高三数学专题复习-条件概率问题
- 格式:docx
- 大小:15.94 KB
- 文档页数:2
专题7.1 条件概率与全概率公式姓名:班级:重点条件概率的公式及其应用。
难点全概率公式的应用。
例1-1.同时抛掷一个红骰子和一个蓝骰子,观察向上的点数,记“红骰子向上的点数为奇数”为事件A ,“两个骰子的点数之积为奇数”为事件B ,则=)|(A B P ( )。
A 、61B 、41C 、31D 、21【答案】D 【解析】21)(=A P ,若A 、B 同时发生,则蓝色骰子向上点数为偶数,则412121)(=⨯=AB P ,∴21)()()|(==A P AB P A B P ,故选D 。
例1-2.现从4名男医生和3名女医生中抽取两人加入“援鄂医疗队”,用A 表示事件“抽到的两名医生性别相同”,B 表示事件“抽到的两名医生都是女医生”,则=)|(A B P ( )。
A 、31B 、74C 、32D 、43【答案】A【解析】由已知得73)(272324=+=C C C A P 、71)(2723==C C AB P ,则31)()()|(==A P AB P A B P ,故选A 。
例1-3.某市气象台统计,2022年3月1日该市市区下雨的概率为154,刮风的概率为152,既刮风又下雨的概率为101,设事件A 为下雨,事件B 为刮风,则=)|(B A P ( )。
5B 、83C 、21D 、43【答案】D【解析】由题意可知154)(=A P 、152)(=B P 、101)(=AB P ,利用条件概率的计算公式可得:43)()()|(==B P AB P B A P ,故选D 。
例1-4.甲、乙、丙、丁四名同学分别从篮球、足球、排球、羽毛球四种球类项目中选择一项进行活动,记事件A 为“四名同学所选项目各不相同”,事件B 为“只有甲同学选羽毛球”,则=)|(B A P ( )。
A 、92B 、83C 、43D 、98【答案】A【解析】事件AB :甲选羽毛球且四名同学所选项目各不相同,∴其它3名同学排列在其它3个项目,且互不相同为33A ,事件B :甲选羽毛球,∴其它3名同学排列在其它3个项目,可以安排在相同项目为33,∴92434)()()|(43433===A B P AB P B A P ,故选A 。
《7.1 条件概率及全概率》考点讲解【思维导图】【常见考点】考法一 条件概率【例1】(1)把一枚骰子连续抛掷两次,记事件为“两次所得点数均为奇数”,为“至少有一次点数是5”,则等于( )M N ()P N MA .B .C .D . (2)袋中有5个球(3个白球,2个黑球)现每次取一球,无放回抽取2次,则在第一次抽到白球的条件下,第二次抽到白球的概率为( )A .3/5B .3/4C .1/2D .3/10【一隅三反】1.一个盒子中装有个完全相同的小球,将它们进行编号,号码分別为、、、、、,从中不放回地随机抽取个小球,将其编号之和记为.在已知为偶数的情况下,能被整除的概率为( )A .B .C .D . 2.盒中有10个零件,其中8个是合格品,2个是不合格品,不放回地抽取2次,每次抽1个.已知第一次抽出的是合格品,则第二次抽出的是合格品的概率是( )A .B .C .D . 3.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询这三个项目,每人限报其中一项,记事件为“恰有2名同学所报项目相同”,事件为“只有甲同学一人报关怀老人项目”,则( )A .B .C .D . 4.根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在下雨条件下吹东风的概率为( ) A .B .C .D . 考法二 全概率公式【例2】.设患肺结核病的患者通过胸透被诊断出的概率为0.95,而未患肺结核病的人通过2359121361234562S S S 3141351223152979710A B ()|P B A =1613235693011308302589811911胸透被误诊为有病的概率为0.002,已知某城市居民患肺结核的概率为0.1%.若从该城市居民中随机地选出一人,通过胸透被诊断为肺结核,求这个人确实患有肺结核的概率.【一隅三反】1.根据以往的临床记录,某种诊断癌症的试验具有如下的效果:若以表示事件“试验反应为阳性”,以表示事件“被诊断者患有癌症”,则有,.现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即,试求.答案解析考法一 条件概率【例1】(1)把一枚骰子连续抛掷两次,记事件为“两次所得点数均为奇数”,为“至少有一次点数是5”,则等于( ) A . B . C . D . (2)袋中有5个球(3个白球,2个黑球)现每次取一球,无放回抽取2次,则在第一次抽到白球的条件下,第二次抽到白球的概率为( )A .3/5B .3/4C .1/2D .3/10【答案】(1)B (2)C【解析】(1)事件为“两次所得点数均为奇数”,则事件为,,,,,,,,,故;为“至少有一次点数是5”,则事件为,,,,,,所以.故选:B. (2)记事件A 为“第一次取到白球”,事件B 为“第二次取到白球”,则事件AB 为“两次都取到白球”,依题意知,, A C ()|P A C 0.95=()|0.95P A C =()0.005P C =()|P C A M N ()P N M 23591213M ()1,1()1,3()1,5()3,1()3,3()3,5()5,1()5,3()5,5()9n M =N MN ()1,5()3,5()5,1()5,3()5,5()5n MN =()59P N M =3()5P A =3263()542010P AB =⨯==所以,在第一次取到白球的条件下,第二次取到白球的概率是.故选:C.【一隅三反】1.一个盒子中装有个完全相同的小球,将它们进行编号,号码分別为、、、、、,从中不放回地随机抽取个小球,将其编号之和记为.在已知为偶数的情况下,能被整除的概率为( )A .B .C .D . 【答案】B【解析】记“能被整除”为事件,“为偶数”为事件,事件包括的基本事件有,,,,,共6个. 事件包括的基本事件有、共2个. 则, 故选:B.2.盒中有10个零件,其中8个是合格品,2个是不合格品,不放回地抽取2次,每次抽1个.已知第一次抽出的是合格品,则第二次抽出的是合格品的概率是( )A .B .C .D . 【答案】C【解析】设第一次抽到的是合格品,设为事件,第二次抽到的是合格品,设为事件,则.故选:C3.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询这三个项目,每人限报其中一项,记事件为“恰有2名同学所报项目相同”,事件为“只有甲同学一人报关怀老人项目”,则( ) 3110()325P B A ==61234562S S S 3141351223S 3A S B B {1}3,{1}5,{3}5,{24},{26},{46},AB {1}5,{24},()21(|)()63n AB P A B n B ===152979710A B ()()()()()877899P AB n AB P B A P A n A ⨯====⨯A B ()|P B A =A .B .C .D . 【答案】A【解析】事件AB 为“4名同学所报项目恰有2名同学所报项目相同且只有甲同学一人报关怀老人项目”., 所以 故选:A4.根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在下雨条件下吹东风的概率为( ) A . B . C . D . 【答案】C【解析】在下雨条件下吹东风的概率为 ,选C 考法二 全概率公式【例2】.设患肺结核病的患者通过胸透被诊断出的概率为0.95,而未患肺结核病的人通过胸透被误诊为有病的概率为0.002,已知某城市居民患肺结核的概率为0.1%.若从该城市居民中随机地选出一人,通过胸透被诊断为肺结核,求这个人确实患有肺结核的概率.【答案】 【解析】设表示“被诊断为肺结核”,表示“患有肺结核”.