双极型三极管(结构及其放大原理)教案设计
- 格式:doc
- 大小:4.77 MB
- 文档页数:2
三极管及放大电路基础教案章节一:三极管概述教学目标:1. 了解三极管的定义、结构和工作原理。
2. 掌握三极管的类型和符号。
教学内容:1. 三极管的定义:三极管是一种半导体器件,具有放大电信号的功能。
2. 三极管的结构:三极管由发射极、基极和集电极组成。
3. 三极管的工作原理:通过基极控制发射极和集电极之间的电流。
4. 三极管的类型:NPN型和PNP型。
5. 三极管的符号:NPN型三极管符号为“N”,PNP型三极管符号为“P”。
教学活动:1. 讲解三极管的定义、结构和工作原理。
2. 展示三极管的实物图和符号图。
3. 引导学生通过实验观察三极管的工作状态。
章节二:放大电路基础教学目标:1. 了解放大电路的定义和作用。
2. 掌握放大电路的基本组成和原理。
教学内容:1. 放大电路的定义:放大电路是一种通过反馈作用放大电信号的电路。
2. 放大电路的作用:放大微弱的信号,使其具有足够的功率驱动负载。
3. 放大电路的基本组成:电源、三极管、输入电阻、输出电阻和反馈电阻。
4. 放大电路的原理:通过三极管的放大作用,实现电信号的放大。
教学活动:1. 讲解放大电路的定义、作用和基本组成。
2. 展示放大电路的原理图和实际电路图。
3. 引导学生通过实验观察放大电路的工作状态。
章节三:三极管的放大特性教学目标:1. 了解三极管的放大特性。
2. 掌握三极管的放大原理。
教学内容:1. 三极管的放大特性:三极管的放大能力与基极电流、集电极电流和发射极电流之间的关系。
2. 三极管的放大原理:通过基极电流的控制,实现发射极和集电极之间电流的放大。
教学活动:1. 讲解三极管的放大特性和放大原理。
2. 分析三极管放大电路的输入和输出特性曲线。
3. 引导学生通过实验观察三极管的放大特性。
章节四:三极管放大电路的设计与应用教学目标:1. 了解三极管放大电路的设计方法。
2. 掌握三极管放大电路的应用。
教学内容:1. 三极管放大电路的设计方法:根据输入和输出信号的要求,选择合适的三极管、电阻等元件,设计合适的电路。
一、教案基本信息教案名称:三极管教案课时安排:45分钟教学目标:1. 让学生了解三极管的基本概念、结构和原理。
2. 让学生掌握三极管的放大特性及其应用。
3. 培养学生动手实验和观察能力,提高学生对电子元件的认识。
教学准备:1. 教室环境布置,准备教学PPT。
2. 准备三极管实物、电路图、实验器材等。
教学过程:一、导入(5分钟)1. 教师通过PPT展示三极管图片,引导学生思考:你们对三极管有什么了解?二、知识讲解(15分钟)1. 教师讲解三极管的结构和原理,通过PPT展示电路图,让学生理解三极管的工作原理。
2. 教师讲解三极管的放大特性,包括电流放大作用和电压放大作用。
3. 教师通过实际操作,演示三极管的放大特性实验,让学生观察并理解放大过程。
三、动手实验(15分钟)1. 教师发放实验器材,指导学生进行三极管放大特性实验。
2. 学生按照实验步骤进行操作,观察实验现象,并记录实验数据。
3. 教师巡回指导,解答学生疑问,确保实验顺利进行。
2. 教师提出问题,引导学生思考三极管在实际应用中的作用,如放大信号、开关控制等。
3. 学生分享自己的思考,教师给予评价和指导。
五、课后作业(5分钟)2. 学生领取作业,认真完成,为下次上课做好准备。
教学反思:本节课通过讲解和实验相结合的方式,让学生了解三极管的基本概念、结构和原理,掌握三极管的放大特性及其应用。
在教学过程中,教师要注意观察学生的反应,及时解答学生疑问,确保教学效果。
通过课后作业的布置,让学生巩固所学知识,提高实际操作能力。
六、教案内容拓展教学内容:1. 介绍三极管的种类和命名规则。
2. 讲解三极管的工作区域及其特性曲线。
3. 探讨三极管在电路中的应用案例。
