甲所示的五脊殿是中国传统建筑中的一种屋顶形式,该屋顶的结构示意图如图乙所示,在结构示意图中,已知四边形ABCD 为矩形,,24,EF AB AB EF ADE ==∥△与BCF △都是边长为2的等边三角形,若点,,,,,A B C D E F 都在球O 的球面上,则球O 的表面积为()A .22πB .11πC .112πD .114π二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
湖南省2019届高三(现高二)尖子生数学辅优试卷(八)注意事项:1、本试卷为高二文理科尖子生辅优试卷,题目涵盖范围为高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
一、选择题:本大题共12小题,每小题5分,共60分。
1.雅礼中学教务处采用系统抽样方法,从学校高三年级全体1000名学生中抽50名学生做学习状况问卷调查.现将1000名学生从1到1000进行编号,求得间隔数k=20,即分50组每组20人.在第一组中随机抽取一个号,如果抽到的是17号,则第8组中应取的号码是( ) A .177 B .157 C .417 D .3672.若复数(1i)(i)a -+在复平面内对应的点在第二象限,则实数a 的取值范围是( ) A.(,1)-∞ B.(,1)-∞- C.(1,)+∞ D.(1,)-+∞3.将两枚质地均匀的骰子各掷一次,设事件A={两个点数之和大于8},B={出现一个5点},则P (B|A )=( )A .B .C .D .4.已知α,β是平面,m ,n 是直线.下列命题中不正确的是( ) A .若m ∥n ,m ⊥α,则n ⊥α B .若m ∥α,α∩β=n ,则m ∥n C .若m ⊥α,m ⊥β,则α∥βD .若m ⊥α,m ⊂β,则α⊥β5.向面积为S 的平行四边形ABCD 中任投一点M ,则△MCD 的面积小于3S的概率为( ) A .31 B .53 C .32 D .436.若直线l :y=kx+1被圆C :x 2+y 2﹣2x ﹣3=0截得的弦最短,则直线l 的方程是( ) A .x=0 B .y=1C .x+y ﹣1=0D .x ﹣y+1=07.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第2016个图案中的白色地面砖有( )A .8064块B .8066块C .8068块D .8070块8.设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为R ,四面体S ﹣ABC 的体积为V ,则R=( )A .B .C .D .9.如图,格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱的长度等于( ) A .B .C .5D .210.已知a >0,b >0,,则的最小值为( )A .4B .C .8D .1611.已知抛物线y 2=4x 的焦点F 与椭圆的一个焦点重合,它们在第一象限内的交点为T ,且TF 与x 轴垂直,则椭圆的离心率为( )A .B .C .D .12.曲线y=lnx ﹣2x 在点(1,﹣2)处的切线与坐标轴所围成的三角形的面积是( )A .B .C .1D .2二、填空题:本大题共4小题;每小题5分,共20分,把答案填在题中的横线上。
雅礼实验中学高一数学培优资料(7)三角函数(1)1. 终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________.2. 在平面直角坐标系中若角α的终边经过点P ⎝ ⎛⎭⎪⎫sin π3,cos π3,则sin(π+α)=3. . (1)若α是第三象限角,则270α︒-的终边所在的象限是(2) 已知cos cos θθ=,tan tan θθ=-|,则2θ的终边在 (3) 设2α是第一象限角,且cos cos αα=-,则α是第 象限角4. 已知角α的终边与单位圆的交于点1,2P y ⎛⎫-⎪⎝⎭,则sin tan αα⋅= 5. 如图,圆周上点A 依逆时针方向做匀速圆周运动,已知点A 在1min 内转过的角度为()0180θθ︒︒<<,2min 到达第三象限,15min 回到原来位置,则θ= .6. 已知关于x 的方程2sin cos 0x x m ++=.(1)当1m =时,求方程的解为 ;(2)要使此方程有解,试确定m 的取值范围 .7. 已知α∈⎝ ⎛⎭⎪⎫-π,-π4,且sin α=-13,则cos α=8. 已知tan αtan α-1=-1,求下列各式的值. (1)sin α-3cos αsin α+cos α= ;(2)sin 2α+sin αcos α+2= .9. 已知x ∈(-π,0),sin x +cos x =15. (1)求sin x -cos x = ;(2)求sin 2x +2sin 2x 1-tan x= .10. (1)设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos ⎝ ⎛⎭⎪⎫3π2+α-sin 2⎝ ⎛⎭⎪⎫π2+α(1+2sin α≠0),则f ⎝ ⎛⎭⎪⎫76π=________.(2)已知cos ⎝ ⎛⎭⎪⎫π6-θ=a ,则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ的值是________.11. (1)已知α∈⎝⎛⎭⎪⎫3π2,2π,sin ⎝ ⎛⎭⎪⎫π2+α=13,则tan(π+2α)= (2)已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α=12. 已知-π<x <0,sin(π+x )-cos x =-15. ①求sin x -cos x= ②求sin 2x +2sin 2 x 1-tan x= .。
一、选择题1.(0分)[ID :12425]设曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行,则a=( ) A .-4B .14-C .14D .42.(0分)[ID :12414]已知正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,则该四棱锥的体积的最大值为( ) A .643B .32C .54D .643.(0分)[ID :12405]三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,P A =2,AB =BC =1,则其外接球的表面积为( ) A .6πB .5πC .4πD .3π4.(0分)[ID :12399]设圆C :223x y +=,直线l :360x y +-=,点()00,P x y l ∈,若存在点Q C ∈,使得60OPQ ∠=︒(O 为坐标原点),则0x 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .60,5⎡⎤⎢⎥⎣⎦C .[]0,1D .16,25⎡⎤-⎢⎥⎣⎦5.(0分)[ID :12378]已知平面//α平面β,直线m α,直线n β,点A m ∈,点B n ∈,记点A 、B 之间的距离为a ,点A 到直线n 的距离为b ,直线m 和n 的距离为c ,则 A .b a c ≤≤ B .a c b ≤≤C . c a b ≤≤D .c b a ≤≤ 6.(0分)[ID :12344]用一个平面去截正方体,则截面不可能是( ) A .直角三角形 B .等边三角形 C .正方形 D .正六边形 7.(0分)[ID :12343]在三棱锥P ABC -中,PA ⊥平面1202ABC BAC AP AB ∠=︒==,,,M 是线段BC 上一动点,线段PM 长度最小P ABC -的外接球的表面积是( )A .92π B .C .18πD .40π8.(0分)[ID :12333]已知三条直线,,m n l ,三个平面,,αβγ,下列四个命题中,正确的是( )A .||αγαββγ⊥⎫⇒⎬⊥⎭B .||m l l m ββ⎫⇒⊥⎬⊥⎭C .||||||m m n n γγ⎫⇒⎬⎭D .||m m n n γγ⊥⎫⇒⎬⊥⎭9.(0分)[ID :12384]若圆22240x y x y +--=的圆心到直线0x y a -+=的距离为22,则a 的值为( ) A .-2或2B .12或32C .2或0D .-2或010.(0分)[ID :12366]已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A .153B .53C .64D .10411.(0分)[ID :12419]陀螺是汉族民间最早的娱乐工具之一,也称陀罗,北方叫做“打老牛”.陀螺的主体形状一般是由上面部分的圆柱和下面部分的圆锥组成.如图画出的是某陀螺模型的三视图,已知网格纸中小正方形的边长为1,则该陀螺模型的体积为( )A .1073πB .32453π+ C .16323π+ D .32333π+ 12.(0分)[ID :12385]一锥体的三视图如图所示,则该棱锥的最长棱的棱长为 ( )A .√33B .√17C .√41D .√4213.(0分)[ID :12368]α,β是两个不重合的平面,在下列条件中,可判断平面α,β平行的是( )A .m ,n 是平面α内两条直线,且//m β,//n βB .α内不共线的三点到β的距离相等C .α,β都垂直于平面γD .m ,n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α14.(0分)[ID :12361]如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC ⊥BE ; ②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值; ④AEF ∆的面积与BEF ∆的面积相等, A .4B .3C .2D .115.(0分)[ID :12362]如图是正方体的平面展开图,则在这个正方体中: ①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成60︒角 ④DM 与BN 是异面直线 以上四个命题中,正确命题的个数是( )A .1B .2C .3D .4二、填空题16.(0分)[ID :12490]已知圆锥的底面半径为10,高为30,在它的所有内接圆柱中,侧面积的最大值是_____.17.(0分)[ID :12488]经过两条直线2310x y ++=和340x y -+=的交点,并且平行于直线3470x y +-=的直线方程是________.18.(0分)[ID :12475]如图,在正方体1111—ABCD A B C D 中,M N ,分别为棱111C D C C ,的中点,有以下四个结论:①直线AM 与1CC 是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与1MB 是异面直线; ④直线AM 与1DD 是异面直线. 其中正确的结论的序号为________.19.(0分)[ID :12460]正方体1111ABCD A B C D -的棱长为1,P 为1CC 上的动点,Q 为1BD 上的动点,则线段PQ 的长度的最小值为______.20.(0分)[ID :12526]直线y =x +1与圆x 2+y 2+2y −3=0交于A , B 两点,则|AB |=________.21.(0分)[ID :12449]若直线l :3y kx =23-60x y +=的交点位于第一象限,则直线l 的倾斜角的取值范围是___________.22.(0分)[ID :12495]正四棱锥S -ABCD 2S 、A 、B 、C 、D 都在同一个球面上,则该球的体积为______.23.