由题意得,, .16132356()2143421439C C P A ⨯⨯==()21324112327C C P AB ⨯⨯==()()()2127|469P AB P B A P A ===930113083025898119118830=1111304751474A C ()0.001,()0.999P C P C ==()0.95,()0.002P A C P A C ==∣∣由贝叶斯公式知,. 【一隅三反】 1.根据以往的临床记录,某种诊断癌症的试验具有如下的效果:若以表示事件“试验反应为阳性”,以表示事件“被诊断者患有癌症”,则有,.现在对自然人群进行普查,设被试验的人患有癌症的概率为0.005,即,试求.【答案】 【解析】因为,所以,因为,所以,所以由全概率公式可得,因为所以.《7.1 条件概率及全概率》考点训练【题组一 条件概率】1.一个医疗小队有3名男医生,4名女医生,从中抽出两个人参加一次医疗座谈会,则已知在一名医生是男医生的条件下,另一名医生也是男医生的概率是______2.已知一种元件的使用寿命超过年的概率为,超过年的概率为,若一个这种元件使用到年时还未失效,则这个元件使用寿命超过年的概率为_____.3.小赵、小钱、小孙、小李到个景点旅游,每人只去一个景点,设事件A 为“个人去的景点不相同”,事件为“小赵独自去一个景点”,则________.4.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取两瓶,若取的两()()475()()()()()1474P C P A C P CA P C P A C P C P A C ==+∣∣∣∣A C ()|P A C 0.95=()|0.95P A C =()0.005P C =()|P C A 19218()|0.95P A C =()|1P A C =-()|0.05P A C =()0.005P C =()0.995P C =()()()()()||P A P A C P C P A C P C =⋅+⋅()P AC =()|P C A ()P A ()()|P A C P C =()|P C A ()()()|()0.950.005190.950.0050.050.995218|()|()P A C P C P A C P C P A C P C ⨯===⨯+⨯+10.820.61244B ()P A B =瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率为____________.5.北京某大学学生会自发从学生会6名男生和8名女生骨干成员中选出2人作为队长率领他们加入武汉社区服务队,用表示事件“抽到的2名队长性别相同”,表示事件“抽到的2名队长都是男生”,则______.6.夏、秋两季,生活在长江口外浅海域的中华鱼洄游到长江,历经三千多公里的溯流搏击,回到金沙江一带产卵繁殖,产后待幼鱼长到厘米左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批中华鱼鱼苗,该批鱼苗中的雌性个体能长成熟的概率为,雌性个体长成熟又能成功溯流产卵繁殖的概率为,若该批鱼苗中的一个雌性个体在长江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为_________.7.口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次仍取得红球的概率为______.8.从标有,,,,的五张卡中,依次抽出张(取后不放回),则在第一次抽到偶数的情况下,第二次抽到奇数的概率为________;9.某班有名班干部,其中男生人,女生人,任选人参加学校的义务劳动.(1)求男生甲或女生乙被选中的概率;(2)设“男生甲被选中”为事件,“女生乙被选中”为事件,求和.10.某单位有8名青年志愿者,其中男青年志愿者5人,记为,女青年志愿者3人,记为.现从这8人中选4人参加某项公益活动.(1)求男青年志愿者或女青年志愿者被选中的概率;(2)在男青年志愿者被选中的情况下,求女青年志愿者也被选中的概率.11.田忌赛马的故事出自《史记》中的《孙子吴起列传》.齐国的大将田忌很喜欢赛马,有一回,他和齐威王约定,要进行一场比赛.双方各自有三匹马,马都可以分为上,中,下三等.上等马都比中等马强,中等马都比下等马强,但是齐威王每个等级的马都比田忌相应等级的马强一些,比赛共三局,每局双方分别各派一匹马出场,且每匹马只赛一局,胜两局或三局的一方获得比赛胜利,在比赛之前,双方都不知道对方马的出场顺序.A B ()|P B A =150.150.0512********A B ()P A (|)P B A 12345,,,,a a a a a 123,,b b b 1a 1b 1a 1b(1)求在第一局比赛中田忌胜利的概率:(2)若第一局齐威王派出场的是上等马,而田忌派出场的是下等马,求本场比赛田忌胜利的概率;(3)写出在一场比赛中田忌胜利的概率(直接写出结果).12.已知一个不透明的口袋中有4个白球和8个红球,球除颜色外完全相同.(1)若一个人从口袋中随机抽取一个球,求其抽取到白球的概率;(2)若一个人从口袋中随机不放回连续抽取球两次,每次抽取一个球,求在第一次抽取出白球的条件下第二次抽取出的也是白球的概率.【题组二 全概率公式】1.将一枚均匀的硬币连续抛掷n 次,以表示没有出现连续3次正面的概率.给出下列四个结论:①; ②; ③当时,;④. 其中,所有正确结论的序号是__________.2.袋中有10个大小、材质都相同的小球,其中红球3个,白球7个.每次从袋中随机摸出1个球,摸出的球不再放回.求:(Ⅰ)第一次摸到红球的概率;(Ⅱ)在第一次摸到红球的条件下,第二次也摸到红球的概率;(Ⅲ)第二次摸到红球的概率.n P 378P =41516P =2n ≥1n n P P +<123111(4)248n n n n P P P P n ---=++≥答案解析【题组一 条件概率】1.)一个医疗小队有3名男医生,4名女医生,从中抽出两个人参加一次医疗座谈会,则已知在一名医生是男医生的条件下,另一名医生也是男医生的概率是______【答案】 【解析】若A 为一位医生是男医生,B 为另一位医生也是男医生,∴,而, ∴, 故答案为: 2.已知一种元件的使用寿命超过年的概率为,超过年的概率为,若一个这种元件使用到年时还未失效,则这个元件使用寿命超过年的概率为_____.【答案】0.75【解析】记使用寿命超过年为事件,超过年为事件,, 故答案为:0.75. 3.小赵、小钱、小孙、小李到个景点旅游,每人只去一个景点,设事件A 为“个人去的景点不相同”,事件为“小赵独自去一个景点”,则________.【答案】 【解析】小赵独自去一个景点共有种情况,即,个人去的景点不同的情况有种,即,所以. 1523271()7C P A B C ⋅==211334275()7C C C P A C +==()1(|)()5P A B P B A P A ⋅==1510.820.6121B 2A ()()0.6,0.8P AB P B ==()()()0.60.750.8P AB P A B P B ===44B ()P A B =294333108⨯⨯⨯=()108n B =44424A =()24n AB =()()242()1089n AB P A B n B ===故答案为:. 4.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取两瓶,若取的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率为____________.【答案】 【解析】设事件为“一瓶是蓝色”,事件为“另一瓶是红色”,事件为“另一瓶是黑色”,事件为“另一瓶是红色或黑色”,则,且与互斥,又,,, 故. 故答案为:. 5.北京某大学学生会自发从学生会6名男生和8名女生骨干成员中选出2人作为队长率领他们加入武汉社区服务队,用表示事件“抽到的2名队长性别相同”,表示事件“抽到的2名队长都是男生”,则______.【答案】 【解析】由已知得,, 则. 故答案为: 6.