教学过程:六、知识拓展(10分钟)1. 教师讲解三极管的种类,包括NPN型和PNP型三极管,并介绍它们的命名规则。
2. 教师通过PPT展示三极管的特性曲线,讲解其工作区域,包括放大区、饱和区和截止区。
三极管放大电路教案三极管放大电路是一种常见的电子电路,用于放大电信号的幅度。
这种电路由三极管和一些其他元件组成,其中三极管是核心元件。
在教授三极管放大电路时,需要先介绍三极管的基本工作原理,然后再详细讲解三极管放大电路的组成和工作原理。
一、三极管的基本工作原理三极管是一种半导体器件,由三个PN结组成。
根据PN结的极性,可将三极管分为PNP型和NPN型。
在三极管中,基区是控制区,发射区和集电区是受控区。
当三极管的基极电流为正时,就会导通基发结,使得发射区和集电区之间形成一个导通通道。
根据整个电路的工作状态,这个导通通道的导通程度可以调整,从而控制三极管放大电路的放大倍数。
二、三极管放大电路的组成三极管放大电路通常包含一个输入电路和一个输出电路。
输入电路接收输入信号,输出电路输出放大后的信号。
其中,输入电路通常由电阻和电容组成,用于匹配输入信号和三极管的输入电阻。
输出电路通常由负载电阻和输出电容组成,用于收集和输出放大后的信号。
三、三极管放大电路的工作原理1.共射极放大电路共射极放大电路是最常见的一种三极管放大电路,其输入信号与输出信号是反相的。
在这种模式下,输入信号加在基极上,通过输入电容进入基极电路。
当输入信号为正半周期时,三极管导通,形成一个导通通道,电流从集电极进入负载电阻,形成输出信号。
当输入信号为负半周期时,三极管截止,导通通道断开,无输出信号。
由于导通通道的导通程度可以调整,因此可以控制输出信号的幅度。
2.共集极放大电路共集极放大电路是一种非常适合驱动负载的电路,其输入信号与输出信号同相。
在这种模式下,输入信号加在基极上,通过输入电容进入基极电路。
当输入信号为正半周期时,三极管导通,形成一个导通通道,电流从发射极进入地。
由于三极管输出电流的放大作用,输出端的电压上升,形成输出信号。
当输入信号为负半周期时,三极管截止,导通通道断开,输出电压为零。
共集极放大电路的放大倍数小于1,通常用于驱动负载。
2.分类:(1)按内部基本结构不同:NPN 型和PNP 型。
PNP 型和NPN 型三极管表示符号的区别是发射极的箭头方向不同, 这个箭头方向表示发射结加正向偏置时的电流方向。
(2)按功率分:小功率管、中功率和大功率管。
(3)按工作频率分:低频管和高频管。
(4)按管芯所用半导体材料分:锗管和硅管。
目前国内生产硅管多为NPN型(3D 系列);目前国内生产锗管多为PNP 型(3A 系列)。
(5)按结构工艺分:合金管和平面管。
(6)按用途分:放大管和开关管。
二、三极管的电流放大作用——发射结正向偏置,集电结反向偏置1.三极管各电极上的电流分配实验电路【原理】载流子的特殊运动(NPN):发射区向基区扩散电子;电子在基区的扩散和复合;集电区收集电子【电流放大作用】(1)B C I I β=且B C I I >>;(2)B C E I I I +=注意:(1)三极管的电流放大作用,实质上是用较小的基极电流信号控制集电极的大电流信号,是“以小控大”的作用。
(2)要使三极管起放大作用,必须保证发射结加正向偏置电压,集电结加反向偏置电压。
2、三极管的基本连接方式1).共发射极电路(CE ):把三极管的发射极作为公共端子。
2).共基极电路(CB ):把三极管的基极作为公共端子。
3).共集电极电路(CC ):把三极管的集电极作为公共端子。
三、三极管的特性曲线——硅NPN 型三极管1.输入特性曲线输入特性:在V U CE 1 且为某定值时,加在三极管基极与发射极之间的电压BE V 和它产生的基极电流B I 之间的关系。
与二极管的正向伏安特性曲线相似。
当BE V 大于导通电压时,三极管才出现明显的基极电流。
导通电压:硅管0.7V ,锗管0.3 V 。