(0分)[ID :12439]三棱锥A BCD -中,E 是AC 的中点,F 在AD 上,且2AF FD =,若三棱锥A BEF -的体积是2,则四棱锥B ECDF -的体积为_______________.24.(0分)[ID :12437]在正方体1111ABCD A B C D -中, ①BD平面11CB D ②直线AD 与1CB 所成角的大小为60︒③1AA BD ⊥ ④平面11A BC ∥平面1ACD 请把所有正确命题的序号填在横线上________.25.(0分)[ID :12502]直线:l y x b =+与曲线2:1C y x =-有两个公共点,则b 的取值范围是______.三、解答题26.(0分)[ID :12596]如图,梯形ABCS 中,//AS BC ,AB BC ⊥,122AB BC AS ===,D 、E 分别是SA ,SC 的中点,现将SCD ∆沿CD 翻折到PCD ∆位置,使23PB =(1)证明:PD ⊥面ABCD ;(2)求二面角E BD C --的平面角的正切值; (3)求AB 与平面BDE 所成的角的正弦值.27.(0分)[ID :12588]如图,直角梯形BDFE 中,//,,22EF BD BE BD EF ⊥=,等腰梯形ABCD 中,//,,24AB CD AC BD AB CD ⊥==,且平面BDFE ⊥平面ABCD .(1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.28.(0分)[ID :12586]如图,在三棱锥A BCD -中,,E F 分别为棱,BC CD 上的中点.(1)求证:EF 平面ABD ;(2)若,BD CD AE ⊥⊥平面BCD ,求证:平面AEF ⊥平面ACD . 29.(0分)[ID :12551]已知以点C (1,﹣2)为圆心的圆与直线x+y ﹣1=0相切. (1)求圆C 的标准方程;(2)求过圆内一点P (2,﹣)的最短弦所在直线的方程.30.(0分)[ID :12543]在正方体1111ABCD A B C D -中,AB=3,E 在1CC 上且12CE EC =.(1)若F 是AB 的中点,求异面直线1C F 与AC 所成角的大小; (2)求三棱锥1B DBE -的体积.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.D 2.A 3.A 4.B 5.D 6.A 7.C 8.D 9.C 10.D 11.D12.C13.D14.B15.B二、填空题16.;【解析】【分析】设内接圆柱的底面半径为r高为h得到将侧面积表示为底面半径的函数用配方法求二次函数的最大值【详解】设内接圆柱的底面半径为r高为h侧面积为S则时侧面积故答案为:【点睛】本题考查了圆锥内17.【解析】【分析】先求出两相交直线的交点设出平行于直线的直线方程根据交点在直线上求出直线方程【详解】联立直线的方程得到两直线的交点坐标平行于直线的直线方程设为则所以直线的方程为:故答案为:【点睛】本题18.③④【解析】【分析】【详解】试题分析:因为四边不共面所以直线与是异面直线所以①错误的;同理直线与也是异面直线直线与是异面直线直线与是异面直线所以②是错误的;③是正确的④是正确的故填③④考点:空间中直19.【解析】【分析】首先根据数形结合分析可知线段的长度的最小值转化为在平面上投影线段的最小值然后转化为点到直线的距离的最小值【详解】当平面时线段与其在平面上投影相等当与平面不平行时是斜线段大于其在平面上20.22【解析】【分析】首先将圆的一般方程转化为标准方程得到圆心坐标和圆的半径的大小之后应用点到直线的距离求得弦心距借助于圆中特殊三角形半弦长弦心距和圆的半径构成直角三角形利用勾股定理求得弦长【详解】根21.【解析】若直线与直线的交点位于第一象限如图所示:则两直线的交点应在线段上(不包含点)当交点为时直线的倾斜角为当交点为时斜率直线的倾斜角为∴直线的倾斜角的取值范围是故答案为22.【解析】如图过S作SO1⊥平面ABCD由已知=1在Rt△SO1C中∵SC=∴∴O1S=O1A=O1B=O1C=O1D故O1是过SABCD点的球的球心∴球的半径为r=1∴球的体积为点睛:与球有关的组合23.【解析】【分析】以B为顶点三棱锥与四棱锥等高计算体积只需找到三角形AEF与四边形ECDF的面积关系即可求解【详解】设B到平面ACD的距离为h三角形ACD面积为因为是的中点在上且所以所以又=2所以所以24.①③④【解析】【分析】利用线面平行的判定定理判断①;由异面直线所成角判断②;由线面垂直的性质判断③;由面面平行的判定定理判断④【详解】对于①如下图所示由于则四边形为平行四边形则面面所以平面故①正确;25.【解析】【分析】由题意曲线表示以原点为圆心1为半径的半圆根据图形得出直线与半圆有两个公共点时抓住两个关键点一是直线与圆相切时二是直线过时分别求出的值即可确定的范围【详解】如图所示是个以原点为圆心1为三、解答题 26. 27. 28. 29. 30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.D 解析:D 【解析】 【分析】求出原函数的导函数,得到函数在2x =时的导数,再由两直线平行与斜率的关系求得a 值. 【详解】解:由31x y x +=-,得()()2213411x x y x x ---=---'=, ∴2'|4x y ==-,又曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行, ∴4a -=-,即4a =. 故选D . 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查两直线平行与斜率的关系,是中档题.2.A解析:A 【解析】 【分析】设底面ABCD 的边长为a ,四棱锥的高为h ,可得22122a h h =-,得出四棱锥的体积关于h 的函数()V h ,求出V 的极大值点,即可得到四棱锥的体积的最大值. 【详解】正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,设底面ABCD 的边长为a ,四棱锥的高为h ,设正四棱锥的底面ABCD 的中心为1O .则2OA =,1PO ⊥ 平面ABCD .则22211OO O A OA +=,即()222332a h ⎛⎫+-= ⎪ ⎪⎝⎭,可得22122a h h =-. 则该四棱锥的体积为()221112233V a h h h h =⨯=- 令()()2122f h h hh =-,则()2246f h h h'=-当04h <<时,()0f h '>,f h 单调递增. 当4h >时,()0f h '<,f h 单调递减.所以当4h =时,该四棱锥的体积有最大值,最大值为:()216412424433⨯⨯-⨯⨯=. 故选:A【点睛】本题考查了四棱锥与球的组合体,求椎体的体积,关键是利用了导数求体积的最值.属于中档题.3.A解析:A 【解析】分析:将三棱锥的外接球转化为以,,AP AB BC 为长宽高的长方体的外接球,从而可得球半径,进而可得结果.详解:因为PA ⊥平面AB ,,AB BC ⊂平面ABC ,PA BC ∴⊥,,PA AB AB BC ⊥⊥,所以三棱锥的外接球,就是以,,AP AB BC 为长宽高的长方体的外接球, 外接球的直径等于长方体的对角线, 即24116R =++=246R ππ=,故选A.点睛:本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径) ③可以转化为长方体的外接球; ④特殊几何体可以直接找出球心和半径.4.B解析:B 【解析】 【分析】圆O 外有一点P ,圆上有一动点Q ,OPQ ∠在PQ 与圆相切时取得最大值.如果OP 变长,那么OPQ ∠可以获得的最大值将变小.因为sin QOOPQ PO∠=,QO 为定值,即半径,PO 变大,则sin OPQ ∠变小,由于(0,)2OPQ π∠∈,所以OPQ ∠也随之变小.可以得知,当60OPQ ∠=︒,且PQ 与圆相切时,2PO =,而当2PO >时,Q 在圆上任意移动,60OPQ ∠<︒恒成立.因此,P 的取值范围就是2PO ,即满足2PO ,就能保证一定存在点Q ,使得60OPQ ∠=︒,否则,这样的点Q 是不存在的.【详解】由分析可得:22200PO x y =+又因为P 在直线l 上,所以00(36)x y =--要使得圆C 上存在点Q ,使得60OPQ ∠=︒,则2PO故22220000103634PO x y y y ==+-+ 解得0825y ,0605x 即0x 的取值范围是6[0,]5,故选:B .【点睛】解题的关键是充分利用几何知识,判断出2PO ,从而得到不等式求出参数的取值范围. 5.D解析:D【解析】【分析】根据平面与平面平行的判断性质,判断c 最小,再根据点到直线距离和点到直线上任意点距离判断a 最大.【详解】由于平面//α平面β,直线m 和n 又分别是两平面的直线,则c 即是平面之间的最短距离. 而由于两直线不一定在同一平面内,则b 一定大于或等于c ,判断a 和b 时,因为B 是上n 任意一点,则a 大于或等于b .故选D.【点睛】本题主要考查面面平行的性质以及空间距离的性质,考查了空间想象能力,意在考查灵活应用所学知识解答问题的能力,属于中档题.6.A解析:A【解析】【分析】【详解】画出截面图形如图显然A 正三角形C 正方形:D 正六边形可以画出三角形但不是直角三角形;故选A.用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故可选A.7.C解析:C【解析】【分析】首先确定三角形ABC为等腰三角形,进一步确定球的球心,再求出球的半径,最后确定球的表面积.【详解】解:如图所示:三棱锥P ABC -中,PA ⊥平面2,2ABC AP AB ==,,M 是线段BC 上一动点,线段PM 3则:当AM BC ⊥时,线段PM 达到最小值,由于:PA ⊥平面ABC ,所以:222PA AM PM +=,解得:1AM =, 所以:3BM =,则:60BAM ∠=︒,由于:120BAC ∠=︒,所以:60MAC ∠=︒则:ABC 为等腰三角形. 所以:23BC =在ABC 中,设外接圆的直径为2324r ==, 则:2r =, 所以:外接球的半径2229222R ⎛⎫=+= ⎪ ⎪⎝⎭, 则:94182S ππ=⋅⋅=, 故选:C .【点睛】本题考查的知识要点:三棱锥的外接球的球心的确定及球的表面积公式的应用. 8.D解析:D【解析】试题分析:A.}r rααββ⊥⇒⊥不正确,以墙角为例,,αβ可能相交;B.}m l l m ββ⇒⊥⊥不正确,,l β有可能平行;C.}m r m n n r ⇒不正确,m,n 可能平行、相交、异面;故选D 。