夏、秋两季,生活在长江口外浅海域的中华鱼洄游到长江,历经三千多公里的溯流搏击,回到金沙江一带产卵繁殖,产后待幼鱼长到厘米左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批中华鱼鱼苗,该批鱼苗中的雌性个体能长成熟的概率为,雌性个体长成熟又能成功溯流产卵繁殖的概率为,若该批鱼苗中的一个雌性个体在长2967A B C D D B C =⋃B C ()11223225710C C C P A C +==()122515C P AB C ==()11222525C C P AC C ==()()()()()()()()()67P AB P AC P D A P B C A P B A P C A P A P A =⋃=+=+=67A B ()|P B A =1543()22682144391C C P A C +==()262141591C P AB C ==()()()151591|434391P AB P B A P A ===1543150.150.05江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为_________.【答案】 【解析】解析设事件为鱼苗中的一个雌性个体在长江口外浅海域长成熟,事件为该雌性个体成功溯流产卵繁殖,由题意可知,,. 故答案为:. 7.口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回的逐一取球,已知在第一次取得红球的条件下,第二次仍取得红球的概率为______.【答案】 【解析】口袋中装有大小形状相同的红球2个,白球3个,黄球1个,甲从中不放回的逐一取球,,, . 故答案为:. 8.从标有,,,,的五张卡中,依次抽出张(取后不放回),则在第一次抽到偶数的情况下,第二次抽到奇数的概率为________;【答案】 【解析】由题意,从标有,,,,的五张卡中,依次抽出张,第一次抽到偶数所包含的基本事件有,,,,,,,;共个基本事件;13A B ()0.15P A =()0.05P AB =()0.051(|)()0.153P AB P B A P A ===1315()2163P A ==()2116515P AB =⨯=()()()1115153P AB P B A P A ===1512345234123452()2,1()2,3()2,4()2,5()4,1()4,2()4,3()4,58第一次抽到偶数,第二次抽到奇数,所包含的基本事件有,,,,,;共个基本事件,因此在第一次抽到偶数的情况下,第二次抽到奇数的概率为. 故答案为:. 9.某班有名班干部,其中男生人,女生人,任选人参加学校的义务劳动.(1)求男生甲或女生乙被选中的概率;(2)设“男生甲被选中”为事件,“女生乙被选中”为事件,求和.【答案】(1);(2),. 【解析】(1)某班从名班干部(男生人、女生人)中任选人参加学校的义务劳动,总的选法有种,男生甲或女生乙都没有被选中的选法:则男生甲或女生乙被选中的选法有种,∴男生甲或女生乙被选中的概率为;(2)总的选法有种,男生甲被选中的选法有种,∴, 男生甲被选中、女生乙也被选中选法有种,∴, ∴在男生甲被选中的前提下,女生乙也被选中的概率为. 10.某单位有8名青年志愿者,其中男青年志愿者5人,记为,女青年志愿者3人,记为.现从这8人中选4人参加某项公益活动.(1)求男青年志愿者或女青年志愿者被选中的概率;(2)在男青年志愿者被选中的情况下,求女青年志愿者也被选中的概率.()2,1()2,3()2,5()4,1()4,3()4,566384P ==346423A B ()P A (|)P B A 451()2P A =2(|)5P B A =64233620C =344C =20416-=164205P ==3620C =121510C C ⋅=1()2P A =1111144C C C ⋅⋅=1()5P AB =()2(|)()5P AB P B A P A ==12345,,,,a a a a a 123,,b b b 1a 1b 1a 1b【答案】(1);(2). 【解析】(1)设“男青年志愿者和女青年志愿者都不被选中”为事件,则, 所以所求概率为.(2)记“男青年志愿者被选中”为事件,“女青年志愿者被选中”为事件,则, 所以. 所以在男青年志愿者被选中的情况下,女青年志愿者也被选中的概率为. 11.(田忌赛马的故事出自《史记》中的《孙子吴起列传》.齐国的大将田忌很喜欢赛马,有一回,他和齐威王约定,要进行一场比赛.双方各自有三匹马,马都可以分为上,中,下三等.上等马都比中等马强,中等马都比下等马强,但是齐威王每个等级的马都比田忌相应等级的马强一些,比赛共三局,每局双方分别各派一匹马出场,且每匹马只赛一局,胜两局或三局的一方获得比赛胜利,在比赛之前,双方都不知道对方马的出场顺序.(1)求在第一局比赛中田忌胜利的概率:(2)若第一局齐威王派出场的是上等马,而田忌派出场的是下等马,求本场比赛田忌胜利的概率;(3)写出在一场比赛中田忌胜利的概率(直接写出结果).【答案】(1);(2);(3). 【解析】将田忌的三匹马按照上、中、下三等分别记为、、,齐威王的三匹马按照上、中、下三等分别记为、、,并且用马的记号表示该马上场比赛.1114371a 1b C 46483()14C P C C ==311()1()11414P C P C =-=-=1a A 1b B 3276448813(),()214C C P A P AB C C ====()3()()7P AB P B A P A ==∣1a 1b 371312161T 2T 3T 1W 2W 3W(1)设事件“第一局双方参赛的马匹”,事件“在第一局比赛中田忌胜利”, 由题意得, ,则在第一局比赛中田忌胜利的概率是. (2)设事件“第一局齐威王派出场的是上等马,而田忌派出场的是下等马”, 事件“田忌获得本场比赛胜利”,由题意得, ,则本场比赛田忌胜利的概率是. (3). 12.已知一个不透明的口袋中有4个白球和8个红球,球除颜色外完全相同.(1)若一个人从口袋中随机抽取一个球,求其抽取到白球的概率;(2)若一个人从口袋中随机不放回连续抽取球两次,每次抽取一个球,求在第一次抽取出白球的条件下第二次抽取出的也是白球的概率.【答案】(1);(2). 【解析】(1)从口袋中随机抽取一个球,抽取到白球的概率. (2)记“第一次抽取出球是白球”为事件,“第二次抽取出球是白球”为事件,则第一次抽取出白球和第二次抽取出球也是白球的概率,, 所以在第一次取出白球的条件下第二次取出的也是白球的概率Ω=A =()()()()()()()(){()}111213212223313233,,,,,,,,TW TW TW T W T W T W T W T W T W Ω=()()(){}121323,,A TW TW T W =()3193P A ==B =C =()()()(){}311223311322312213312312,,,,,,,,,,,B TW TW T W TW TW T W TW T W TW TW T W TW =()(){}311223312312,,,,,BC TW TW T W TW T W TW =()21|42P C B ==161331141483p ==+A B 431()()()121111P AB P A P B ==⨯=4()12P A =. 【题组二 全概率公式】1.将一枚均匀的硬币连续抛掷n 次,以表示没有出现连续3次正面的概率.给出下列四个结论:①; ②; ③当时,;④. 其中,所有正确结论的序号是__________.【答案】①③④【解析】当时,,①正确; 当时,出现连续3次正面的情况可能是:正正正反、正正正正、反正正正,所以,②错误; 要求,即抛掷n 次没有出现连续3次正面的概率,分类进行讨论,若第n 次反面向上,前n-1次未出现连续3此正面即可;若第n 次正面向上,则需要对第n-1进行讨论,依次类推,得到下表:1()311()4()1112P AB P B|A P A ===n P 378P =41516P =2n ≥1n n P P +<123111(4)248n n n n P P P P n ---=++≥3n =33171()28P =-=4n =4311313()216P =-⨯=n P所以,④正确; 由上式可得 , 所以, 又,满足当时,,③正确. 故答案为:①③④.2.袋中有10个大小、材质都相同的小球,其中红球3个,白球7个.