FOPX分油机EPC400参数调整
- 格式:ppt
- 大小:3.94 MB
- 文档页数:1
第三节 FOPX型分油机自动控制系统FOPX型分油机作为部分排渣型分油机工作时,其特点是待分油连续进分油机,在排渣期间也不切断进油。
每次排渣其排渣口仅打开0.1S,排出量是分离片外边缘与壳体之间容积的70%。
该分油机可净化在15℃时密度为l010Kg/m3的重质燃油,而在净化不同密度的燃油时,不受低密度的限制,取消了比重环,这给使用和操作者带来较大的方便。
该分油机的控制和监视系统采用WT200型水分传感器和以单片机8031为核心的EPC-400装置,本节重点介绍这套装置的工作原理。
一、FOPX型分油机的基本工作原理FOPX型分油机由于其控制系统不同,可部分排渣,也可以全部排渣。
部分排渣的FOPX 型分油机的结构原理如图3—1所示。
在分油机中设有两个固定不动的向心泵U和T,它们分别把分离出来的净油和水从R口和S口排出。
所谓向心泵实际上就是扩压盘,它是把高速旋转的液流动能转变成位能(压力能)。
待分油从Q口连续进分油机,经分离盘上垂直孔进入每个分离片,水分和渣质被离心力甩向分离盘的外侧,净油被推向分离盘的内侧。
在排水口S所接的排水管路上装有一个排水电磁阀;在净油出口R所接的管路上装有一台WT200型水分传感器,它能精确地检测净油中的含水量。
当分离出来的水很少时,其油水分界面在分离盘外侧较远处,如在I位。
这时排水电磁阀关闭,封住排水口S不向外排水。
净油经向心泵U扩压连续由净油出口R 排出,净油中基本不含水分或含水量极少。
随着分离过程的进行,油水分界面不断向里移动,水分传感器会感受到净油中含水量的增大。
当油水分界面移动到接近分离盘外侧表面时,净油中的含水量会增加到一个触发值。
这个触发值将送到EPC-400型监控装置,由该装置决定是打开排水电磁阀向外排水,还是打开排渣口I进行一次排渣。
不论是打开排水电磁阀,还是进行一次排渣,油水分界面会迅速外移,净油中含水量也会迅速减少。
向心泵T下面有4个小孔,当排水电磁阀关闭时,向心泵T排出的液体从这些小孔流出,形成一个循环防止此处温度过高。
§4-5 FOPX 型部分排渣分油机自动控制系统系统特点:1、连续式分油机,排渣期间也不要断待分油;2、每次排渣其排渣口仅打开为0.1S ,排出量为分离盘外边缘与壳体间容积的70%;3、可分离密度的1010kg/cm 3重质燃油;4、是以单片机8031为核心组成的控制系统。
一、FOXP 型分油机基本工作原理 1、分油机的几种工况(1)若油中含水较少,油水界面远离分离盘外缘——直接排油,不排水;(2)当油水界面接近分离盘外缘时,WT200检测到油中含水量达到触发值时,EPC400控制器决定打开排水电磁阀或排渣口排渣。
(3)若水分含量极少,达到最大排渣间隔时间(油水界面远离分离盘外侧)时,排渣前先入置换水,使油水界面内移,然后再排渣——防止跑油待分油进口净油出口 出水口 向心水泵 向心油泵 进油管P 1—MV15控制的操作水进口P 2—MV16控制的补偿水和水封水进口置换水进口出水管上装有排水电磁阀净油出口管上装有WT200型水分传感器2、排渣过程的控制¿正常分油期间,滑动底盘被高速转动的工作水动压托起,封住排渣口I(由P2口断续供水补偿工作水的蒸发和泄漏)。
排渣时,P1、P2管同时连续进水,水面内移进入排渣开启室Y1,克服弹簧力使滑动圈下移,打开泄水口X(Y1中的水同时经垂直孔进入封闭水腔Y2),滑动底盘下移排渣口打开排渣;当Y2充满水时,Y1与Y2室压力相等,在弹簧力作用下滑动圈上移,关闭泄水口X,工作水托起滑动底盘,封闭排渣口(P1停水,Y1、Y2中的水经喷咀M1、M2泄放),P2先连续供水后恢复断续供水,以保证工作水面在Z附近。
排渣口排开的时刻及排出量取决于定量环N表面的凹槽大小(即水充满Y2腔的时间长短) P1通操作水的时间为3S,排渣口排开时间为0.1S,排出容量为分离盘外侧容积的70%——部分排渣二、FOPX型分油机的控制系统PT1、PT2——高低油温开关;PT3——油温传感器;FS——低流量开关;PS1——分油机故障开关;PS2——排渣口打开反馈信号;WT200——水分含量传感器;XT1——液体传感器;MV10——置换水控制阀MV5——排水电磁阀;MV15——操作水控制阀;MV16——补偿水和水封水阀。