2. 输出特性曲线:B I 为某定值,C I 与CE U 之间的关系,一簇几乎与横轴平行的直线。
3、三极管的三个区① 截止区:B I = 0以下的区域。
a .发射结和集电结均反向偏置,三极管截止。
三极管的电流放大作用教案一、教学目标:1. 让学生了解三极管的结构和基本工作原理。
2. 使学生掌握三极管的电流放大作用及其在电子电路中的应用。
3. 培养学生动手实验和分析问题的能力。
二、教学内容:1. 三极管的结构和基本工作原理2. 三极管的电流放大作用3. 三极管在电子电路中的应用4. 实验操作:测量三极管的电流放大系数β5. 分析实验结果,探讨三极管电流放大作用的影响因素三、教学重点与难点:1. 教学重点:三极管的结构和基本工作原理,三极管的电流放大作用及其在电子电路中的应用。
2. 教学难点:三极管的电流放大作用原理,实验数据分析。
四、教学方法:1. 采用讲授法,讲解三极管的结构、工作原理和电流放大作用。
2. 采用实验法,让学生动手测量三极管的电流放大系数β。
3. 采用讨论法,分析实验结果,探讨三极管电流放大作用的影响因素。
五、教学过程:1. 导入新课:介绍三极管在电子电路中的重要作用,激发学生学习兴趣。
2. 讲解三极管的结构和基本工作原理,引导学生理解三极管的电流放大作用。
3. 学生动手实验:测量三极管的电流放大系数β,注意操作规范和安全。
4. 分析实验结果,探讨三极管电流放大作用的影响因素,如温度、工作点等。
六、课后作业:1. 绘制三极管的伏安特性曲线。
2. 分析三极管的电流放大作用在实际电路中的应用。
3. 查阅资料,了解三极管的温度特性。
七、教学评价:1. 学生对三极管的结构和基本工作原理的理解程度。
2. 学生动手实验的能力,如操作规范、数据分析等。
3. 学生对本节课知识的掌握情况,如课后作业的完成质量。
八、教学资源:1. 教材、课件等教学资料。
2. 三极管实验仪器的准备,如晶体管测试仪、示波器等。
3. 网络资源,用于学生课后查阅相关资料。
九、教学进度安排:1. 第一课时:讲解三极管的结构和基本工作原理。
2. 第二课时:讲解三极管的电流放大作用及其在电子电路中的应用。
3. 第三课时:学生动手实验,测量三极管的电流放大系数β。
I、组织教学:
示意学生安静,准备开始上课。
II、复习旧课,引入新课:
1、二级管的特性曲线;
2、特殊二级管
III、讲授新课:
2.1 双极型三极管(结构及其放大原理)
一、晶体管的结构和类型
1、双极性晶体管的结构如图所示。
它有两种类型:NPN型和PNP型。
2、结构特点:
(1)基区很薄,且掺杂浓度很低;
(2)发射区的掺杂浓度远大于基区和集电区的掺杂浓度;
(3)集电结的结面积很大。
上述结构特点构成了晶体管具有放大作用的内部条件。
二、晶体管的电流放大作用
(1)晶体管具有放大作用的外部条件
发射结正偏,集电结反偏。
对于NPN管,VC> VB> VE;
对于PNP管,VE> VB> VC。
(2)晶体管内部载流子的运动
发射区:发射载流子;集电区:收集载流子;基区:传送和控制载流子
发射结加正偏时,从发射区将有大量的电子向基区扩散,形成的电流为I EN。
与PN结中的情况相同。
从基区向发射区也有空穴的扩散运动,但其数量小,形成的电流为I EP。
这是因为发射区的掺杂浓度远大于基区的掺杂浓度。
进入基区的电子流因基区的空穴浓度低,被复合的机会较少。
又因基区很薄,在集电结反偏电压的作用下,电子在基区停留的时间很短,很快就运动到了集电结的边上,进入集电结的结电场区域,被集电极所收集,形成集电极电流I CN。
在基区被复合的电子形成的电流是I BN。
另外,因集电结反偏,使集电结区的少子形成漂移电流I CBO。
(3)晶体管的电流分配关系
I E = I
C
+ I
B
, ≈I
C
/I
IV、巩固新课:
双极性晶体管的结构和类型:NPN、PNP 晶体管的电流放大作用和电流分配关系V、布置作业:。