每次从袋中随机摸出1个球,摸出的球不再放回.求:(Ⅰ)第一次摸到红球的概率;(Ⅱ)在第一次摸到红球的条件下,第二次也摸到红球的概率;(Ⅲ)第二次摸到红球的概率.【答案】(Ⅰ);(Ⅱ);(Ⅲ). 【解析】设事件:第一次摸到红球;事件:第二次摸到红球,则事件:第一次摸到白球.(Ⅰ)第一次从10个球中摸一个共10种不同的结果,其中是红球的结果共3种, 所以 . (Ⅱ)第一次摸到红球的条件下,剩下的9个球中有2个红球,7个白球,第二次从这9123111(4)248n n n n P P P P n ---=++≥112111248n n n n P P P P +--=++1121233111111111(2481)()22482216n n n n n n n n n n P P P P P P P P P P +------=+++-=+--130,(114)6n n n P P P n +-<=--≥13241,713,816P P P P ====2n ≥1n n P P +<31029310A B A 3()10P A =个球中摸一个共9种不同的结果,其中是红球的结果共2种. 所以. (Ⅲ). 所以第二次摸到红球的概率. 2(|)9P B A =32733()()(|)()(|)10910910P B P A P B A P A P B A =+=⨯+⨯=3()10P B =。
高中条件概率练习题及讲解题目一:某班级有男生30人,女生20人。
已知某次数学考试中,男生的平均分是75分,女生的平均分是80分。
如果随机抽取一名学生,发现其数学成绩为85分,求这名学生的性别是女生的概率。
解答:设事件A为“抽取的学生是女生”,事件B为“抽取的学生数学成绩为85分”。
首先计算事件A和事件B同时发生的概率P(A∩B),即女生中数学成绩为85分的概率。
由于女生的平均分是80分,我们假设成绩分布是正态分布,那么成绩为85分的概率可以估计为较小的值,假设为P(A∩B)。
接下来,计算事件A的概率P(A),即班级中女生的比例,P(A) =20/50。
根据条件概率的定义,P(A|B) = P(A∩B) / P(B),其中P(B)是数学成绩为85分的概率,可以通过男生和女生的平均分来估计。
假设男生中数学成绩为85分的概率为P(B|A'),其中A'是“抽取的学生是男生”的事件。
由于男生的平均分是75分,我们同样可以估计P(B|A')。
最终,我们可以通过贝叶斯公式计算P(A|B) = P(A∩B) /[P(B|A')P(A') + P(A∩B)]。
题目二:一袋中有5个红球和3个白球。
现在从袋中随机取出2个球,发现取出的两个球都是红球。
求第一次取出红球后不放回的情况下,第二次取出的球也是红球的概率。
解答:设事件A1为“第一次取出的球是红球”,事件A2为“第二次取出的球是红球”。
首先计算P(A1),即第一次取出红球的概率,P(A1) = 5/8。
接下来计算P(A1∩A2),即两次都取出红球的概率。
由于第一次取出红球后不放回,第二次取出红球的概率变为从剩下的4个红球中取出1个,P(A1∩A2) = (5/8) * (4/7)。
根据条件概率的定义,P(A2|A1) = P(A1∩A2) / P(A1)。
将已知数值代入,得到P(A2|A1) = [(5/8) * (4/7)] / (5/8) = 4/7。
高三数学条件概率试题答案及解析1.一盒中放有大小相同的10个小球,其中8个黑球、2个红球,现甲、乙二人先后各自从盒子中无放回地任意抽取2个小球,已知甲取到了2个黑球,则乙也取到2个黑球的概率是________.【答案】【解析】记事件“甲取到2个黑球”为A,“乙取到2个黑球”为B,则有P(B|A)===,即事件“甲取到2个黑球,乙也取到2个黑球”的概率是.2.先后掷两次正方体骰子(骰子的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为m,n,则mn是奇数的概率是()A.B.C.D.【答案】C【解析】先后掷两次正方体骰子总共有36种可能,要使mn是奇数,则m,n都是奇数,因此有以下几种可能:(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)共9种可能.因此P ==.3.某人射击一次击中目标的概率为0.6,经过3次射击,此人恰有两次击中目标的概率为________.【答案】【解析】本题符合独立重复试验,是二项分布问题,所以此人恰有两次击中目标的概率为(0.6)2·(1-0.6)=.4.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)=________.【答案】【解析】P(A)==,P(AB)==,P(B|A)==.5.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率,分别是()A.,B.,C.,D.,【答案】A【解析】由题意得事件的个数为,事件的个数为,在发生的条件下发生的个数为,在发生的条件下发生的个数为,所以,.故正确答案为A.【考点】1.计数原理;2.条件概率.6.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取出两瓶,若取出的两瓶中有一瓶是蓝色,求另一瓶也是蓝色的概率()A.B.C.D.【答案】C【解析】设,,则.【考点】条件概率7.已知箱中共有6个球,其中红球、黄球、蓝球各2个.每次从该箱中取1个球 (有放回,每球取到的机会均等),共取三次.设事件A:“第一次取到的球和第二次取到的球颜色相同”,事件B:“三次取到的球颜色都相同”,则P(B|A)=()A. B. C. D.【答案】B.【解析】由题意,则.【考点】条件概率.8.一个盒子装有六张卡片,上面分别写着如下六个定义域为的函数:,,,,,.(1)现从盒子中任取两张卡片,将卡片上的函数相加得一个新函数,求所得函数是奇函数的概率;(2)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数的分布列和数学期望.【答案】(1);(2)详见解析.【解析】(1)利用性质“奇函数+奇函数=奇函数”这一性质得到所抽取的两个函数都是奇函数,然后再用排列组合结合古典概型的概率公式计算相应事件的概率;(2)先列举出随机变量的全部可能取值,利用条件概率的计算公式计算随机变量子在相应的取值下对应的概率,从而列举出随机变量的分布列,最终计算出随机变量的数学期望.试题解析:(1)六个函数中是奇函数的有,,,由这3个奇函数中的任意两个函数相加均可得一个新的奇函数.记事件A为“任取两张卡片,将卡片上的函数相加得到的函数是奇函数”,由题意知;(2)可取1,2,3,4 ,,, ,故的分布列为答:的数学期望为.【考点】1.排列组合;2.条件概率;3.随机变量的概率分布列与数学期望9.投掷红、蓝两个骰子,事件A=“红骰子出现4点”,事件B=“蓝骰子出现的点数是偶数”,则P(A|B)=()A. B. C. D.【答案】A【解析】A、B相互独立,P(AB)=P(A)P(B).P(A|B)===P(A)=【考点】条件概率与独立事件.10.把一枚硬币任意抛掷三次,事件“至少一次出现反面”,事件“恰有一次出现正面”求.【答案】【解析】由题意,,,所以,故答案为.【考点】条件概率.11.在甲、乙两个盒子中分别装有标号为1、2、3、4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等.(1)求取出的两个球上标号为相邻整数的概率;(2)求取出的两个球上标号之和能被3整除的概率【答案】(1).(2).【解析】古典概型概率的计算问题,需要计算基本事件空间总数及事件发生所包含的基本事件数,常用方法有“树图法”、“坐标法”,本题可以利用两种方法予以解答.试题解析:解法一:利用树状图可以列出从甲、乙两个盒子中各取出1个球的所有可能结果:可以看出,试验的所有可能结果数为16种. 4分(1)所取两个小球上的标号为相邻整数的结果有1-2,2-1,2-3,3-2,3-4,4-3,共6种. 6分故所求概率.答:取出的两个小球上的标号为相邻整数的概率为. 8分(2)所取两个球上的数字和能被3整除的结果有1-2,2-1,2-4,3-3,4-2,共5种. 10分故所求概率为.