给定区间函数最值问题
- 格式:pptx
- 大小:96.08 KB
- 文档页数:2
求二次函数在某一区间上的最值求二次函数在某一区间上的最值问题,是函数中的一个重要问题。
下面我就分别按以下的三种类型来详细讨论这类问题。
类型一:定轴定区间问题例1、已知函数()22[1,)x x a f x x x++=∈+∞,若对于任意的[1,)x ∈+∞,()0f x >恒成立, 求实数a 的取值范围。
略解:因为1x ≥时,()0f x >恒成立,所以220x x a ++>恒成立,即函数22y x x a =++ 在1x ≥时恒成立,又min 3y a =+,所以30a +>,即3a >-例2、若函数221(0,1)x x y a a a a =+->≠在区间[]1,1-的最大值为14,求a 的值 解一:设x t a =,即0t > ,那么()()222112f t t t t =+-=+- 当1a >时,1a t a -≤≤,此时,()2max 1214y a =+-= 3a ∴=当01a <<时,1a t a -≤≤,此时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭ 13a ∴= ∴3a =或13a = 解二:函数()212x y a =+- (0,1)a a >≠在区间[]1,1-上y 随x a 的增大而增大,当1a >时,()max xa a =,故()2max 1214y a =+-= 3a ∴= 当01a <<时,()max 1xa a = ,故 2max 11214y a ⎛⎫=+-= ⎪⎝⎭ 13a ∴= 综上3a =或13a = 类型二:动轴定区间问题例3、若函数23y x ax =++在区间[]1,1-的最小值为-3,求a 的值略解:原函数即为:22324a a y x ⎛⎫=++- ⎪⎝⎭ ① 若轴2a x =-在区间内,则11232a a f ⎧-≤-≤⎪⎪⎨⎛⎫⎪-=- ⎪⎪⎝⎭⎩,即 222334a a -≤≤⎧⎪⎨-=-⎪⎩ ∴a ∈∅ ② 若轴2a x =-在区间右侧,则()1213a f ⎧->⎪⎨⎪=-⎩,即243a a <-⎧⎨+=-⎩ ∴7a =- ③ 若轴2a x =-在区间左侧,则()1213a f ⎧-<-⎪⎨⎪-=-⎩ ,即233a a >⎧⎨-=-⎩ ∴7a = 所以a 7=±类型三: 定轴动区间问题例4、若函数222y x x =-+在区间[],1m m +的最大值为5,求m 的值略解:原函数即为:()2()11f x x =-+① 若轴1x =在区间内左侧,即()112111112m m m m m ≤≤+⎧⎪+⎨⎛⎫-≤+-≥ ⎪⎪⎝⎭⎩或,这时()15f m += 由上可解得:1122m m ⎧≤≤⎪⎨⎪=±⎩,∴m ∈∅② 若轴1x =在区间内右侧,即()112111112m m m m m ≤≤+⎧⎪+⎨⎛⎫-≥+-≤ ⎪⎪⎝⎭⎩或,这时()5f m = 由上可解得:10213m m m ⎧≤≤⎪⎨⎪=-=⎩或,∴m ∈∅ ③ 若轴1x =在区间左侧,即1m >,这时()15f m +=,由上可解得2m = ④ 若轴1x =在区间右侧,即11m +<,这时()5f m =,由上可解得1m =- 综上可知:12m m =-=或练习:是否存在实数a ,使函数()22f x x ax a =-+的定义域为[]11,-,值域为[]22,-;若存在,求出实数a的值,若不存在,说明理由. 答案:1a。
本稿件适合高三高考复习用有关函数最值问题 的十二种解题方法与策略贵州省龙里中学高级教师 洪其强(551200)一、消元法:在已知条件等式下,求某些二元函数(,)f x y 的最值时,可利用条件式消去一个参量,从而将二元函数(,)f x y 化为在给定区间上求一元函数的最值问题。
例1、已知x 、y R ∈且223260x y x +-=,求222x y +的值域。
解:由223260x y x +-=得222360y x x =-+≥,即02x ≤≤。
2222392262()22x y x x x +=-+=--+∴当32x =时,222xy +取得最大值92;当0x =时,222x y +取得最小值0。
即222x y +的值域为90,2⎡⎤⎢⎥⎣⎦二、判别式法:对于某些特殊形式的函数的最值问题,经过适当变形后,使函数()f x 出现在一个有实根的一元二次方程的系数中,然后利用一元二次方程有实根的充要条件0∆≥来求出()f x 的最值。
例2、求函数22()1xf x x x =++的最值。
解:由22()1xf x x x =++得 []2()()2()0f x x f x x f x +-+=,因为x R ∈,所以0∆≥,即[]22()24()0f x f x --≥,解得22()3f x -≤≤。
因此()f x 的最大值是23,最小值是-2。
三、配方法:对于涉及到二次函数的最值问题,常用配方法求解。
例3、求2()234x x f x +=-在区间[]1,0-内的最值。
解:配方得 2224()2343(2)33x x x f x +=-=--+[]1,0x ∈- ,所以 1212x ≤≤,从而当223x =即22log 3x =时,()f x 取得最大值43;当21x =即0x =时()f x 取得最小值1。