雅礼中学2025届高三上学期入学考试试卷数 学时量:120分钟 分值:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、 已知集合{}240A x x =-≤,则A =N ( )A .{}0B .{}0,1C .{}0,1,2D .{}1,22、 )A B C D3、 (暑假作业原题)若正数x ,y 满足 ²20x xy -+=,则x y +的最小值是( )A .B .C .4D .6【答案】C【分析】根据已知条件及基本不等式即可求解.4、过椭圆22:1169x yC+=的中心作直线l交椭圆于,P Q两点,F是C的一个焦点,则PFQ△周长的最小值为()A.16 B.14 C.12 D.10所以PFQ△的周长为PF当线段PQ为椭圆短轴时,故选:B5、已知圆C的方程为22(2)x y a+-=,则“2a>”是“函数y x=的图象与圆C有四个公共点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B6、 (暑假作业原题)如图是一块高尔顿板的示意图,在一块木板上钉着若干排相互平行但相互错开的圆柱形小木钉,小木钉之间留有适当的空隙作为通道,前面挡有一块玻璃.将小球从顶端放入,小球下落的过程中,每次碰到小木钉后都等可能地向左或向右落下,最后落入底部的格子中.记格子从左到右的编号分别为0,1,2,⋯,10,用X 表示小球最后落入格子的号码,若0()()P X k P X k == ,则0(k = )A .4B .5C .6D .7【分析】小球在下落过程中,共10次等可能向左或向右落下,则小球落入格子的号码X 服从二项分布,且落入格子的号码即向右次数,即1~(10,)2X B ,则10101()()(02kP X k C k ===,1,2...,10),然后由二项式系数对称性即可得解.【解答】解:小球在下落过程中,共10次等可能向左或向右落下, 则小球落入格子的号码X 服从二项分布, 且落入格子的号码即向右次数,即1~(10,2X B ,所以10101010111()()(1()(0222k k k kP X k C C k -==-==,1,2...,10),由二项式系数对称性知,当5k =时,10kC 最大,故05k =. 故选:B .【点评】本题考查了二项分布及二项式系数的性质的应用,属于中档题.7、 (教材原题)以正方体的顶点为顶点的三棱锥的个数是( ) A .70B .64C .60D .58【分析】从8个顶点中选4个,共有48C 种结果,在这些结果中,有四点共面的情况,6个表面有6个四点共面,6个对角面有6个四点共面,用所有的结果减去不合题意的结果,得到结论.【解答】解:首先从8个顶点中选4个,共有48C 种结果,在这些结果中,有四点共面的情况,6个表面有6个四点共面,6个对角面有6个四点共面, ∴满足条件的结果有4488661258C C --=-=.故选:D .【点评】本题是一个排列问题同立体几何问题结合的题目,是一个综合题,这种问题实际上是以排列为载体考查正方体的结构特征.8、 (暑假作业原题)已知定义域为R 的函数()f x ,其导函数为()f x ',且满足()2()0f x f x '-<,(0)1f =,则( )A .2(1)1e f -<B .()21f e >C .1(2f e >D .1(1)(2f ef <【分析】构造函数2()()xf xg x e =,由()2()0f x f x '-<得()0g x '<,进而判断函数()g x 的单调性,判断各选项不等式.【解答】解:2()()x f x g x e=,则22222()2()()2()()()x x x x f x e f x e f x f x g x e e '⋅-'-'==, 因为()2()0f x f x '-<在R 上恒成立,所以()0g x '<在R 上恒成立,故()g x 在R 上单调递减, 所以220(1)(0)(1)(0),(1)1f f g g e f e e --->=->=,故A 不正确; 所以g (1)(0)g <,即20(1)(0)f f e e<,即f (1)22(0)e f e <=,故B 不正确;1()(0)2g g <,即101()(0)21f f e e <=,即1(2f e <,故C 不正确; 1()(1)2g g >,即121()(1)2f f e e >,即1(1)()2f ef <,故D 正确.故选:D .【点评】本题考查了利用导数研究函数的单调性,考查了函数思想,属中档题.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9、 已知复数12,z z ,下列说法正确的是( )A .若12=z z ,则2212z z =B .1212z z z z =C .1212z z z z -≤+D .1212z z z z +≤+10、 已知函数()ππ)02,22f x x ωϕωϕ⎛⎫=+<≤-<< ⎪⎝⎭,函数()()12g x f x =+的部分图象如图所示,则下列说法中正确的是( )A .()f x 的表达式可以写成()24f x x π⎛⎫=- ⎪⎝⎭B .()f x 的图象向右平移3π8个单位长度后得到的新函数是奇函数 C .()()1h x f x =+的对称中心ππ,182k ⎛⎫-+⎪⎝⎭,Z k ∈ D .若方程()1f x =在()0,m 上有且只有6个根,则5π13π,24m ⎛⎫∈ ⎪⎝⎭11、 如图,过点(C a ,0)(0)a >的直线AB 交抛物线22(0)y px p =>于A ,B 两点,连接AO 、BO ,并延长,分别交直线x a =-于M ,N 两点,则下列结论中一定成立的有( )A .//BM ANB .以AB 为直径的圆与直线x a =-相切C .AOB MON S S ∆∆=D .24MCN ANC BCM S S S ∆∆∆=⋅【分析】设出直线与抛物线联立,利用韦达定理及斜率公式,结合三角形的面积公式及直线与圆的位置关系的判断方法即可求解.【解答】解:对于A ,令直线:AB x my a =+,1(A x ,1)y ,2(B x ,2)y , 联立22x my a y px=+⎧⎨=⎩,消x 可得2220y pmy pa --=,则△2(2)80pm pa =+>,122y y pa =-,122y y pm +=, 则21212()222x x m y y a pm a +=++=+, 则1111,:OA y y k OA y x x x ==则直线,∴11(,)ayM a x --,故12211122212220()BMay pay y x y y y pak x a x a y x a +++====+++, 同理0AN k =,//BM AN ∴,故A 正确; 对于B ,如图,设AB 中点1212(,22x x y y Q ++,即2(Q pm a +,)pa -,则Q 到直线x a =-的距离22d pm a =+, 以AB为直径的圆的半径12||||2AB y y =-=,所以222||(2)(2)4AB d p a a p m -=+-, 当2p a =时相切,当2pa ≠时不相切,故B 错误;对于C ,设x a =-与x 轴交于P ,PON AOC S S ∆∆=,MOP BOC S S ∆∆=, 则PON MOP AOC BOC S S S S ∆∆∆∆+=+,则AOB MON S S ∆∆=,故C 正确; 对于D ,112211(),()22ANC BCM S x a y S x a y ∆∆=+=-+,则1212121211()()(2)(2)44ANC BCM S S x a x a y y my a my a y y ∆∆⋅=-++=-++221212121[2()4]4m y y am y y a y y =-+++22221[(2)2(2)4](2)(2)4m pa am pm a pa pa pm a =--++-=+,而121212||||2MCN MPC NPC S S S a y y a y y ∆∆∆=+=⋅-=-, 所以2222222121212()[()4]4(2)4MCN ANC BCM S a y y a y y y y pa pm a S S ∆∆∆=-=+-=+=⋅,故D 正确.故选:ACD .【点评】本题考查了已知两点求斜率,由斜率判断两条直线平行,判断直线与圆的位置关系,根据韦达定理求参数,属于中档题.三、填空题:本题共3小题,每小题5分,共15分.12、 已知随机变量X 服从正态分布()25,N σ,若(56)0.27P X <≤=,则(4)P X <= .13、 已知向量()sin ,cos a θθ=,()3,1b =,若a b ∥,则2sin sin 2θθ+的值为 .14、 设0k >,若存在正实数x ,使得不等式14log 20kx x k --⋅≥成立,则k 的最大值为 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.15、 (13分)平面多边形中,三角形具有稳定性,而四边形不具有这一性质.如图所示,四边形ABCD 的顶点在同一平面上,已知2,AB BC CD AD ====(1)当BD cos A C -是否为一个定值?若是,求出这个定值;若否,说明理由.(2)记ABD △与BCD △的面积分别为1S 和2S ,请求出2212S S +的最大值.【答案】cos A C -为定值,定值为1 (2)14【详解】(1)法一:在ABD △中,由余弦定理222cos 2+-=⋅AD AB BD A AD AB,得cos A =2168BD A -=①,同理,在BCD △中,22222cos 222BD C +-=⨯⨯,即28cos 8BD C -=②,①-②cos 1A C -=,所以当BD cos A C -为定值,定值为1; 法二:在ABD △中,由余弦定理2222cos BD AD AB AD AB A =+-⋅得222222cos BD A =+-⨯⨯,即216BD A =-, 同理,在BCD △中,2222cos 88cos BD CD CB CD CB C C =+-⋅=-,所以1688cos A C -=-1cos A C -=cos 1A C -=,所以当BD cos A C -为定值,定值为1;(2)222222221211sin sin 44S S AB AD A BC CD C +=⋅⋅+⋅⋅ 222212sin 4sin 12sin 44cos A C A C =+=+-2212sin 41)A A =+--224cos 12A A =-++,令()cos ,1,1A t t =∈-,所以2224122414y t t ⎛=-++=-+ ⎝⎭,所以t =cos A = 2212S S +有最大值为14.16、 (15分)(暑假作业原题)函数()e 4sin 2xf x x λλ=-+-的图象在0x =处的切线为3,y ax a a =--∈R .(1)求λ的值;(2)求()f x 在(0,)+∞上零点的个数. 解析【小问1详解】因为()e 4sin 2,()e 4cos x x f x x f x x λλλλ'=-+-=-, 所以(0)4f λ'=-,所以切线斜率为4λ-,即4a λ=-, 所切线方程为()41y x λλ=--+又(0)1f λ=-,所以切点坐标为(0,1)λ-,代入得则11λλ-=-+,解得1λ=.【小问2详解】由(1)得()e 4sin 1,()e 4cos x x f x x f x x '=--=-, 令()()e 4cos xg x f x x ==-',则()e 4sin xg x x =+',当πx ≥时,()e 4cos 0x f x x '=->恒成立,所以()f x 在[)π,+∞上递增, 所以ππ()(π)e 4sin 1e 50f x f x ≥=--≥->, 因此()f x 在[π,)+∞无零点;当0πx <<时,()e 4sin 0xg x x '=+>恒成立,所以()f x '单调递增,又π(0)30,(π)e 40f f ''=-<=+>, 所以()f x '在(0,π)上存在唯一的零点0x , 当()00,,()0,()∈<'x x f x f x 单调递减;当()0,π,()0,()x x f x f x '∈>单调递增;又()0(0)0,(0)0f f x f =<=,π(π)e 10f =->, 因此()f x 在(0,π)上仅有1个零点; 综上,()f x 在(0,)+∞上仅有1个零点.17、 (15分)如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.【详解】(1)因为AD CD =,E 为AC 的中点,所以AC DE ⊥; 在ABD △和CBD △中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC 的中点,所以AC BE ⊥; 又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED , 因为AC 平面ACD ,所以平面BED ⊥平面ACD .