答:取出的两个小球上的标号之和能被3整除的概率为. 12分解法二:设从甲、乙两个盒子中各取1个球,其数字分别为,用表示抽取结果,则所有可能有,,,,,,,,,,,,,,,,共16种. 4分(1)所取两个小球上的数字为相邻整数的结果有,,,,,,共6种. 6分故所求概率.答:取出的两个小球上的标号为相邻整数的概率为. 8分(2)所取两个球上的数字和能被3整除的结果有,,,,,共5种. 10分故所求概率为.答:取出的两个小球上的标号之和能被3整除的概率为. 12分【考点】古典概型概率的计算12.盒中装有形状,大小完全相同的5个球,其中红色球3个,黄色球2个,若从中随机取出2个球,已知其中一个为红色,则另一个为黄色的概率为A.B.C.D.【答案】C【解析】记其中一个为红色球为事件A,另一个为黄色球为事件B,则所求概率为【考点】条件概率点评:在条件A发生的前提下事件B发生的概率13.如图,用三类不同的元件连接成一个系统,正常工作且至少有一个正常工作时,系统正常工作.已知正常工作的概率依次为、、,则系统正常工作的概率为A.B.C.D.【答案】B【解析】14.在棱长为2的正方体中,点为底面的中心,在正方体内随机取一点,则点到点的距离大于1的概率为【答案】【解析】点到点的距离等于1的轨迹是球,所以正方体内除球以外的体积就是事件发生的区域,试验发生的区域为正方体.所以概率为15.某种家用电器每台的销售利润与该电器的无故障使用时间有关,每台这种家用电器若无故障使用时间不超过一年,则销售利润为0元,若无故障使用时间超过一年不超过三年,则销售利润为100元;若无故障使用时间超过三年,则销售利润为200元。
高考数学复习典型题型专题讲解与练习专题88 条件概率与全概率公式题型一 利用定义求条件概率例1.(2022·全国·高二高考数学复习典型题型专题讲解与练习 专题练习)2022年6月14日是我国的传统节日“端午节”.这天,王华的妈妈煮了五个粽子,其中两个蜜枣馅,三个豆沙馅,王华随机拿了两个粽子,若已知王华拿到的两个粽子为同一种馅,则这两个粽子都为蜜枣馅的概率为( ) A .14 B .34 C .110 D .310【答案】A 【解析】 【分析】设事件A 为“取出两个粽子为同一种馅”,事件B 为“取出的两个粽子都为蜜枣馅”,计算P (A)、()P AB 的值,从而()(|)()P AB P B A P A =. 【详解】由题意,设事件A 为“取出两个粽子为同一种馅”,事件B 为“取出的两个粽子都为蜜枣馅”,则P (A)222325410C C C +==,22251()10C P AB C ==,()1(|)()4P AB P B A P A ∴==.故选:A .规律方法利用定义计算条件概率的步骤(1)分别计算概率P(AB)和P(A).(2)将它们相除得到条件概率P(B|A)=P(AB)P(A),这个公式适用于一般情形,其中AB表示A,B同时发生.例2.(2022·湖南·高二课时练习)甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A=“三个人去的景点各不相同”,B=“甲去了第一个景点”,如果甲、乙、丙互不相识,求()P A B.【答案】23【解析】【分析】这是求甲去第一个景点的前提下,三个人去的景点各不相同的条件概率,求出相应基本事件的个数,即可得出结论.【详解】甲去了第一个景点,则有1个景点可选,乙丙能在三个景点中选择,可能性为339⨯=种,所以甲去了第一个景点的可能性为1339⨯⨯=种,因为三个人去的景点不同的可能性为3216⨯⨯=种,所以()62 (|)()93n ABP A Bn AB=== .例3.(2022·湖南·高二课时练习)根据历年气象统计资料,某地4月份的任一天吹东风的概率为310,下雨的概率为1130,既吹东风又下雨的概率为415.求4月7日在吹东风的条件下下雨的概率.【答案】8 9【解析】【分析】设事件A表示吹东风,事件B表示下雨,得到(),()P A P AB,结合()(|)()P ABP B AP A=,即可求解.【详解】由题意,设事件A表示吹东风,事件B表示下雨,则34 (),()1015P A P AB==,所以在吹东风的条件下下雨的概率为4()815 (|)3()910P ABP B AP A===.题型二条件概率的性质及应用例4.(2022·山东德州·高二期末)已知某电器市场由甲、乙、丙三家企业占有,其中甲厂产品的市场占有率为40%,乙厂产品的市场占有率为36%,丙厂产品的市场占有率为24%,甲、乙、丙三厂产品的合格率分别为45,23,34.(1)现从三家企业的产品中各取一件抽检,求这三件产品中恰有两件合格的概率;(2)现从市场中随机购买一台该电器,则买到的是合格品的概率为多少?【答案】(1)13 30(2)37 50【解析】【分析】(1)由相互独立事件的概率可得;(2)根据各产品的市场占有率和合格率,由条件概率公式计算可得.(1)记随机抽取甲乙丙三家企业的一件产品,产品合格分别为事件1B ,2B ,3B , 则三个事件相互独立,恰有两件产品合格为事件D , 则123123123D B B B B B B B B B =++()()()()121323123B B P D P B B P B B P B B B =++4214131231353453453430=⨯⨯+⨯⨯+⨯⨯=. 故从三家企业的产品中各取一件抽检,则这三件产品中恰有两件合格的概率是1330. (2)记事件B 为购买的电器合格,记随机买一件产品,买到的产品为甲乙丙三个品牌分别为事件1A ,2A ,3A ,()125P A =,()2925P A =,()3625P A =,14(|)5P B A ==,22(|)3P B A =,33(|)4P B A =, 112233()()(|)()(|)()(|)P B P A P B A P A P B A P A P B A =++249263375525325450=⨯+⨯+⨯=. 故在市场中随机购买一台电器,买到的是合格品的概率为3750. 规律方法 当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些简单事件的概率,再利用P ((B ∪C )|A )=P (B |A )+P (C |A )便可求得较复杂事件的概率.例5.(2022·全国·高二课时练习)已知随机事件A ,B ,()12P A =,()13P B =,()12P B A =,求()P AB ,()P A B .【答案】13;44【解析】 【分析】根据条件概率的计算公式及其变形求解即可. 【详解】由条件概率公式()(|)()P AB P B A P A =得:111()(|)()224P AB P B A P A ==⨯=.∴1()34(|)1()43P AB P A B P B ===. 例6.(2022·全国·高二课时练习)某工厂有两个车间生产同型号家用电器,已知第1车间生产产品的合格品率为0.85,第2车间生产产品的合格品率为0.88,两个车间生产的产品混合堆放在一个仓库里且无区分标志,假设第1,2车间生产的产品的数量之比为2:3.今有一客户从仓库中随机提一台产品,求该产品是合格品的概率. 【答案】0.868 【解析】 【分析】利用条件概率公式,即可求解. 【详解】设B 表示从仓库中随机提出的一台产品是合格品,i A 表示从仓库中随机提出的一台产品是第i 车间生产的,1,2i =,则12B A B A B =+. 由题意,知()120.432P A ==+,()230.632P A ==+,()()120.85,0.88P BA PB A ==||,由全概率公式,得()()()()1122()|0.40.850.60.880.868P B P A P B A P A P B A =+=⨯+⨯=|.题型三 全概率公式例7.(2022·全国·高二课时练习)袋中有10个大小、材质都相同的小球,其中红球3个,白球7个.每次从袋中随机摸出1个球,摸出的球不再放回.求: (Ⅰ)第一次摸到红球的概率;(Ⅱ)在第一次摸到红球的条件下,第二次也摸到红球的概率; (Ⅲ)第二次摸到红球的概率. 【答案】(Ⅰ)310;(Ⅱ)29;(Ⅲ)310. 