双极型半导体三极管
- 格式:ppt
- 大小:1.48 MB
- 文档页数:10
双向三极管工作原理及用途
双向三极管的工作原理和用途如下:
双向三极管,全称应为半导体双向三极管,也称双极型晶体管、晶体三极管,是一种电流控制电流的半导体器件。
其作用是把微弱信号放大成幅度值较大的电信号,也用作无触点开关。
工作原理:三极管是由两个PN结构成的,两个PN结把整块半导体分成三个部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
正常正偏逻辑是P流向N,换言之反向偏置就是N到P。
根据这个P流向N,能根据原理图区分PNP和NPN型。
三极管的工作状态有四个,放大、截止、饱和、倒置。
当基极补充一个很小的IB,就可以在集电极上得到一个较大的IC,这就是所谓电流放大作用,IC与IB是维持一定的比例关系,β1称为直流放大倍数。
三极管有3种工作状态,分别是截止状态、放大状态、饱和状态。
具体用途:三极管是电子电路的核心元件,具有电流放大作用,是电子电路的核心元件。
可广泛用于开关逻辑电路、大电流驱动、控制电路、低噪声放大器、漏电报警电路、稳压电路以及运算放大电路等。
中间部分称为基区,与之相连接的电极称为基极,用B或b表示(Base);一侧称为发射区,与之相连接的电极称为发射极,用E或e表示(Emitter);另一侧称为集电区,与之相连电极称为集电极,用C或c表示(Collector)。
E-B间的PN结称为发射结(Je);C-B间的PN结称为集电结(Jc)。
图2-1-1 两种极性的双极型三极管及其符号双极型三极管的符号在图2-1-1的下方给出,发射极的箭头代表发射极电流的实际方向。
从外表上看,NPN型三极管的两个N区(或PNP型三极管的两个P 区)是对称的,发射极和集电极可以互换。
实际上在制造时,由于发射区的掺杂浓度大,集电区掺杂浓度低,且集电结面积大,基区掺杂浓度低并要制造得很薄,其厚度一般在几个微米至几十个微米,所以发射极和集电极是不能互2.1.2 双极型半导体三极管的电流分配关系双极型半导体三极管在工作时一定要加上适当的直流偏置电压。
若在放大工作状态:发射结加正向电压,集电结加反向电压。
现以NPN型三极管的放大状态为例,来说明三极管内部的电流关系,见图2-1-2。
由图2-1-2可知对于NPN型三极管,集电极电流和基极电流是流入三极管,发射极电流是流出三极管,流进的电流等于流出的电流。
由以上分析可知,发射区掺杂浓度高,基区掺杂浓度低且很薄,是保证三极管能够实现电流放大的关键。
若两个PN结对接,相当基区很厚,将没有电流放大作用,基区从厚变薄,两个PN结演变为三极管,这是量变引起质变的又一个实例。
动画02-1在工艺上要求发射区搀杂浓度高,基区掺杂浓度低且要制作得很薄,集电区掺杂浓度低。
当发射结加正偏时,从发射区将有大量的电子向基区扩散,形成电子的扩散电流I EN,而从基区向发射区扩散的空穴电流I EP却很小,见图2-1-2,图中箭头为载流子的运动方向。
于是有I E= I EN+I EP 且有I EN>>I EP图2-1-2 双极型三极管的电流传输关系因基区掺杂浓度低,所以发射区扩散过来的载流子电子被复合的很少,只形成很小的基极电流I BN。
2. 简述BJT三极管原理
双极结型晶体管(BJT)是半导体三极管的一种,其工作原理基于半导体材料中的载流子输运现象。
以下是对BJT三极管原理的简要描述:
1. 结构:BJT三极管由三个半导体区域组成,分别是发射区、基区和集电区。
这三个区域之间由两个PN结隔开。
发射区掺杂浓度高,集电区面积大,基区则介于两者之间。
2. 电流传输过程:当在BJT的发射极和基极之间加上正向电压时,载流子(空穴和电子)将从发射区注入到基区。
其中,高能量的电子能够穿过基区的势垒,进入集电区,形成集电极电流。
集电极电流的大小可以用来控制BJT的导通状态。
3. 放大作用:BJT的一个重要特性是它能够放大电流。
这是由于在基区,载流子经历了两次扩散-漂移过程。
第一次是从发射区注入到基区的载流子在基区的扩散-漂移过程;第二次是从基区扩散到集电区的载流子的漂移过程。
在这个过程中,空穴和电子分别被电场力拉向集电极和发射极,形成集电极电流。
4. 输出特性:BJT的输出特性是指集电极电流与基极-发射极电压之间的关系。
这个关系通常被表示为一个曲线,称为三极管的输入特性曲线。
在不同的基极-发射极电压下,会有不同的输出状态,包括放大区、饱和区和截止区。
5. 频率响应:BJT的频率响应是其工作频率与电压增益之间的关系。
在高频条件下,由于载流子的渡越时间效应和结电容的影响,BJT 的性能会受到限制。
6. 温度特性:温度对BJT的性能有很大影响。
随着温度的升高,载流子的传输过程会受到影响,导致电流增大,电压增益下降。
因此,在高温环境下,需要对BJT进行适当的散热设计。
双极型晶体管双极型三极管又称半导体三极管、晶体管,或简称为三极管。
双极型三极管有三个电极。
三极管可以用半导体材料硅或锗制成。
有两类标准的三极管:NPN 和PNP型。
现在用的三极管大多是NPN型。
NPN三极管由一块N型发射极(E)、一块P型基极(B)和一块N型集电极(C)组成。
三极管具有电流放大作用。
集电极电流Ic与基极电流I B成正比,小于发射极电流。
三个电流之间的关系是I E=Ic+I B。
三极管的电流放大系数通常用β表示,当C、E两端的电压保持不变时有β=△Ic/△IB。
当基极电压略高于发射极的正向电压(约为0.6V),三极管导通。
一般认为,当U CE=U BE,即U CB=0时,晶体管趋于饱和状态,这个电压大约是+0.7V。
这时C极与E极之间的电阻很小,甚至几乎可以看成短路。
一般将I B≤0的区域称为截至区,此时I C也近似为零。
由于管子各极电流都基本上等于零,所以三极管处于截至状态,没有放大作用。
此时C级与E级之间的电阻很大,可以看成开路。
其实当I B=0时,集电极回路的电流并不正真为零,有一个极小的漏电流I CBO 从集电极流到基极。
PNP三极管的发射区和集电区是P型半导体,而基区是N型半导体。
PNP型三极管放大原理与NPN型三极管基本相同。
但由于结构的不同,三极管工作在放大区,外加电压的极性U BE<0,而UBC>0,正好与NPN三极管相反。
