BP神经网络结构图
- 格式:vsd
- 大小:59.50 KB
- 文档页数:17
基于MATLAB的BP神经网络应用人工神经网络(Artificial Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。
神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。
神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。
神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。
神经网络与其他传统方法相组合,将推动人工智能和信息处理技术不断发展。
近年来,神经网络在模拟人类认知的道路上更加深入发展,并与模糊系统、遗传算法、进化机制等组合,形成计算智能,成为人工智能的一个重要方向。
MATLAB是一种科学与工程计算的高级语言,广泛地运用于包括信号与图像处理,控制系统设计,系统仿真等诸多领域。
为了解决神经网络问题中的研究工作量和编程计算工作量问题,目前工程领域中较为流行的软件MATLAB,提供了现成的神经网络工具箱(Neural Network Toolbox,简称NNbox),为解决这个矛盾提供了便利条件。
神经网络工具箱提供了很多经典的学习算法,使用它能够快速实现对实际问题的建模求解。
在解决实际问题中,应用MATLAB 语言构造典型神经网络的激活传递函数,编写各种网络设计与训练的子程序,网络的设计者可以根据需要调用工具箱中有关神经网络的设计训练程序,使自己能够从烦琐的编程中解脱出来,减轻工程人员的负担,从而提高工作效率。
一、人工神经网络的研究背景和意义人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。
載师信号(期望输出信号)图1-7神经网络学习系统框图输入部接收外来的输入样本X,由训练部进行网络的权系数W调整,然后由输岀部输岀结果。
在这个过程中,期望的输出信号可以作为教师信号输入,由该教师信号与实际输出进行比较,产生的误差去控制修改权系数W学习机构可用图1—8所示的结构表示。
在图中,X,X2,…,X n,是输入样本信号,W,W,…,W是权系数。
输入样本信号X可以取离散值0”或1”输入样本信号通过权系数作用,在u产生输岀结果口WX,即有:u=B/VX =WX i +WX2 + …+WX n再把期望输岀信号丫(t)和u进行比较,从而产生误差信号e。
即权值调整机构根据误差e去对学习系统的权系数进行修改,修改方向应使误差e变小,不断进行下去,使到误差e为零,这时实际输出值u和期望输出值丫(t)完全一样,则学习过程结束。
期望辑出y图学可机构神经网络的学习一般需要多次重复训练,使误差值逐渐向零趋近,最后到达零。
则这时才会使输岀与期望一致。
故而神经网络的学习是消耗一定时期的,有的学习过程要重复很多次,甚至达万次级。
原因在于神经网络的权系数W有很多分量W,W,----W n ;也即是一个多参数修改系统。
系统的参数的调整就必定耗时耗量。
目前,提高神经网络的学习速度,减少学习重复次数是十分重要的研究课题,也是实时控制中的关键问题。
、感知器的学习算法感知器是有单层计算单元的神经网络,由线性元件及阀值元件组成。
感知器如图感知器的数学模型:v=f[加讯-e] (1-12)其中:f[.]是阶跃函数,并且有pl 2二主W凶-0工01 —1>u=SW i X^-0<O“1(1-13)9是阀值。
感知器的最大作用就是可以对输入的样本分类,故它可作分类器,感知器对输入信号的分类如下:卩,A类Y = * —B 类(1-14)1-9所示。
f [sw iX£-O]1时,输入样本称为A类;输岀为-1时,输入样本称为B类。