【解析】(Ⅰ)求出基本事件的总数和随机事件中基本事件的个数,从而可得所求的概率. (Ⅱ)第一次摸到红球后,还余下2个红球和7个白球,同(Ⅰ)可求概率. (Ⅲ)根据(Ⅰ)(Ⅱ)利用全概率公式可求第二次摸到红球的概率. 【详解】设事件A :第一次摸到红球;事件B :第二次摸到红球, 则事件A :第一次摸到白球.(Ⅰ)第一次从10个球中摸一个共10种不同的结果,其中是红球的结果共3种, 所以 3()10P A =. (Ⅱ)第一次摸到红球的条件下,剩下的9个球中有2个红球,7个白球,第二次从这9个球中摸一个共9种不同的结果,其中是红球的结果共2种. 所以2(|)9P B A =.(Ⅲ)32733()()(|)()(|)10910910P B P A P B A P A P B A =+=⨯+⨯=.所以第二次摸到红球的概率3 ()10P B=.【点睛】方法点睛:利用全概率公式计算随机事件B的概率时,注意把随机事件B分解为两个随机事件AB和AB,再利用条件概率公式计算两者的概率即可.规律方法全概率公式主要用于计算比较复杂事件的概率,它们实质上是加法公式和乘法公式的综合运用.例8.(2022·吉林·东北师大附中高二期末)现将两个班的艺术类考生报名表分别装进2个档案袋,第一个档案袋内有6名男生和4名女生的报名表,第二个档案袋内有5名男生和5名女生的报名表.随机选择一个档案袋,然后从中随机抽取2份报名表.(1)若选择的是第一个档案袋,求从中抽到两名男生报名表的概率;(2)求抽取的报名表是一名男生一名女生的概率.【答案】(1)13;(2)73 180.【解析】【分析】(1)选择的是第一个档案袋,从中随机抽取2份报名表,基本事件总数21045n C==,从中抽到两名男生报名表包含的基本事件个数为2615m C==,由此能求出从中抽到两名男生报名表的概率;(2)设事件i A表示抽取到第i个档案袋,(1,2)i=,设事件B表示抽取的报名表是一名男生一名女生,利用全概率公式能求出抽取的报名表是一名男生一名女生的概率.(1)(1)第一个档案袋内有6名男生和4名女生的报名表,选择的是第一个档案袋,从中随机抽取2份报名表,基本事件总数21045n C ==,从中抽到两名男生报名表包含的基本事件个数为2615m C ==,∴从中抽到两名男生报名表的概率151453m P n ===. (2)设事件i A 表示抽取到第i 个档案袋,(1,2)i =,设事件B 表示抽取的报名表是一名男生一名女生,则11()2P A =,21()2P A =,116412108(|)15C C P B A C ==,115522105(|)18C C P B A C ==,∴抽取的报名表是一名男生一名女生的概率为:()P B 1122815173(|)()(|)()152182180P B A P A P B A P A =+=⨯+⨯=. 例9.(2022·山东·德州市第一中学高二阶段练习)今年中国共产党迎来了建党100周年,为了铭记建党历史、缅怀革命先烈、增强爱国主义情怀,某区组织了党史知识竞赛活动.在最后一轮晋级比赛中,甲、乙、丙三所学校回答一道有关红色革命根据地建立时间的问题,已知甲校回答正确这道题的概率为34,甲、丙两所学校都回答正确这道题的概率是12,乙、丙两所学校都回答正确这道题的概率是14.若各学校回答这道题是否正确是互不影响的.(1)若规定三个学校都需要回答这个问题,求甲、乙、丙三所学校中至少1所学校回答正确这道题的概率;(2)若规定三所学校需要抢答这道题,已知甲校抢到答题机会的概率为25,乙校抢到的概率为310,丙校抢到的概率为310,求这个问题回答正确的概率. 【答案】(1)9196(2)4980【解析】 【分析】(1)设甲、乙、丙3校答对这道题的概率分别为()P A ,()P B ,()P C ,利用独立事件的概率公式结合题干条件列出方程,求解()P B ,()P C ,再利用对立事件的概率公式,即得解;(2)利用全概率公式结合题干条件,即得解 (1)记甲、乙、丙3校独自答对这道题分别为事件A ,B ,C ,分别设甲、乙、丙3校答对这道题的概率分别为()P A ,()P B ,()P C ,由于每人回答问题正确与否是相互独立的,因此A ,B ,C 是相互独立事件由题意可知()34P A =,()()12P A P C ⋅=,()()14P B P C ⋅=, 解得()38P B =,()23P C =.所以,乙答对这道题的概率为38,丙答对这道题的概率为23.甲、乙、丙三所学校中至少1所学校回答正确为事件D ,则概率为()P D ,其反面是三所学校都回答错误,即()()()()()()332511111148396P A P B P C ⎛⎫⎛⎫⎛⎫---=---= ⎪⎪⎪⎝⎭⎝⎭⎝⎭则三所学校中至少1所学校回答正确的概率为()59119696P D =-=;(2)若规定三所学校需要抢答这道题,则这个问题回答正确设为事件E ,得到抢答机会分别是事件1A ,2A ,3A ,则()125P A =,()2310P A =,()3310P A =,()134P AA =∣,()238PB A =∣,()323P C A =∣, 则()()()()()()()112233P E P A P AA P A PB A P A PC A =++∣∣∣ 233332495410810380=⨯+⨯+⨯= 这个问题回答正确的概率为4980. 题型四 贝叶斯公式例10.(2022·辽宁·高二阶段练习)2022年北京冬奥会的志愿者中,来自甲、乙、丙三所高校的人数分别为:甲高校学生志愿者7名,教职工志愿者2名;乙高校学生志愿者6名,教职工志愿者3名;丙高校学生志愿者5名,教职工志愿者4名.(1)从这三所高校的志愿者中各抽取一名,求这三名志愿者中既有学生又有教职工的概率;(2)先从三所高校中任选一所,再从这所高校的志愿者中任取一名,求这名志愿者是教职工志愿者的概率. 【答案】(1)5581 (2)13【解析】 【分析】(1)先求出这三名志愿者全是学生和全是教职工的概率,再由对立事件的概率关系可得答案(2)设事件D 为这名志愿者是教职工志愿者,事件1E 为选甲高校,事件2E 为选乙高校,事件3E 为选丙高校,由全概率公式可得答案. (1)设事件A 为从三所高校的志愿者中各抽取一名,这三名志愿者全是学生,则()76570999243P A =⨯⨯=;设事件B 为从三所高校的志愿者中各抽取一名,这三名志愿者全是教职工,则()2348999243P B =⨯⨯=;设事件C 为从三所高校的志愿者中各抽取一名,这三名志愿者中既有学生又有教职工,则()()()708551124324381P C P A P B =--=--=. (2)设事件D 为这名志愿者是教职工志愿者,事件1E 为选甲高校,事件2E 为选乙高校,事件3E 为选丙高校.()()()12313P E P E P E ===,()12|9P D E =,()23|9P D E =,()34|9P D E =.所以这名志愿者是教职工志愿者的概率为:()()()()()()()1122331213141|||3939393P D P E P D E P E P D E P E P D E =++=⨯+⨯+⨯=⋅规律方法 此类问题在实际中更为常见,它所求的是条件概率,是已知某结果发生条件下,求各原因发生的可能性大小.例11.(2022·全国·高二课时练习)设某公路上经过的货车与客车的数量之比是1:2,货车中途停车修车的概率为0.02,客车中途停车修车的概率为0.01.今有一辆汽车中途停车修理,求该车是货车的概率.【答案】12. 【解析】 【分析】由全概率公式计算出停车修理的概率,再由贝叶斯公式计算出结论. 【详解】记事件A 为经过的车是货车,事件B 是经过车是客车,事件C 是停车修理.1()3P A =,2()3P B =,(|)0.02P C A =,(|)0.01P C B =,121()()(|)()((|)0.020.013375P C P A P C A P B P C B =+=⨯+⨯=,所以10.02()13(|)1()275P AC P A C P C ⨯===. 例12.(2022·全国·高二课时练习)计算机中心有三台打字机A ,B ,C ,某打字员使用各台打字机打字的概率依次为0.6,0.3,0.1,打字机发生故障的概率依次为0.01,0.05,0.04.