(2)连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED , 所以AC EF ⊥,所以1=2AFC S AC EF ⋅△,当EF BD ⊥时,EF 最小,即AFC △的面积最小. 因为ABD CBD ≌△△,所以2CB AB ==,又因为60ACB ∠=︒,所以ABC 是等边三角形,因为E 为AC 的中点,所以1AE EC ==,BE =AD CD ⊥,所以112DE AC ==, 在DEB 中,222DE BE BD +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz -, 则()()()1,0,0,,0,0,1A B D ,所以()()1,0,1,AD AB =-=-,设平面ABD 的一个法向量为(),,n x y z = ,则0n AD x z n AB x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,取y =()n =,又因为()31,0,0,4C F ⎛⎫- ⎪ ⎪⎝⎭,所以34CF ⎛⎫= ⎪ ⎪⎝⎭ ,所以cos ,n CF n CF n CF⋅===, 设CF 与平面ABD 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以sin cos ,n CF θ== CF 与平面ABD(1)求C 的方程;(2)记双曲线C 的左右顶点分别为1A ,2A ,直线1A M ,2A N 的斜率分别为1k ,2k ,求12k k 的值. (3)探究圆E :224410x y x y +---=上是否存在点S ,使得过S 作双曲线的两条切线1l ,2l 互相垂直.【答案】(1)22143x y -=; (2)13-; (3)存在.【详解】(1)由对称性知,双曲线C 过点(4,3),则221691b a a b ⎧=⎪⎪⎨⎪-=⎪⎩,解得2a b =⎧⎪⎨=⎪⎩,所以双曲线C 的方程为22143x y -=. (2)由(1)得12(2,0),(2,0)A A -,设()()1122,,,M x y N x y , 显然直线MN 不垂直于y 轴,设直线MN 的方程为4x my =+, 由2243412x my x y =+⎧⎨-=⎩消去x 得220(34)2436m y my -++=, 显然22340,144(4)0m m -≠∆=+>,1212222436,3434m y y y y m m -+==--, 则121223m y y y y +=-,即()121232my y y y =-+, 所以()()()()11212112212222222262y y x y my k x y k x y y my x -++===++-()()1211211221223221236362y y y my y y my y y y y y -+++===-+-++.(3)圆22:4410E x y x y +---=上存在点S ,使得过S 作双曲线的两条切线互相垂直. 若双曲线的两条切线有交点,则两条切线的斜率存在且不为0, 设双曲线的两条切线分别为1122,y k x n y k x n =+=+,将y kx n =+代入22143x y -=消去y 得:22(3484120)k knx n ----=,由0'∆=得()()2222644344120k n k n +-+=,解得2243n k =-,因此2222112243,43n k n k =-=-,设两条切线的交点坐标为()00,x y ,则01010202y k x n y k x n -=⎧⎨-=⎩,即有()22010143y k x k -=-,且()22020243y k x k-=-,即()()2222220100100200204230,4230x k x y k y x k x y k y --++=--++=, 于是12,k k 是方程()22200004230x k x y k y --++=的两根,而121k k =-,则2020314y x +=--,即22001x y +=,从而两条切线们交点的轨迹为圆221x y +=, 而221x y +=的圆心为(0,0)O ,半径为1,圆222:(2)(2)3E x y -+-=的圆心(2,2)E ,半径为3,显然||OE ==,满足31||31OE -<<+,即圆O 与圆E 相交, 所以圆22:4410E x y x y +---=上存在点S ,使得过S 作双曲线的两条切线互相垂直.19、 (17分)对于数列{}n a ,如果存在等差数列{}n b 和等比数列{}n c ,使得()n n n a b c n *=+∈N ,则称数列{}n a 是“优分解”的.(1)证明:如果{}n a 是等差数列,则{}n a 是“优分解”的.(2)记()2*11ΔΔΔΔn n n n n n a a a a a a n ++=-=-∈N ,,证明:如果数列{}n a 是“优分解”的,则()2*Δ0n a n =∈N 或数列{}2Δn a 是等比数列.(3)设数列{}n a 的前n 项和为n S ,如果{}n a 和{}n S 都是“优分解”的,并且123346a a a ===,,,求{}n a 的通项公式.【答案】(1)证明见解析 (2)证明见解析 (3)122n n a -=+【详解】(1){}n a 是等差数列,∴设()()111111n a a n d a n d ⎡⎤=+-=-+-+⎣⎦, 令()111,1n n b a n d c =-+-=,则{}n b 是等差数列,{}n c 是等比数列,所以数列{}n a 是“优分解”的.(2)因为数列{}n a 是“优分解”的,设()*n n n a b c n =+∈N ,其中()()11111,0,0n n n b b n d c c q c q -=+-=≠≠,则()12121111Δ1,ΔΔΔ(1)n n n n n n n n a a a d c q q a a a c q q --++=-=+-=-=-. 当1q =时,()2*Δ0n a n =∈N ;当1q ≠时,{}2Δn a 是首项为21(1)c q -,公比为q 的等比数列. (3)一方面, 数列{}n S 是“优分解”的,设()*n n n S B C n =+∈N ,其中()()11111,0,0n n n B B n D C C Q C Q -=+-=≠≠,由(2)知2121Δ(1)n n S C Q Q -=-因为12122323Δ4,Δ6S S S a S S S a =-===-==,所以2121ΔΔΔ2S S S =-=.{}221(1)2,1,Δn C Q Q S ∴-=∴≠∴是首项为2,公比为()1Q Q ≠的等比数列.另一方面,因为{}n a 是“优分解”的,设()*n n n a b c n =+∈N ,其中()()11111,0,0n n n b b n d c c q c q -=+-=≠≠,()2111211Δ,ΔΔΔ1n n n n n n n n n n S S S a S S S a a d c q q +++++=-==-=-=+- {}2Δn S 是首项为2,公比为()1Q Q ≠的等比数列, 0,1q q ∴≠≠,且()()()2222213ΔΔΔS S S =⋅,()()()223111111d c q q d c q q d c q q ⎡⎤⎡⎤⎡⎤∴+-=+-⋅+-⎣⎦⎣⎦⎣⎦化简得()311111(1)0,0,0,1,0,Δ1n n n n c dq q c q q d a a a c q q -+-=≠≠≠∴=∴=-=- ,即数列{}Δn a 是首项121Δ1a a a =-=,公比为q 的等比数列. 又232Δ2,2a a a q =-=∴= ,又()211Δ2,12,0,2,S d c q q d q =∴+-===∴ 解得11111,312c b a c =∴=-=-=,综上所述,()1111122n n n a b n d c q --=+-+=+.。
雅礼中学2025届高三月考试卷(二)数学得分:______本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}21,A x x k k==-∈N,{}1,0,1,2,3B=-,则A B=()A. {}1,3 B. {}0,1,3 C. {}1,1,3- D. {}1,0,1,2,3-2. 若复数()21i68iz-=+,则z z+=()A. B.25C.35D.453. 设a,b是单位向量,则()2a b a b+-⋅最小值是()A. 1-B. 0C.34D. 14已知()2cos23cos0αββ+-=,则()tan tanααβ+=()A. 5B.15C. -5D.15-5. 巴黎奥运会期间,旅客人数(万人)为随机变量X,且()2~30,2X N.记一天中旅客人数不少于26万人的概率为0p,则0p的值约为()(参考数据:若()2~,X Nμσ,有()0.683P Xμσμσ-<≤+≈,()220.954P Xμσμσ-<≤+≈,()330.997P Xμσμσ-<≤+≈)A. 0.977B. 0.9725C. 0.954D. 0.6836. 已知抛物线C:24x y=的焦点为F,过点F的直线与C相交于M,N两点,则122MF NF+的最小值为()的.A.92B. 4C.72D. 37. 若x ,0y ≥,1x y +=+)A. ⎡⎣B. []1,2 C. 2⎤⎦D. 12⎡⎢⎣8. 从重量分别为1,2,3,4,…,10克的砝码(每种砝码各2个)中选出若干个,使其总重量恰为9克的方法总数为m ,下列各式的展开式中9x 的系数为m 的选项是( )A. ()()()()23101111x xx x ++++ B. ()()()()11213110x x x x ++++ C. ()()()()()222222341011111x x x x x +++++ D. ()()()()22222232101111x x xx xxx xx++++++++++ 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. (多选)下列选项中,正确的是( )A. 不等式220x x +->的解集为{|2x x <-或1}x >B. 不等式2112x x +≤-的解集为{|32}x x -≤<C. 不等式21x -≥的解集为{|13}x x ≤≤D. 设R x ∈,则“11x -<”是“405x x +<-”的充分不必要条件10. 如图,透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的命题有()A. 没有水部分始终呈棱柱形B. 水面EFGH 所在四边形的面积为定值C. 随着容器倾斜度的不同,11A C 始终与水面所在平面平行D. 当容器倾斜如图(3)所示时,AE AH ⋅为定值11. 已知奇函数()f x 在R 上单调递增,()()f x g x '=,()()g x f x '=,若()()()22f x f x g x =,则( )A. ()g x 的图象关于直线0x =对称B. ()()()222g x gx f x =+C. ()00g =或1D. ()()221gx f x -=第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12. 从14,13,12,2,3,4,6,9中任取两个不同的数,分别记为m ,n ,记A =“log 0m n <”,则()P A =______.13. 