四、辅助角公式:如果函数经过适当变形化为()sin cos f x a x b x =+(a、b均为常数),则可用辅助角公式sin cos arctan )ba xb x x a+=+来求函数()f x 的最值。
三角函数求最值五种题型一、最值问题的一般解法:求解三角函数的最值问题可以分为以下五种题型:基本最大、基本最小、最大最小(上下界)、最大、最小。
1.基本最大:即求函数的最大值,通常通过对函数进行求导并令导数为零来求得。
这种情况下,需求导数在给定区间内的零点,并进行极值判断来确定最值。
2.基本最小:与基本最大相反,求函数的最小值,同样需要对函数进行求导并求导数为零,进行极值判断来确定最值。
3.最大最小(上下界):在给定区间内求函数的最大最小值,需将区间的端点以及函数的驻点和不可导点的值进行比较,以确定最大最小值。
4.最大:在给定区间内寻找函数的最大值。
可以通过对函数进行求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最大值。
5.最小:在给定区间内寻找函数的最小值。
同样可以通过求导来确定驻点和不可导点,并与区间的端点进行比较,以确定最小值。
二、详细解答五种题型:以下是对上述五种题型的详细解答:1.基本最大:Example 1: 求函数f(x) = sin(x)的最大值。
解:首先求得导数f'(x) = cos(x),令cos(x) = 0,解得x = π/2 + kπ,其中k为整数。
然后对于x = π/2 + kπ,求得对应的函数值f(x) = sin(π/2 +kπ) = (-1)^k,即奇数项取最大值为1,偶数项取最小值为-1所以函数f(x) = sin(x)的最大值为12.基本最小:Example 2: 求函数f(x) = cos(x)的最小值。
解:同样求导得到f'(x) = -sin(x),令-sin(x) = 0,解得x = kπ,其中k为整数。
然后对于x = kπ,求得对应的函数值f(x) = cos(kπ) = (-1)^k,即奇数项取最小值为-1,偶数项取最大值为1所以函数f(x) = cos(x)的最小值为-13.最大最小(上下界):Example 3: 在区间[0, 2π]内,求函数f(x) = 2sin(x) + cos(x)的最大最小值。
高中数学最值问题高中数学最值问题最值问题是高中数学中非常重要的一个知识点。
它涉及到了函数的最大值和最小值,以及在特定条件下取得最大值和最小值的方法。
在解决最值问题时,我们需要运用一些数学方法和技巧,同时也需要一些数学思维和逻辑推理的能力。
首先,我们来回顾一下函数的最值。
对于一个实数函数f(x),我们称f(x)的最大值为f(x)的最大值,记作f(x)的最小值为f(x)的最小值,记作。
在数学中,我们通常将最值问题转化为求解函数的最值问题。
对于一个给定的函数f(x),我们需要找到它的最大值或最小值所对应的自变量的取值。
解决最值问题的方法有很多种,下面我们将介绍几种常用的方法。
一、导数法导数法是解决最值问题的一种常用方法。
通过求解函数的导数,我们可以得到函数的极值点。
具体的步骤如下:1.求解函数的导数f'(x)。
2.求解导数f'(x)的零点,即求解方程f'(x)=0。
3.将解得的零点代入原函数f(x),求解函数的值f(x)。
4.比较函数f(x)在零点和区间的端点处的值,找出最大值或最小值。
通过导数法,我们可以比较方便地求解函数的最值问题。
但是需要注意的是,导数法只能得到函数的极值点,而不能得到函数的最值。
有时候,函数的最值可能出现在极值点之外。
二、直接比较法直接比较法是一种简单直观的方法,适用于一些简单的最值问题。
具体的步骤如下:1.将函数的表达式进行变形,使得函数的取值范围更明确。
2.对于函数的自变量的取值范围,通过逐个比较函数的值,找出最大值或最小值。
直接比较法的优点是简单易懂,但是它只适用于一些简单的最值问题。
对于复杂的最值问题,我们需要运用其他的方法。
三、拉格朗日乘数法拉格朗日乘数法是解决约束条件下的最值问题的一种方法。
对于一个多元函数f(x1, x2, , xn),我们假设函数存在一个约束条件g(x1, x2, , xn)=0。
我们需要求解函数f(x1, x2, , xn)在满足约束条件的情况下的最大值或最小值。
二次函数动轴定区间最值问题对于二次函数动轴定区间最值问题,我们可以通过以下步骤解决:
1. 首先,要确定二次函数的开口方向。
如果二次函数的二次项系数大于零,则抛物线向上开口,最值为最小值;如果二次函数的二次项系数小于零,则抛物线向下开口,最值为最大值。
2. 接下来,找到二次函数的顶点坐标。
二次函数的顶点坐标可以通过使用公式 h = -b / (2a) 来计算,其中 a 是二次项系数,b 是一次项系数。
3. 根据找到的顶点坐标,可以确定二次函数的动轴位置。
动轴是与抛物线对称的直线,通过顶点的中垂线。
4. 根据确定的动轴位置,可以划定出二次函数的区间。
5. 最后,根据开口方向和区间的限制条件,确定二次函数在该区间内的最值。
需要注意的是,如果给定的区间超出了二次函数的定义域,则该区间内没有最值。
通过以上步骤,可以解决二次函数动轴定区间最值问题,并找到相应的最值点。