已知该打字员因打字机发生故障而耽误了工作进度,求该打字员使用A ,B ,C 打字的概率分别为多少.【答案】0.24;0.6;0.16 【解析】 【分析】设“该打字员因打字机发生故障而耽误了工作进度”为事件M ,“该打字员用A 打字”为事件1N ,“该打字员用B 打字”为事件2N ,“该打字员用C 打字”为事件3N ,则根据全概率公式与贝叶斯公式求解即可 【详解】设“该打字员因打字机发生故障而耽误了工作进度”为事件M , “该打字员用A 打字”为事件1N ,“该打字员用B 打字”为事件2N , “该打字员用C 打字”为事件3N , 则根据全概率公式有()()()130.60.010.30.050.10.040.025i i i P M P N P M N ===⨯+⨯+⨯=∑,根据贝叶斯公式,可得该打字员使用A ,B ,C 打字的概率分别为:()()()()1110.60.010.240.025P N P M N P N M P M ⨯===, ()()()()2220.30.050.60.025P N P M N P N M P M ⨯===, ()()()()3330.10.040.160.025P N P M N P N M P M ⨯===. 题型五 全概率公式与贝叶斯公式的综合应用例13.(2022·全国·高二课时练习)在数字通讯中,信号是由数字0和1的长序列组成的,由于随机干扰,发送的信号0或1各有可能错误接收为1或0.现假设发送信号为0和1的概率均为12;又已知发送信号为0时,接收为0和1的概率分别为0.7和0.3,发送信号为1时,接收为1和0的概率分别为0.9和0.1.求已知收到信号0时,发出的信号是0(即没有错误接收)的概率. 【答案】0.875 【解析】 【分析】设事件0A =“发送信号为0”,事件1A =“发送信号为1”,事件0B =“收到信号为0”,事件1B =“收到信号为1”,根据题意可得0A 与1A 构成一完备事件组,分别求出()()01P A P A ,,()00P B A ,()01P B A ,再根据()()()()()0000101P B P A P B A P A P B A =+求得()0P B ,再利用贝叶斯公式即可求出答案. 【详解】解:设事件0A =“发送信号为0”,事件1A =“发送信号为1”,事件0B =“收到信号为0”,事件1B =“收到信号为1”.因为收到信号为0时,除来自发送信号为0外,还有发送信号为1时,由于干扰接收的信号0,因此导致事件0B 发生的原因有事件0A 与1A ,且它们互不相容,故0A 与1A 构成一完备事件组.由题意有()()0112P A P A ==,()000.7P B A =,()010.1P B A =, 故()()()()()0000101110.70.10.422P B P A P B A P A P B A =+=⨯+⨯=.由贝叶斯公式得收到信号0时,发出的信号是0的概率为()()()()0000000.875P A P B A P A B P B ==.规律方法 P (A i )(i =1,2,…,n )是在没有进一步信息(不知道事件B 是否发生)的情况下,人们对诸事件发生可能性大小的认识,当有了新的信息(知道B 发生),人们对诸事件发生可能性大小P (A i |B )有了新的估计,贝叶斯公式从数量上刻画了这种变化. 例14.(2022·全国·高二课时练习)设甲、乙、丙三个地区爆发了某种流行病,三个地区感染此病的比例分别为17,15,14.现从这三个地区任抽取一个人,假设每个人来自三个地区的可能性相同. (1)求此人感染此病的概率;(2)若此人感染此病,求此人来自乙地区的概率.【答案】(1)83420;(2)2883.【解析】【分析】(1)应用全概率公式,求所抽取的人感染此病的概率即可;(2)利用贝叶斯概率公式可得()(|)(|)()P B P D BP B DP D=,即可求概率.【详解】(1)由题意,所抽取的人感染此病的概率111183()3754420P=⨯++=.(2)若,,A B C分别表示来自甲、乙、丙的事件,D表示感染此病的事件,∴此人感染此病且来自乙地区的概率11()(|)2835(|)83()83420P B P D BP B DP D⨯===.例15.(2022·全国·高二课时练习)设某工厂有甲、乙、丙三个车间,它们生产同一种工件,每个车间的产量占该厂总产量的百分比依次为25%,35%,40%,它们的次品率依次为5%,4%,2%.现从这批工件中任取一件.(1)求取到次品的概率;(2)已知取到的是次品,求它是甲车间生产的概率.(精确到0.01)【答案】(1)0.0345;(2)0.36.【解析】【分析】(1)根据题意,结合全概率公式,即可求解;(2)根据题意,结合条件概率计算公式,即可求解.设事件1B ,2B ,3B 分别表示取出的工件是甲、乙、丙车间生产的,A 表示“取到的是次品.易知1B ,2B ,3B 两两互斥,根据全概率公式,可得()()()130.250.050.350.040.40.020.0345i i i P A P B P A B ==∑=⨯+⨯+⨯=.故取到次品的概率为0.0345. (2)()()()()()()11110.250.050.360.0345P B P A B P AB P B A P A P A ⨯===≈.故已知取到的是次品,它是甲车间生产的概率为0.36.例16.(2022·江苏·高二课时练习)在数字通信中心信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知发送信号0时,接收为0和1的概率分别为0.9和0.1;发送信号1时,接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的. (1)分别求接收的信号为0和1的概率;(2)已知接收的信号为0,求发送的信号是1的概率. 【答案】(1)0.475,0.525 (2)119【解析】 【分析】(1)由全概率公式和对立事件概率公式计算. (2)由条件概率公式计算.设A =“发送的信号为0”,B =“接收到的信号为0”,则A =“发送的信号为1”,B =“接收到的信号为1”.由题意得()()0.5P A P A ==,(|)0.9P B A =,(|)0.1P B A =, (|)0.05P B A =,(|)0.95P B A =.()()(|)()(|)0.50.90.50.050.475P B P A P B A P A P B A =+=⨯+⨯=; ()1()10.4750.525P B P B =-=-=.(2)()(|)0.50.051(|)()0.47519P A P B A P A B P B ⨯===.例17.(2022·全国·高二课时练习)假设某种细胞分裂(每次分裂都是一个分裂成两个)和死亡的概率相同.如果一个种群从这样一个细胞开始变化,那么这个种群最终灭绝的概率是多少? 【答案】35054096【解析】 【分析】求出不分裂就灭绝,分裂1次,2次和3次灭绝的概率,4次以上,概率很小忽略不计,把不分裂和分裂前3次加起来作为这个种群最终灭绝的概率,需要用到条件概率 【详解】由题意得:该细胞分裂和死亡的概率均为12,设这个种群最终灭绝是事件A ,其中没有分裂就灭绝为事件0B ,分裂一次后灭绝为事件1B ,分裂两次后灭绝为事件2B ,分裂三次后灭绝为事件3B ,……,其中()012p B =,()21111228p B ⎛⎫=⨯= ⎪⎝⎭,()2224222212122222211111111111222224424p B C C C C ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯=+=+-⎢⎥⎢⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦225198264⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭ ()424446481234344441111111122222222p B C C C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4234444412344444111111151369112444424824096C