如图,ABC V 中,6AB =,2AC BC =,D 为AB 中点,则tan BDC ∠的取值范围为______.14. 小军和小方两人先后在装有若干黑球的黑盒子与装有若干白球的白盒子(黑球数少于白球数)轮流取球,规定每次取球可以从某一盒子中取出任意多颗(至少取1颗),或者在两个盒子中取出相同颗数的球(至少各取1颗),最后不能按规则取的人输.已知两盒中共有11个球,且两人掷硬币后决定由小军先手取球.小方看了眼黑盒中的球,对小军说:“你输了!”若已知小方有必胜策略,则黑盒中球数为______.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15. 记ABC V 的内角,,A B C 的对边分别为,,a b c .已知2a b -=,()sin sin sin 2A BA B +-=.(1)求c ;的(2)若ABC V 的内切圆在AB 上的切点为D ,求AD .16. 已知动圆P 过点()2,0A -且与圆B :()22236x y -+=内切.(1)求动圆圆心P 轨迹E 的方程;(2)设动圆1C :2221x y t +=,1C 与E 相交于,,,A B C D 四点,动圆2C :()222212x y t t t +=≠与E 相交于,,,A B C D ''''四点.若矩形ABCD 与矩形A B C D ''''的面积相等,求2212t t +的值.17. 为提高我国公民整体健康水平,2022年1月,由国家卫生健康委疾控局指导、中国疾病预防控制中心和国家体育总局体育科学研究所牵头组织编制《中国人群身体活动指南(2021)》(以下简称《指南》)正式发布,《指南》建议18~64岁的成年人每周进行150~300分钟中等强度或75~150分钟高强度的有氧运动(以下简称为“达标成年人”),经过两年的宣传,某体育健康机构为制作一期《达标成年人》的纪录片,采取街头采访的方式进行拍摄,当采访到第二位“达标成年人”时,停止当天采访.记采访的18~64岁的市民数为随机变量X (2X ≥),且该市随机抽取的18~64岁的市民是达标成年人的概率为13,抽查结果相互独立.(1)求某天采访刚好到第五位可停止当天采访的概率;(2)若抽取的18~64岁的市民数X 不超过n 的概率大于13,求整数n 的最小值.18. 已知函数()12ex xf x x λ-=-.(1)当1λ=时,求()f x 的图象在点(1,f (1))处的切线方程;(2)若1x ≥时,()0f x ≤,求λ的取值范围;(3)求证:()1111111232124e 2e*n n n n nnn ++++-+++->∈N .19. 高斯-博内公式是大范围微分几何学的一个经典的公式,是关于曲面的图形(由曲率表征)和拓扑(由欧拉示性数表征)间联系的一项重要表述,建立了空间的局部性质和整体性质之间的联系.其特例是球面三角形总曲率x 与球面三角形内角和θ满足:πx θα=+,其中α为常数,(如图,把球面上的三个点用三个大圆(以球心为半径的圆)的圆弧联结起来,所围成的图形叫做球面三角形,每个大圆弧叫做球面三角形的一条边,两条边所在的半平面构成的二面角叫做球面三角形的一个角.球面三角形的总曲率等于2SR,S 为球面三角形面积,R 为球的半径).的的(1)若单位球面有一个球面三角形,三条边长均为π2,求此球面三角形内角和;(2)求α的值;(3)把多面体的任何一个面伸展成平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸多面体.设凸多面体Ω顶点数为V ,棱数为E ,面数为F ,试证明凸多面体欧拉示性数()ΩV E F χ=-+为定值,并求出()Ωχ.雅礼中学2025届高三月考试卷(二)数学命题人:周芳芳 张博 审题人:周芳芳 伊波得分:______本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}21,A x x k k ==-∈N ,{}1,0,1,2,3B =-,则A B = ( )A. {}1,3B. {}0,1,3 C. {}1,1,3- D. {}1,0,1,2,3-【答案】C 【解析】【分析】利用自然数集的含义描述集合A ,根据集合交集运算求解.【详解】根据题意,集合A 表示从1-开始的奇数的集合,即1,1,3,5,-L ,{}1,1,3A B ∴⋂=-.故选:C.2. 若复数()21i 68iz -=+,则z z +=( )A.B.25C.35D.45【答案】B 【解析】【分析】利用复数的运算对复数z 化简,再求,z z ,即可求解.【详解】由()()()()()21i 2i 68i 1612i 43i 68i68i 68i 1002525z --⨯---====--++⨯-,则43i 2525z =-+,则15z z ===,因此25z z +=,故选:B.3. 设a,b 是单位向量,则()2a ba b +-⋅的最小值是( )A. 1-B. 0C.34D. 1【答案】D 【解析】【分析】设a,b 的夹角为[]0,πθ∈,则[]cos 1,1a b θ⋅=∈-r r ,结合数量积的运算律分析求解.【详解】设a ,b 的夹角为[]0,πθ∈,因为1==a b r r,则[]cos cos 1,1a b a b θθ⋅=⋅=∈-r r r r ,可得()2222cos 1a b a b a b a b θ+-⋅=++⋅=+≥r r r r rr r r ,当且仅当cos 1θ=-时,等号成立,所以()2a ba b +-⋅的最小值是1.故选:D.4. 已知()2cos 23cos 0αββ+-=,则()tan tan ααβ+=( )A. 5 B.15C. -5D. 15-【答案】D 【解析】【分析】由角的变换()()2,αβααββαβα+=++=+-,利用余弦的和,差角公式和展开,从而可得答案.【详解】()2cos 23cos αββ+=,则()()2cos 3cos αβααβα++=+-则()()()()2cos cos 2sin sin 3cos cos 3sin sin ααβαβααβααβα+-+=+++,,即()()5sin sin cos cos αβααβα-+=+,所以()5tan tan 1αβα-+=,∴()1tan tan 5αβα+=-,故选:D5. 巴黎奥运会期间,旅客人数(万人)为随机变量X ,且()2~30,2X N .记一天中旅客人数不少于26万人的概率为0p ,则0p 的值约为( )(参考数据:若()2~,X N μσ,有()0.683P X μσμσ-<≤+≈,()220.954P X μσμσ-<≤+≈,()330.997P X μσμσ-<≤+≈)A. 0.977B. 0.9725C. 0.954D. 0.683【答案】A 【解析】【分析】根据正态分布对称性求得答案.【详解】因为()230,2X N :,所以30μ=,2σ=,()26340.954P X ∴<≤=,根据正态曲线的对称性可得,()()()010.954262634340.9540.9772p P X P X P X -=≥=<≤+>=+=.故选:A.6. 已知抛物线C :24x y =的焦点为F ,过点F 的直线与C 相交于M ,N 两点,则122MF NF +的最小值为( )A.92B. 4C.72D. 3【答案】A 【解析】【分析】设过点F 的直线l 的方程为:1y kx =+,与抛物线C 的方程联立,利用根与系数的关系求出12y y 的值,再根据抛物线的定义知11MF y =+,21NF y =+,从而求出122MF NF +的最小值即可.【详解】由抛物线C 的方程为24x y =,焦点坐标为F (0,1),设直线l 的方程为:()()11221,,,,y kx M x y N x y =+,联立方程241x yy kx ⎧=⎨=+⎩,整理得2440x kx --=,则12124,4x x k x x +==-,故221212144x x y y =⋅=,又1112p MF y y =+=+,2212pNF y y =+=+,则()()121211155922112222222MF NF y y y y +=+++=++≥+=,当且仅当121,22y y ==时等号成立,故122MF NF +的最小值为92.故选:A.7. 若x ,0y ≥,1x y +=+)A. ⎡⎣B. []1,2 C. 2⎤⎦D. 12⎡⎢⎣【答案】B 【解析】【分析】三角换元后结合辅助角公式和正弦函数的值域求解即可;【详解】因为1x y +=,设22cos ,sin x y a a ==,又由x ,0y ≥,不妨取π0,2α⎡⎤∈⎢⎥⎣⎦,πsin 2sin 3a a a æöç÷=+=+ç÷èø,因为π0,2α⎡⎤∈⎢⎥⎣⎦,所以ππ5π,336a éù+Îêúêúëû,所以[]π2sin 1,23a æöç÷+Îç÷èø,的取值范围为[]1,2,故选:B.8. 从重量分别为1,2,3,4,…,10克的砝码(每种砝码各2个)中选出若干个,使其总重量恰为9克的方法总数为m ,下列各式的展开式中9x 的系数为m 的选项是( )A. ()()()()23101111x xx x ++++ B. ()()()()11213110x x x x ++++ C. ()()()()()222222341011111x x x x x +++++ D. ()()()()22222232101111x x x x x x x x x ++++++++++ 【答案】C 【解析】【分析】根据选的砝码个数可以分为一个砝码,两个砝码,三个砝码,四个砝码,五个砝码五种情况可求得m ,在分析各个选项9x 的系数,即可求解.【详解】一个砝码有,9一种情况,12C 2=种情况,两个砝码有1,8,2,7,36,,4,5几种情况1122C C 416⨯=种三个砝码有,1,1,7,1,2,6,1,3,5,1,4,4,2,2,5,2,3,4几种情况111122223C 3C C C 30⨯+⨯=种四个砝码有,1,1,2,5,1,1,3,4,1,2,2,4,1,2,3,3,11224C C 16⨯=种,五个砝码有,1,1,2,2,3,12C 2=种,总计66m =种.对A ,选项9x 系数为8,故不符合,所以A 错误;对B ,9x 的系数是选9个带x 的,其他的1个括号选常数项,可得910C 1066=>,故B 错误;对C ,()()()()()222222341011111x x x x x +++++ ()()()()()()()()()()23410234101111111111x x x x x x x x x x =++++++++++ 9x 系数为9x 单独组成,其他为常数,则有12C 2=种,系数为29x 有两项组成,系数为x 与8x 组成,其他为常数,1122C C 4⋅=,系数为4,9x 系数为2x 与7x 组成,其他为常数,1122C C 4⋅=,系数为4,9x 系数为3x 与6x 组成,其他为常数, 1122C C 4⋅=,系数为4,9x 系数4x 与5x 组成,其他为常数, 1122C C 4⋅=,系数为4,同理9x 由三项组成7,,x x x ,26,,x x x ,35,,x x x ,44,,x x x ,225,,x x x ,234,,x x x 几种情况,其他项为为常数,则系数为111122223C 3C C C 30⨯+⨯=同理9x 由四项组成25,,,x x x x ,34,,,x x x x ,224,,,x x x x ,233,,,x x x x 几种情况,其他常数,则系数11224C C 16⨯=,同理9x 由五项组成223,,,,x x x x x 其他项为常数,则系数为12C 2=,综上9x 系数为66m =,故C 正确;对D ,()()()()22222232101111x x x x xxx xx++++++++++ ()()()()2232101111x x x x x x x x x =++++++++++⨯()()()()2232101111x x x x x x x x x ++++++++++ ,5x 系数直接有5x 一项,其他是常数项,可有162C 12⨯=种情况,系数为12,5x 有x 与4x 组成,其他是常数项,可有11962C C 10860⋅=>,故D 错误.