1.在定值控制系统中,若衰减率0<﹠<1,则动态过程是____A无波动B、等幅波动C、衰减振荡D、发散振荡2、气动功率放大器是以____平衡原理工作的。
A、线位移B、力C、力矩D、角位移3、采用PID调节器最适合对____,____的控制对象进行____控制A、惯性大,延迟大,无差B、惯性小,延迟大,无差C、惯性大,延迟大,有差D、惯性小,延迟小,有差4、JS-II型多回路时间继电器的标度盘复位条件是:A、继电器线圈通电B、离台器啮合C、继电器线圈断电D、收紧复位弹簧5、柴油机货船辅锅炉燃烧自动控制的方式常采用:A、微分控制B、双位控制C、积分控制D、连续控制6、在NAKAKITA型燃油粘度控制系统中,控制选择阀的作用是A、输出柴油-重油转换信号B、输出温度控制信号C、输出粘度控制信号D、输出温度和粘度控制信号中大的信号7、在NAKAKHA型燃油粘度控制系统中,温度调节器和粘度调节器分别采用A、正作用式、反作用式B、正作用式,正作用式C、反作用式,反作用式D、反作用式,正作用式8、在NAKAKITA型燃油粘度控制系统中,若顺时针转动粘度调节器给定值旋钮,则红色给定指针朝读数方向转动,挡板喷嘴。
A、增大,靠近B、增大,离开C、减小、靠近D、减小,离开9、在NAKAKITA型燃油粘度控制系统中进行开环测试时,若突然顺时针转动给定位旋钮,其调节器输出的规律为:10、在NAKAKITA型燃油粘度调节器中,若三通话塞阀卡在上位,系统投人工作后,会出现A、系统不能工作B、对柴油进行中间温度定值控制,发报警C、对重油进行中间温度定值控制,发报警D、对柴油进行上限温度定值控制,发报警11、在NAKAKITA型燃油粘度调节器中,系统投入运行后,从柴油切换到重油的时刻为A、把转换开关从“D”位转到“H”位时B、油温达到中间温度时C、油温达到上限温度时D、从温度控制转为粘度控制时12、在电极式锅炉水位控制系统中,给水泵电机起动时刻为A、水位在上限水位B、水位下降到中间水位C、水位下降到下限水位D、水位上升到中间水位13、在电极式锅炉水位控制系统中、若检测高水位的1号电极结满水垢,其故障现象为A、水位在高水位振荡B、水位在下限水位振荡C、锅炉满水D、锅炉失水14、在采用压力比例调节器和电动比例操作器的辅锅炉蒸汽压力控制系统中,为增大比例作用强度,应A、把测量电位器向垂直方向转动B把测量电位器向水平方向转动C、把反馈电仪器向垂直方向转动D、把反馈电位器向水平方向转动15、在大型油船辅调炉水位控制系统中,双冲量是指A、水位,给水压差B、水位,蒸汽流量C、水位,给水流量D、给水流量,蒸汽流量16、在货船辅锅炉的燃烧控制系统中,采用双位控制的目的是A、实现蒸汽压力的定值控制B、控制系统简单可靠C、能实现良好的风油比D、保证点火成功17、在货船辅锅炉燃烧时序控制系统中,到顶扫风时间后的第一个动作是A、关小风门B、点火变压器通电C、打开燃油电磁阀D、接通火焰感受器电源18、在FOPX型分油机系统中,如果净油中的水分越大,则水分传感器的电容器流过的电流_____。
1、在采用耗气型气动功率放大器时,若它能把压力信号放大10 倍,则喷嘴-挡板机构输出的压力变化围是:A、0.008MPaB、0.02MPaC、0.08MPaD、0.06MPa2、气动功率放大器是以____平衡原理工作的。
A、线位移B、力C、力矩D、角位移3、某温度变送器铭牌上标明量程为0-100℃,最大绝对误差为士1.5℃,则该温度变送器的精度为:A、3 级B、2 级C、1 级D、1.5 级4、JS-II型多回路时间继电器的标度盘复位条件是:A、继电器线圈通电B、离台器啮合C、继电器线圈断电D、收紧复位弹簧5、柴油机货船辅锅炉燃烧自动控制的方式常采用:A、微分控制B、双位控制C、积分控制D、连续控制6、在NAKAKITA型燃油粘度控制系统中,控制选择阀的作用是A、输出柴油-重油转换信号B、输出温度控制信号C、输出粘度控制信号D、输出温度和粘度控制信号的信号7、在NAKAKHA型燃油粘度控制系统中,温度调节器和粘度调节器分别采用A、正作用式、反作用式B、正作用式,正作用式C、反作用式,反作用式D、反作用式,正作用式8、在NAKAKITA型燃油粘度控制系统中,若顺时针转动粘度调节器给定值旋钮,则红色给定指针朝读数方向转动,挡板喷嘴。