PNP三极管的各种参数含义也与NPN三极管相同,这里就不再重复了。
Bipolar TransistorBipolar transistor also known as semiconductor transistor\transistor, Or be called bipolar-junction transistor.Bipolar transistor has three electrodes.Bpolar transistor are made of semiconductor material silicon or Ge .There are two types of standard bipolar transistors ,NPN and PNP.Most transistors used today are NPN.The NPN bipolar transistor consists of an N-type emitter(E),P-type base(B),and N-type collector(C).Bipolar transistor have the function of amplifing current.The amount of collector curret is directly proportionalto the amount of base current and will be less than the emitter current.The relationship of the current is Ie=Ic+Ib.The current gain cofficient usually be expressed by B and is expressed as =△Ic/△IB,when the voltage from C to E( Uce)is held constant.An NPN bipolar transistor turn on when the base is more positive than the emitter(about 0.6V).It was generally think that the transistor is in saturation when Uce eaqual Ube,namely Ucb=0.The voltage is about positive 0.7V and the resistance from C to E is low and may even appear almost as a short The transistor is off When I B≤0,I C is about 0.Becase the current of all electrodes is disposed 0,the transistor is off and has not the function of amplifing current.The resistance from C to E now is and may appear as an open.Actually the current of collector is not 0 when Ib is 0,a small leakage current Icbo from C to E is always present .The emitter and collector of the PNP transistor are P semiconductor andThe base is N semiconductor.The amplifing principle of PNP is same as NPN.Becase of different strucure, the transistor has the function of amplifing when Ube<0.But UBC>0and is opposite from NPN.The parameter of the PNP is same with NPN,we will not repeat.。
场效应型半导体三极管仅由一种载流子参与导电,是一种VCCS器件。
载流子参与导电是种器件半导体三极管是具有电流放大功能的元件频率:功率:材料:类型:1.2.1 三极管的结构及工作原理1.2.2 三极管的基本特性极管的基本特性1.2.3 三极管的主要参数及电路模型123三极管的主要参数及电路模型侧称为发射区,电极称为一侧称为发射区,电极称为e-b间的PN结称为发射结(Je)c-b间的PN结称为集电结(Jc)中间部分称为基区,连上电极称为基极,用B或b表示(Base);示向。
集电结反偏集电结反偏,有平衡少子的漂移运动形成的反向电流。
CBO基区空穴向发射区的扩散可忽略扩散可忽略。
进入P 区的电进入P子少部分与基区的空穴复合,形成电流IBN数扩散到集电结。
3、三极管的电流分配关系I B定义:发射极直流电流放大倍数βICCEO忽略如输入电压变化,则会导致在流在定义:流放大倍数流放大倍数:的态信号时的(1)三极管放大电路的02.03 三极管的三种组态0203三极管的三种组态后达到集电极的电子电流的比值。
所以三极管的基本特性由基本特性曲线刻画,即各电极电压与电流的关系曲线,是其内部载流子运动的外部表现为什么要研究特性曲线:好的电路1. 输入特性曲线①死区②非线性区③线性区可以用解释即u CE 对i 的影响,可以用三极管的内部反馈作用解释,即:结和发射结的两个性曲线。
(反偏状态,可以将发射区注入基区的绝大多数非平衡少子收集到集电区,且基区复合减少,明显增大,特性曲线将向右稍微移动一些。
输出特性曲线=0V时,因集电极无收集作用,i C=0。
当uCEu稍增大时,发射结虽处于正向电压之下,但集电当稍增大时发射结虽处于正向电压之下但集电增加到使集电结反偏电压较大时如u增加到使集电结反偏电压较大时,如CEu CE ≥1V≥0.7Vu07BE运动到集电结的电子基本上都可以被集电再增区收集,此后uCE电流没有明加,电流也没有明显的增加,特性曲线进轴基本平行的入与uCE区域(这与输入特性曲增大而右移的共发射极接法输出特性曲线线随uCE饱和区的下方此时发射结反偏集电结反偏的下方。