故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9. (多选)下列选项中,正确的是( )A. 不等式220x x +->的解集为{|2x x <-或1}x >B. 不等式2112x x +≤-的解集为{|32}x x -≤<C. 不等式21x -≥的解集为{|13}x x ≤≤D. 设R x ∈,则“11x -<”是“405x x +<-”的充分不必要条件【答案】ABD 【解析】【分析】解出各选项中的不等式后可判断.【详解】A 选项,220(1)(2)02x x x x x +->⇔-+>⇔<-或1x >,A 正确;B 选项,(3)(2)02121311003220222x x x x x x x x x x +-≤⎧+++≤⇔-≤⇔≤⇔⇔-≤<⎨-≠---⎩,B 正确;为C 选项,2121x x -≥⇔-≥或21x -≤-,即3x ≥或1x ≤,C 错误;D 选项,1102x x -<⇔<<,()()40450455x x x x x +<⇔+-<⇔-<<-,而{|02}x x <<是{|45}x x -<<的真子集,D 正确.故选:ABD .10. 如图,透明塑料制成的长方体容器1111ABCD A B C D -内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜度的不同,有下面几个结论,其中正确的命题有()A. 没有水的部分始终呈棱柱形B. 水面EFGH 所在四边形的面积为定值C. 随着容器倾斜度的不同,11A C 始终与水面所在平面平行D. 当容器倾斜如图(3)所示时,AE AH ⋅为定值【答案】AD 【解析】【分析】想象容器倾斜过程中,水面形状(注意AB 始终在桌面上),可得结论.【详解】由于AB 始终在桌面上,因此倾斜过程中,没有水部分,是以左右两侧的面为底面的棱柱,A 正确;图(2)中水面面积比(1)中水面面积大,B 错;图(3)中11A C 与水面就不平行,C 错;图(3)中,水体积不变,因此AEH △面积不变,从而AE AH ⋅为定值,D 正确.故选:AD .【点睛】本题考查空间线面的位置关系,考查棱柱的概念,考查学生的空间想象能力,属于中档题.11. 已知奇函数()f x 在R 上单调递增,()()f x g x '=,()()g x f x '=,若()()()22f x f x g x =,则的( )A. ()g x 的图象关于直线0x =对称B. ()()()222g x gx f x =+C. ()00g =或1D. ()()221gx f x -=【答案】ABD 【解析】【分析】利用函数的奇偶性,结合题中的条件对抽象函数求导可以得到()()0f x f x ''--=,()()()()()2222f x f x g x f x g x '''=+,再结合选项进行判断即可.【详解】对于A ,由()f x 为R 上的奇函数,则()00f =,()()0f x f x +-=,则()()0f x f x ''--=,所以()()0g x g x --=,即()g x 为偶函数,因此关于直线0x =对称,故A 正确;对于B ,由()()()22f x f x g x =,则两边同时求导得:()()()()()2222f x f x g x f x g x '''=+,即()()()222g x g x f x =+,故B 正确;由()()()()0g x f x f x g x -=,则()()()()220g x g x f x f x -'=',即()()220g x f x ''⎡⎤⎡⎤-=⎣⎦⎣⎦,即()()220g x f x '⎡⎤-=⎣⎦,则()()22gx f x C -=(C 为常数),设()()()22h x g x f x C =-=(C 为常数),对于C ,由()()()222g x gx f x =+,则()()()22000g g f =+,即()()0010g g ⎡⎤-=⎣⎦,解得()00g =或()01g =,当()00g =,则()()()220000h gf =-=,则()()()220h xg x f x =-=,即()()f x g x =±,又()g x 为偶函数,则()f x 即是奇函数也是偶函数,与()f x 在R 上单调递增矛盾,因此()00g =不符合题意,则()01g =,故C 错误;对于D ,当()01g =时,则()()()220001h gf =-=,则()()()221h xg x f x =-=,即()()221g x f x -=,故D 正确;故选:ABD.【点睛】关键点点睛:奇偶函数的性质,及对抽象函数求导,比如()()()22f x f x g x =,求导可以得到()()()()()2222f x f x g x f x g x '''=+,再结合()()f x g x '=,()()g x f x '=,灵活变化,必要时可以对其进行赋值.第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12. 从14,13,12,2,3,4,6,9中任取两个不同的数,分别记为m ,n ,记A =“log 0m n <”,则()P A =______.【答案】1528【解析】【分析】根据对数的性质、排列知识和古典概型的概率公式可得结果.【详解】因为log 0m n <,所以01,1m n <<>或1,01m n ><<,从111,,,2,3,4,6,9432中任取两个不同的数,共可得到28A 56=取法,其中对数值为负数的有11113553A A A A 30+=个,所以()30155628P A ==.故答案:1528.13. 如图,ABC V 中,6AB =,2AC BC =,D 为AB 中点,则tan BDC ∠的取值范围为______.【答案】40,3⎛⎤ ⎥⎝⎦【解析】【分析】以D 为坐标原点,AB 所在的直线为x 轴,AB 的中垂线为y 轴建立如图所示的平面直角坐标为系,结合题中条件确定tan yBDC x∠=的范围即可.【详解】以D 为坐标原点,AB 所在的直线为x 轴,AB 的中垂线为y 轴建立如图所示的平面直角坐标系,则()3,0A -,()0,0D ,()3,0B ,设(),C x y ,又2AC BC =,则C 在第一象限或者第四象限,结合对称性,不妨设C 在第一象限,=,整理得()22516x y -+=且0y >,又tan yBDC x∠=,结合图象知,tan 0BDC ∠>,则22222210911tan 9101y x x BDC x x x x -+-⎛⎫∠===-+- ⎪⎝⎭,当159x =时,2tan BDC ∠取最大值为169,则40tan 3BDC <∠≤,即tan BDC ∠的取值范围为40,3⎛⎤⎥⎝⎦,故答案为:40,3⎛⎤ ⎥⎝⎦.14. 小军和小方两人先后在装有若干黑球的黑盒子与装有若干白球的白盒子(黑球数少于白球数)轮流取球,规定每次取球可以从某一盒子中取出任意多颗(至少取1颗),或者在两个盒子中取出相同颗数的球(至少各取1颗),最后不能按规则取的人输.已知两盒中共有11个球,且两人掷硬币后决定由小军先手取球.小方看了眼黑盒中的球,对小军说:“你输了!”若已知小方有必胜策略,则黑盒中球数为______.【答案】4【解析】【分析】分黑球和白球个数为()1,10,()2,9,()3,8,()4,7,()5,6进行讨论,若小方有必胜策略,重点在于小方取完后盒中球的情况为()1,2或()2,1时,则小方必胜.【详解】设黑球数为m ,白球数为n ,由11+=m n ,m n <,则(),m n 可能有以下几种情况:的①()1,10,小军可先手在白盒子中取8颗球,此时两盒球数为()1,2,则小方必不可能全部取完,小方后手取球后可能为(0,2),(0,1),()1,1,(1,0),此时无论何种情况小军都可全部取完,故小军有必定获胜的策略,不符合题意;②()2,9,小军可先手在白盒子中取8颗球,此时两盒球数为(2,1),同①进行分析可知,小军有必定获胜的策略,不符合题意;③()3,8,小军可先手在白盒子中取3颗球,此时两盒球数为()3,5,小方取球后,若两盒中球数一样或有一盒取空,则小军可全部取完,小军必胜;若两盒中球数不一样,且均不为0,则一定是以下三种情况之一:(1)两盒球数为()3,4;(2)有一盒中只有一个球,另一盒中多于两个球,即()1,3,()3,1,()1,5;(3)有一盒中有两个球,另一盒中多于两个球,即()2,4,()3,2,()2,5;无论为哪种情况,小军都可将其取为()1,2或(2,1),知此时小军必胜,不符合题意;④()4,7,若小军只从白盒中取球,则两盒球数为()4,1,()4,2,()4,3时,由③的推理过程知,小方必胜;符合题意.若两盒球数为()4,6时,小方可将球数转为()3,5,知小方必胜;若两盒球数为()4,5时,小方可将球数转为()1,2,知小方必胜;若两盒球数为()4,4时,知小方必胜若小军从黑盒中取出了球,则黑盒中球数3≤,白盒中球数-黑盒中球数3≥,从而由③推理过程知小方必胜;⑤()5,6,小军可将球数转化为()1,2,小军必胜,不符合题意;因此小方有必胜策略,则黑盒中球数为4,故答案为:4.【点睛】关键点点睛:本题的关键在于小方怎样将盒中的球变为()1,2或()2,1,则小方必胜.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15. 记ABC V 的内角,,A B C 的对边分别为,,a b c .已知2a b -=,()sin sin sin 2A BA B +-=.(1)求c ;(2)若ABC V 的内切圆在AB 上的切点为D ,求AD .【答案】(1)4 (2)1【解析】【分析】(1)利用正弦定理和余弦定理对()sin sin sin 2A BA B +-=进行边化角,再借助2a b -=即可求出c 的值;(2)利用内切圆的性质可得,,AD AM BD BN CM CN ===,再结合4,2c a b =-=,即可求出AD 的值.【小问1详解】由()sin sin sin 2A BA B +-=,则2sin cos 2cos sin sin sin A B A B A B -=+,整理得:()()sin 2cos 1sin 12cos A B B A -=+,则角化边可得:222222211222a c b b c a a b ac bc ⎛⎫⎛⎫+-+-⨯-=+⨯ ⎪ ⎪⎝⎭⎝⎭,整理可得:()2c a b =-,又2a b -=,因此可得4c =.【小问2详解】由(1)知4,2c a b =-=,设ABC V 的内切圆在,AC BC 上的切点为,M N ,则,,AD AM BD BN CM CN ===,则4c AB AD BD AM BN ===+=+,()()2a b BC AC BN CN AM CM BN AM -=-=+-+=-=,因此可得1AM =,即1AD =.16. 已知动圆P 过点()2,0A -且与圆B :()22236x y -+=内切.(1)求动圆圆心P 的轨迹E 的方程;(2)设动圆1C :2221x y t +=,1C 与E 相交于,,,A B C D 四点,动圆2C :()222212x y t t t +=≠与E 相交于,,,A B C D ''''四点.若矩形ABCD 与矩形A B C D ''''的面积相等,求2212t t +的值.