A、增大,靠近B、增大,离开C、减小、靠近D、减小,离开9、在NAKAKITA型燃油粘度控制系统中进行开环测试时,若突然顺时针转动给定位旋钮,其调节器输出的规律为:10、在NAKAKITA型燃油粘度调节器中,若三通话塞阀卡在上位,系统投人工作后,会出现A、系统不能工作B、对柴油进行中间温度定值控制,发报警C、对重油进行中间温度定值控制,发报警D、对柴油进行上限温度定值控制,发报警11、在NAKAKITA型燃油粘度调节器中,系统投入运行后,从柴油切换到重油的时刻为A、把转换开关从“D”位转到“H”位时B、油温达到中间温度时C、油温达到上限温度时D、从温度控制转为粘度控制时12、在电极式锅炉水位控制系统中,给水泵电机起动时刻为A、水位在上限水位B、水位下降到中间水位C、水位下降到下限水位D、水位上升到中间水位13、在电极式锅炉水位控制系统中、若检测高水位的1号电极结满水垢,其故障现象为A、水位在高水位振荡B、水位在下限水位振荡C、锅炉满水D、锅炉失水14、在采用压力比例调节器和电动比例操作器的辅锅炉蒸汽压力控制系统中,为增大比例作用强度,应A、把测量电位器向垂直方向转动B把测量电位器向水平方向转动C、把反馈电仪器向垂直方向转动D、把反馈电位器向水平方向转动15、在大型油船辅调炉水位控制系统中,双冲量是指A、水位,给水压差B、水位,蒸汽流量C、水位,给水流量D、给水流量,蒸汽流量16、在货船辅锅炉的燃烧控制系统中,采用双位控制的目的是A、实现蒸汽压力的定值控制B、控制系统简单可靠C、能实现良好的风油比D、保证点火成功17、在货船辅锅炉燃烧时序控制系统中,到顶扫风时间后的第一个动作是A、关小风门B、点火变压器通电C、打开燃油电磁阀D、接通火焰感受器电源18、在FOPX型分油机系统中,如果净油中的水分越大,则水分传感器的电容器流过的电流_____。
Alfa Laval部分排渣分油机运行管理2006年7月27日[内容提要]船上使用Alfa Laval分油机,常因燃油加热控制单元的比例带、积分微分时间以及EPC-400单元的控制参数等调整不当而发生故障。
此文讨论有关参数对分油机的影响及调整方法。
关键词:Alfa Laval分油机控制参数调整日常管理船用分油机是净化燃油的重要设备。
为了确保向主机提供符合质量要求的一定数量的燃油,必须加强对燃油的净化和分离。
船上应用比较多的Alfa Laval-FOPX型分油机,是可控部分排渣自清式分油机,配有可对分油过程进行监控的EPC-400控制单元和WT-200水分传感器,用于净化最大密度为1010Kg/m3/15℃和最大粘度为700cst/1 5℃的重质燃料油,也可用于直馏油和船用柴油的净化。
燃油温度波动,以及油中杂质和水分,影响该型分油机的工作过程。
1分油机简介Alfa Laval-FOPX型分油机结构原理,如图l。
(1)分离待分离油,从Q口连续进入分油机,经分离盘上的垂直孔进入各分离片;各分离片中,离心力将水分和杂质甩向分离盘外侧,净油则被推向分离盘内侧。
(2)WT200型水分传感器检测净油中的含水量净油出口管路R上,装有精确地检测净油含水量的WT200型水分传感器;排水口管路S上,装有控制排水口开关的排水电磁阀MV5。
当净油中的含水量少(说明其油水分界面位于分离盘外侧较远处)时,排水电磁阀MV5关闭排水口(不向外排水),净油经向心泵U连续从出油口R排出;随着分离过程,水分增多,油水分界面不断向里移动,净油管路上的WT200型水分传感器检测到净油中含水量增加;当油水分界面移动到接近分离盘外侧时,净油中的含水量增加到一个触发值;这个触发值被送到EPC-400型控制单元,由该单元决定打开排水电磁阀MV5从排水管S向外排水,还是打开排渣口l排渣。
(3)EPC-400控制单元控制排水或排渣EPC-400控制单元中,设定有一个首次排渣时间 (10分钟,可调),和一个最长的排渣时间间隔(一般分3500秒的油时为30分钟,可调)。