【答案】(1)22195x y +=(2)14【解析】【分析】(1)设动圆半径为r ,根据题意可以得到64PA PB AB +=>=,利用椭圆的定义知动圆圆心P 的轨迹E 是以,A B 为焦点的椭圆,从而求出动圆圆心P 的轨迹E 的方程;(2)设()22,,(,)A x y A x y ',由矩形ABCD 与矩形A B C D ''''的面积相等,得112244x y x y =,再根据,A A '在椭圆上,从而求出所以22129x x +=, 22125y y +=,即可求出2212t t +的值.【小问1详解】设动圆半径为r ,则PA r =,6B PB r r r =-=-(内切),64PA PB AB ∴+=>=,所以点P 的轨迹是以,A B 为焦点的椭圆.623a a ∴=⇒=,242AB c c ==⇒=,2225b a c ∴=-=.则动圆圆心P 的轨迹E 的方程为:22195x y +=.【小问2详解】设()22,,(,)A x y A x y ',由矩形ABCD 与矩形A B C D ''''的面积相等,得112244x y x y =,故22221122x y x y =,因为点A ,A '均在椭圆上,所以,22221212515199x x x x ⎛⎫⎛⎫-=- ⎪⎪⎝⎭⎝⎭,整理可得:()()2222121290x x x x ⎡⎤--+=⎣⎦,由12t t ≠,知12x x ≠,所以22129x x +=,同理可得22125y y += ,因此2222221211229514t t x y x y +=+++=+=.17. 为提高我国公民整体健康水平,2022年1月,由国家卫生健康委疾控局指导、中国疾病预防控制中心和国家体育总局体育科学研究所牵头组织编制的《中国人群身体活动指南(2021)》(以下简称《指南》)正式发布,《指南》建议18~64岁的成年人每周进行150~300分钟中等强度或75~150分钟高强度的有氧运动(以下简称为“达标成年人”),经过两年的宣传,某体育健康机构为制作一期《达标成年人》的纪录片,采取街头采访的方式进行拍摄,当采访到第二位“达标成年人”时,停止当天采访.记采访的18~64岁的市民数为随机变量X (2X ≥),且该市随机抽取的18~64岁的市民是达标成年人的概率为13,抽查结果相互独立.(1)求某天采访刚好到第五位可停止当天采访的概率;(2)若抽取的18~64岁的市民数X 不超过n 的概率大于13,求整数n 的最小值.【答案】(1)32243(2)4【解析】【分析】(1)依题意,可判断随机变量()2X X ≥服从二项分布,利用概率公式计算即得;(2)由题意,列出随机变量()2X X ≥的分布列,则得22222211123111212121C C C 33333333n n --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+⨯⨯+⨯⨯++⨯⨯>⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L ,利用错位相减法求和将其转化成()226243n n -⎛⎫>+⨯ ⎪⎝⎭,判断数列()22243n n a n -⎛⎫=+⨯ ⎪⎝⎭的单调性,代值验证即得整数n 的最小值.【小问1详解】根据题意,某天采访刚好到第五位可停止当天采访,即采访的前四位中有一位是达标成年人,第五位必是达标成年人,所以随机变量()2X X ≥服从二项分布,所以某天采访刚好到第五位可停止当天采访的概率为31412132C 333243⎛⎫⨯⨯⨯= ⎪⎝⎭.【小问2详解】依题意,随机变量()2X X ≥服从二项分布,则所以22222211123111212121C C C 33333333n n --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+⨯⨯+⨯⨯++⨯⨯> ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L ,化简得()2212221123193333n n -⎡⎤⎛⎫⎛⎫+⨯+⨯++-⨯>⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦L ,即()2222212313333n n -⎛⎫⎛⎫+⨯+⨯++-⨯> ⎪ ⎪⎝⎭⎝⎭L ,记()222221231333n S n -⎛⎫⎛⎫=+⨯+⨯++-⨯ ⎪ ⎪⎝⎭⎝⎭L ①,则()23122222123133333n S n -⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭L ②,由①-②,可得()221122221133333n n S n --⎛⎫⎛⎫⎛⎫=++++-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭L ,即()1121123123313n n S n --⎛⎫- ⎪⎛⎫⎝⎭=-- ⎪⎝⎭-,解得()229243n S n -⎛⎫=-+⨯ ⎪⎝⎭,由此可得,()2292433n n -⎛⎫-+⨯> ⎪⎝⎭,即()226243n n -⎛⎫>+⨯ ⎪⎝⎭,设()22243n n a n -⎛⎫=+⨯ ⎪⎝⎭,()*2,Nn n ≥∈,因为()()1122262631362243n n n n n a n a n n -+-⎛⎫+⨯ ⎪+⎝⎭==<+⎛⎫+⨯ ⎪⎝⎭,可得数列{}n a 是递减数列,又322010633a =⨯=>,2421612633a ⎛⎫=⨯=< ⎪⎝⎭,所以整数n 的最小值为4.18. 已知函数()12ex xf x x λ-=-.(1)当1λ=时,求()f x 的图象在点(1,f (1))处的切线方程;(2)若1x ≥时,()0f x ≤,求λ的取值范围;(3)求证:()1111111232124e2e*n n n n nnn ++++-+++->∈N .【答案】(1)0y = (2)[)1,+∞ (3)证明见详解【解析】【分析】(1)利用导数的几何意义求解即可;(2)根据题意,由条件式恒成立分离参数,转化为212ln x x xλ≥+,求出函数()212ln xg x x x =+的最大值得解;(3)先构造函数()12ln x x x x ϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,可得()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,迭代累加可证得结果.【小问1详解】当1λ=时,()12ex xf x x -=-,f (1)=0,则()12121e x x f x x x -⎛⎫=-+ ⎪⎝'⎭,则()0122e 0f =-=',所以()f x 在点(1,f (1))处的切线方程为0y =.【小问2详解】由1x ≥时,()0f x ≤,即12e 0x x x λ--≤,整理得212ln xx xλ≥+,对1x ≥恒成立,令()212ln x g x x x =+,则()()42321ln 222ln x x x x x g x x x x ---=-+'=,令()1ln h x x x x =--,1x ≥,所以()ln 0h x x '=-≤,即函数ℎ(x )在1x ≥上单调递减,所以()()10h x h ≤=,即()0g x '≤,所以函数()g x 在1x ≥上单调递减,则()()11g x g ≤=,1λ∴≥.【小问3详解】设()12ln x x x xϕ=-+,1x >,则()()222221212110x x x x x x x xϕ---+-='=--=<,所以φ(x )在(1,+∞)上单调递减,则()()10x ϕϕ<=,即12ln 0x x x-+<,11ln 2x x x ⎛⎫∴<- ⎪⎝⎭,1x >,令11x n=+,*N n ∈,可得1111111ln 1112211n n n n n ⎛⎫⎪⎛⎫⎛⎫+<+-=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎪+⎝⎭,所以()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,()()111ln 2ln 1212n n n n ⎛⎫+-+<+ ⎪++⎝⎭,()()111ln 3ln 2223n n n n ⎛⎫+-+<+ ⎪++⎝⎭,…()()111ln 2ln 212212n n n n ⎛⎫--<+ ⎪-⎝⎭,以上式子相加得()112221ln 2ln 212212n n n n n n n ⎛⎫-<+++++ ⎪++-⎝⎭,整理得,11111ln 2412212n n n n n-<++++++-L ,两边取指数得,11111ln 2412212e e n n n n n -++++++-<L ,即得111114122122e e n n n n n -++++-<L ,()*Nn ∈得证.【点睛】关键点点睛:本题第三问解题的关键是先构造函数()12ln x x x xϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,得到()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭.19. 高斯-博内公式是大范围微分几何学的一个经典的公式,是关于曲面的图形(由曲率表征)和拓扑(由欧拉示性数表征)间联系的一项重要表述,建立了空间的局部性质和整体性质之间的联系.其特例是球面三角形总曲率x 与球面三角形内角和θ满足:πx θα=+,其中α为常数,(如图,把球面上的三个点用三个大圆(以球心为半径的圆)的圆弧联结起来,所围成的图形叫做球面三角形,每个大圆弧叫做球面三角形的一条边,两条边所在的半平面构成的二面角叫做球面三角形的一个角.球面三角形的总曲率等于2SR,S 为球面三角形面积,R 为球的半径).(1)若单位球面有一个球面三角形,三条边长均为π2,求此球面三角形内角和;(2)求α的值;(3)把多面体的任何一个面伸展成平面,如果所有其他各面都在这个平面的同侧,这样的多面体叫做凸多面体.设凸多面体Ω顶点数为V ,棱数为E ,面数为F ,试证明凸多面体欧拉示性数()ΩV E F χ=-+为定值,并求出()Ωχ.【答案】(1)3π2(2)1(3)证明见解析;()2χΩ=【解析】【分析】(1)由球面三角形边角定义,转化为大圆弧长可求圆心角,由球面三角形三条边长均为π2,得,,OA OB OC 两两垂直,从而得到面面垂直,进而求内角和可得;(2)将球面平均分割为8个全等的球面三角形,由特值代入公式πx θα=+待定α即可;(3)将球面分割为F 个球面多边形,再转化为球面三角形,借助球面三角形总曲率x 与球面三角形内角和θ关系,利用所有分割后的球面三角形面积之和(用,,V E F 表示)即为球面面积建立等量关系求证即可.【小问1详解】如图,设球心为O ,球面三角形三个顶点分别为,,A B C ,由球面三角形三边长均为π2,由题意,即每个大圆弧长均为π2.又单位球面的球半径1R =,则球面三角形每条边所对圆心角为π2,所以在三棱锥A OBC -中,,,OA OB OC 两两垂直.由,OA OB OA OC ⊥⊥,OB OC O = ,且OB ⊂平面OBC ,OC ⊂平面OBC ,则OA ⊥平面OBC ,OA ⊂平面OAB ,故平面OAB ⊥平面OBC ,同理平面OAB ⊥平面OCA ,平面OCA ⊥平面OBC ,即球面三角形任意两条边所在的半平面构成的二面角均为π2,故球面三角形的3个角均为π2,从而此球面三角形内角和为3π2.【小问2详解】若将地球看作一个球体,在地球上零度经线和90 经线所在大圆与赤道所在大圆将球面平均分成8个全等的球面三角形,由(1)可知,每个球面三角形的3个角均为π2,且球面三角形内角和3π2θ=,从而每个球面三角形的面积为224ππ82R R S ==,则每个球面三角形的总曲率为2π2S x R ==,设()f x θ=,由题意()πf x x α=+,且α为常数,则有ππ3ππ222f α⎛⎫=+=⎪⎝⎭,从而1α=.【小问3详解】将多面体的每个面视作可以自由伸缩的橡皮膜,使膨胀为一个半径为R 的球,每个顶点均在球面上,每条边变为球面上的边,每个多边形变为球面上的多边形,且膨胀前后()V E F χ=-Ω+不变.不妨记球面仍为单位球面,半径1R =,对于任意一个球面k 边形,可用球面上的边分割成(2)k -个球面三角形,由(2)可知,1α=,则每个球面三角形的内角和2πππSx S Rθ=+=+=+.即每个内角和为θ的球面三角形面积为πθ-,记21k jj ϕθ-==∑,称为分割成(2)k -个球面三角形的球面k 边形的内角和.所以球面k 边形面积为(2)πk ϕ--.由已知凸多面体Ω顶点数为V ,棱数为E ,面数为F ,则可记球面上多边形,1,2,,i i F α= ,对每一个球面多边形i α,设其边数为i l ,内角和为i ϕ,面积为i S ,则()()1112ππ2πF F Fiiiii i i i S l l ϕϕ===⎡⎤=--=-+⎣⎦∑∑∑,由球面三角形角的定义可知,每个顶点处所有球面多边形的角之和为2π,顶点数为V ,从而所有球面多边形内角和为12πFii V ϕ==∑,又球面多边形每条边被重复计算2次,棱数为E ,故1π2πi i Fl E ==∑,则()1π2π2π2π2πFii i l V E F ϕ=-+=-+∑,又所有球面多边形面积之和214π4πi FiSR ===∑,故2π2π2π4πV E F -+=,故()2V E F χ=+Ω-=.【点睛】关键点点睛:解决本题关键在于转化化归思想的应用,一是理解球面三角形及边角的定义,将球面内角和问题转化多面体的二面角之和求解;二是将凸多面体膨胀为球面后,凸多面体欧拉示性数()V E F χ=-Ω+没有变化,从而将凸多面体问题转化为球面问题处理;三是利用分割法将球面面积转化为球面三角形的面积之和,从而建立等量关系求解2V E F -+=.。
湖南省长沙市雅礼中学2025届高三上学期(9月)综合自主测试数学试题一、单选题1.设集合()(){}140A x x x =+-<,{}20B x x a =+<,且{}13A B x x ⋂=-<<,则a =( ) A .6 B .4C .4-D .6-2.已知111i iz =-+,则z =( ). ABC .2D .13.已知()()πsin 3f x x ωω⎛⎫=-∈ ⎪⎝⎭N 的图象与直线y a =在区间[]0,π上存在两个交点,则当ω最大时,曲线()y f x =的对称轴为( ) A .ππ244k x =+,k ∈Z B .ππ305k x =+,k ∈Z C .5ππ244k x =+,k ∈Z D .ππ65k x =+,k ∈Z 4.函数()x x f x -=)A .B .C .D .5.若平面单位向量a r ,b r ,c r 满足π6a b =r r ,,0b c ⋅=r r,0a c ⋅<r r ,则2b c a c+=+r r r r ( ) ABCD6.石雕、木雕、砖雕被称为建筑三雕.源远流长的砖雕,由东周瓦当、汉代画像砖等发展而来,明清时代进入巅峰,形成北京、天津、山西、徽州、广东、临夏以及苏派砖雕七大主要流派.苏派砖雕被称为“南方之秀”,是南方地区砖雕艺术的典型代表,被广泛运用到墙壁、门窗、檐廊、栏槛等建筑中.图(1)是一个梅花砖雕,其正面是一个扇环ABCD ,如图(2),砖雕厚度为6cm ,80cm AD =,»»3CD AB =,»CD所对的圆心角为直角,则该梅花砖雕的表面积为(单位:2cm )( )A .3200πB .480π960+C .6880π960+D .3680π960+7.已知过抛物线2:2(0)C y px p =>的焦点F 的直线与C 交于,A B 两点,线段AB 的中点为()00,M x y ,且0||21,(,2)AB x Q t t =+--,若点P 在抛物线C 上,则||PQ 的最小值为( )ABCD8.已知数列{}n a 满足1111113,2,4(1)()n n n n n n a a a b a a +++=-==-+,若数列{}n b 的前n 项和为n T ,不等式()*3(35)n T n λλ<-∈N 恒成立,则λ的取值范围为( )A .1(,)10+∞B .1(,)5+∞C .11(,)102D .12(,)55二、多选题9.已知0,0a b >>,直线12:(2)10,:20l x a y l bx y +-+=+-=,且12l l ⊥,则( ) A .01ab <≤B2≤C .222a b +<D .23b a b+≥10.如图,正方体1111ABCD A B C D -的棱长为4,点E 、F 、G 分别在棱11D A 、11D C 、1A A 上,满足11111114D E D F D A D C ==,11(0)AG A A λλ=>,记平面EFG 与平面11A B CD 的交线为l ,则( )A .存在(0,1)λ∈使得平面EFG 截正方体所得截面图形为四边形B .当34λ=时,三棱锥B EFG -体积为32C .当34λ=时,三棱锥1A EFG -的外接球表面积为34π D .当12λ=时,直线l 与平面ABCD11.已知函数()f x ,()g x 的定义域均为R ,()g x '为()g x 的导函数,且()()1f x g x +'=,()()43f x g x -'-=,若()g x 为奇函数,则( )A .()22f =B .()()042g g ''+=-C .()()13f f -=-D .()()44g g ''-=三、填空题12.已知n ∈Z ,且36n ≤≤,若31nx x ⎛⎫- ⎪⎝⎭的展开式中存在常数项,则展开式中4x -的系数为.13.已知()f x 是定义域为(4,4)-的奇函数.若以点(2,0)为圆心,半径为2的圆在x 轴上方的部分恰好是()y f x =图像的一部分,则()f x 的解析式为.14.如图,对于曲线G 所在平面内的点O ,若存在以O 为顶点的角α,使得对于曲线G 上的任意两个不同的点,A B 恒有AOB α∠≤成立,则称角α为曲线G 的相对于点O 的“界角”,并称其中最小的“界角”为曲线G 的相对于点O 的“确界角”.已知曲线C :12e 1,011,016x x x y x x -⎧+>⎪=⎨+≤⎪⎩(其中e 是自然对数的底数),点O 为坐标原点,曲线C 的相对于点O 的“确界角”为β,则sin β=.四、解答题15.某校组织了科技展参观活动,学生自愿参观,事后学校进行了一次问卷调查,分别抽取男、女生各40人作为样本.据统计:男生参观科技展的概率为45,参观科技展的学生中女生占13.(1)根据已知条件,填写下列22⨯列联表,试根据小概率值0.01α=的独立性检验,分析该校学生参观科技展情况与性别是否有关.(2)用分层随机抽样的方式从参观科技展的人中抽取12人,再从这12人中随机抽取6人,用随机变量X 表示女生人数,求X 的分布列和数学期望. 参考公式和数据:()()()()()22n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.16.在ABC V 中,角,,A B C ,的对边分别为,,a b c ,ABC V 的面积为S ,()2sin 21sin A B b B ⎡⎤+=+⎢⎥⎣⎦.(1)求角A .(2)若ABC V 的面积为a D 为边BC 的中点,求AD 的长.17.如图(1),在ABC V 中,CD AB ⊥,224BD CD AD ===,点E 为AC 的中点.将ACD V 沿CD 折起到PCD △的位置,使DE BC ⊥,如图(2).(1)求证:PB PC ⊥.(2)在线段BC 上是否存在点F ,使得CP DF ⊥?若存在,求二面角P DF E --的余弦值;若不存在,说明理由.18.费马原理,也称为时间最短原理:光传播的路径是光程取极值的路径.在凸透镜成像中,根据费马原理可以推出光线经凸透镜至像点的总光程为定值(光程为光在某介质中传播的路程与该介质折射率的乘积).一般而言,空气的折射率约为1.如图是折射率为2的某平凸透镜的纵截面图,其中平凸透镜的平面圆直径MN 为6,且MN 与x 轴交于点()2,0-.平行于x 轴的平行光束从左向右照向该平凸透镜,所有光线经折射后全部汇聚在点 2,0 处并在此成像.(提示:光线从平凸透镜的平面进入时不发生折射)(1)设该平凸透镜纵截面中的曲线为曲线C ,试判断C 属于哪一种圆锥曲线,并求出其相应的解析式.(2)设曲线F 为解析式同C 的完整圆锥曲线,直线l 与F 交于A ,B 两点,交y 轴于点H ,交x 轴于点Q (点Q 不与F 的顶点重合).若12HQ k QA k QB ==u u u r u u u r u u u r ,1283k k +=-,试求出点Q 所有可能的坐标.19.已知函数()()21e 2e 22x x f x a ax =+--.(1)若曲线()y f x =在30,2a ⎛⎫- ⎪⎝⎭处的切线方程为4210ax y ++=,求a 的值及()f x 的单调区间.(2)若()f x 的极大值为()ln2f ,求a 的取值范围. (3)当0a =时,求证:()2535e ln 22x f x x x x +->+.。
冲刺实验班湖南雅礼中学2021中考提前自主招生数学模拟试卷(1)附绝密★启用前重点高中预考数学试卷(1)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第一卷(选择题)一.选择题(共10小题,每题4分)1.下列等式中,不一定成立的是()a.=2b.c、 a=d。
2.中国人民银行授权中国外汇交易中心公布,2021年1月14日银行间外汇市场人民币汇率中间价为:1美元对人民币6.0930元,某上市公司持有美元资产为980万美元,用科学记数法表示其美元资产折合成人民币为()元(保留两位有效数字)a.5.97×107b、 6.0×107c.5.97×108d.6.0×1083.如图所示,一条信息可以通过网络线从上(a点)到底(沿箭头方向)传输到每个站点。
例如,到B2点的信息可以由经过A1或A2的站点传送。
有两种传输方式,因此从a 点到D3点通过不同路径的B3站的概率为()a.b.c.d.4.已知x+y=a.b。
,|x|+|y|=5c。
,则xy的值为()d。
5.二次函数y=ax2+bx+c的图象如图所示(a、b、c为常数),则函数y=(4acb2)x+abc和y=在同一平面直角坐标系中的图象,可能是()试卷第1页,共7页a.b.c.d.关于二次方程mx2。
6.且m≠0b.还有m≠ 0d。
0x+1=0有两个不相等的同号实数根,则m的取值范围是7.由于缺货,小王和小李连续两次以不同的价格从同一家公司购买a型香米。
两次采购的单价分别为a和B(a<B,单位:元/公斤)。
小王的购买方法是:每次购买C公斤大米;小李的购买方法是:每次购买D元大米(D>C)。
如果只考虑购买单价,以下结论是正确的:(a)小王是符合成本效益的,(c)它也是符合成本效益的b.小李合算d、不可能确定谁更划算8.函数y=|x2+2x3|图象的草图如图所示,则关于x的方程|x2+2x3|=a(a为常数)的根的情况,描述错误的是()a、这个等式可能没有真正的根b.方程可能有三个互不相等的实数根c、如果方程只有两个实根,a的取值范围是:a=0d.若方程有四个实数根,记为x1、x2、x3、x4,则x1+x2+x3+x4=49.如图所示,De是△ ABC,f是De上方的点,EF=2DF,BF的延长线与AC在点h,cf 处相交试卷第2页,总7页如果AB的延长线与点G相交,则s四边形agfh:s△ BFC=()a.1:10b.1:5c.3:10d.2:5和弦的中点⊥ AB,垂直的脚是F点,10.如图,ab是⊙o的直径,ac是⊙o的弦,点d是De在G点与AC相交,EH是⊙ o、 AC的延伸在h处相交,AF=3,FB=,然后是Tan∠ DEH=()a.b、疾病控制中心。