C C C ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++=+-=-=⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦若分裂n 次后种群最终灭绝,则()11111112122224221222221111111122222222n n n nn n n n n p B C C C ---------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11111111112222212222222111111112444245182n n n n n n n n n n C C C ----------⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎢⎥⎢⎥=+++=+- ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭故当4n =时,()884510.0282p B ⎛⎫⎛⎫=-≈ ⎪ ⎪⎝⎭⎝⎭,随着n 的增大,()n p B 变得特别小,可忽略不计,故()1193693505286440964096p A ≈+++=【同步练习】 一、单选题1.(2022·山东济宁·一模)甲、乙两个箱子里各装有5个大小形状都相同的球,其中甲箱中有3个红球和2个白球,乙箱中有2个红球和3个白球.先从甲箱中随机取出一球放入乙箱中,再从乙箱中随机取出一球,则取出的球是红球的概率为( ) A .15B .1330C .1730D .1325【答案】B 【解析】【分析】根据全概率公式进行求解即可.【详解】设事件A表示从甲箱中随机取出一红球放入乙箱中,事件B表示从甲箱中随机取出一白球放入乙箱中,设事件C表示:从甲箱中随机取出一球放入乙箱中,再从乙箱中随机取出一球,则取出的球是红球,则有:331221 (),(),(),()562563P A P C A P B P C A======,所以312113 ()()()()()525330P C P A P C A P B P C B=+=⨯+⨯=,故选:B2.(2022·山东菏泽·一模)第24届冬奥会奥运村有智能餐厅A、人工餐厅B,运动员甲第一天随机地选择一餐厅用餐,如果第一天去A餐厅,那么第二天去A餐厅的概率为0.7;如果第一天去B餐厅,那么第二天去A餐厅的概率为0.8.运动员甲第二天去A 餐厅用餐的概率为()A.0.75B.0.7C.0.56D.0.38【答案】A【解析】【分析】第2天去哪家餐厅用餐的概率受第1天在哪家餐厅用餐的影响,可根据第1天可能去的餐厅,将样本空间表示为“第1天去A餐厅”和“第1天去B餐厅”两个互斥事件的并,利用全概率公式求解.【详解】设1A=“第1天去A餐厅用餐”,1B=“第1天去B餐厅用餐”,2A =“第2天去A 餐厅用餐”,则11A B Ω=⋃,且1A 与1B 互斥,根据题意得:()()110.5P A P B ==,()210.7P A A =,()210.8P A B =, 则()()()()()21211210.50.70.50.80.75P A P A P A A P B P A B =+=⨯+⨯=. 故选:A.3.(2022·全国·高二单元测试)太行山脉有很多优美的旅游景点.现有甲、乙两位游客慕名来到太行山脉,都准备从C 、D 、E 、F ,4个著名旅游景点中随机选择一个游玩.设事件A 为“甲和乙至少一人选择C ”,事件B 为“甲和乙选择的景点不同”,则条件概率()P B A =( )A .716B .78C .37D .67【答案】D 【解析】 【分析】由独立乘法公式、互斥事件加法公式求()P A 、()P A B ⋂,再利用条件概率公式求()P B A 即可. 【详解】由题设,甲乙选景点C 的概率为14,选其它景点的概率为34,则()2102213137444416P A C C ⎛⎫⎛⎫⎛⎫⎛⎫=+= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,12136()()()4416P A B C ⋂==,所以()()6()7P A B P B A P A ⋂==. 故选:D4.(2022·江苏高邮·高三开学考试)某校高三年级要从5名男生和2名女生中任选3名代表参加数学竞赛(每人被选中的机会均等),则在男生甲被选中的情况下,男生乙和女生丙至少一个被选中的概率是()A.15B.25C.35D.45【答案】C 【解析】【分析】基本事件总数121615n C C==,男生乙和女生丙至少一个被选中包含的基本事件个数11112 124129m C C C C C=+=,由此能求出男生乙和女生丙至少一个被选中的概率.【详解】某校高三年级要从5名男生和2名女生中任选3名代表参加数学竞赛(每人被选中的机会均等),在男生甲被选中的情况下,基本事件总数121615n C C==,男生乙和女生丙至少一个被选中包含的基本事件个数:11112 124129m C C C C C=+=,∴男生乙和女生丙至少一个被选中的概率是93155mpn===.故选:C.5.(2022·广东深圳·一模)假定生男孩和生女孩是等可能的,现考虑有3个小孩的家庭,随机选择一个家庭,则下列说法正确的是()A.事件“该家庭3个小孩中至少有1个女孩”和事件“该家庭3个小孩中至少有1个男孩”是互斥事件B.事件“该家庭3个孩子都是男孩”和事件“该家庭3个孩子都是女孩”是对立事件C.该家庭3个小孩中只有1个男孩的概率为1 8D.当已知该家庭3个小孩中有男孩的条件下,3个小孩中至少有2个男孩的概率为4 7【答案】D【解析】【分析】根据互斥事件和对立事件的概念判断A、B;利用列举法求出只有一个男孩的概率,即可判断C;利用条件概率的求法计算,即可判断D.【详解】A:假设事件A:该家庭3个小孩至少有1个女孩,则包含(女,男,男)的可能,事件B:该家庭3个小孩至少有一个男孩,则包含(女,女,男)的可能,所以A B⋂≠∅,故A错误;B:事件“3个孩子都是男孩”与事件“3个孩子都是女孩”不可能同时发生,是互斥但不对立事件,故B错误;C:3个小孩可能发生的事件如下:男男男、男男女、男女女、男女男、女女女、女女男、女男女、女男男共8种,其中只有一个男孩的概率为:38P=,故C错误;D:设M={至少一个有男孩},N={至少有2个男孩},由选项C可知,()4()7n MN n M==,,所以()4()()7n MNP M Nn M==,故D正确.故选:D6.(2022·全国·模拟预测)从3个“0”和3个“1”中任选3个组成三位数组,若用A表示“第二位数字为‘0’的事件”,用B表示“第一位数字为‘0’的事件”,则)(P A B 等于( ).A .25B .34C .12D .18【答案】C 【解析】 【分析】由条件概率的计算公式即可求解. 【详解】解:由“0”“1”组成的三位数组共有2228⨯⨯=(个),第一位数字为“0”的三位数组有224⨯=(个),则)(4182P B ==,第一位和第二位数字均为“0”的三位数组有2个,则)(2184P AB ==,所以)()()(12P AB P A B P B ==. 故选:C.7.(2022·安徽亳州·高二期末)某种疾病的患病率为0.5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人验血结果为阳性,患者中有2%的人验血结果为阴性,随机抽取一人进行验血,则其验血结果为阳性的概率为( ) A .0.0689B .0.049C .0.0248D .0.02 【答案】C 【解析】 【分析】根据全概率公式即可求出.【详解】随机抽取一人进行验血,则其验血结果为阳性的概率为P =()()0.5%12%10.5%2%⨯-+-⨯=0.0248.故选:C .8.(2022·全国·高二)深受广大球迷喜爱的某支足球队在对球员的使用上总是进行数据分析,根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为0.2,0.5,0.2,0.1,当乙球员担当前锋、中锋、后卫以及守门员时,球队输球的概率依次为0.4,0.2,0.6,0.2.当乙球员参加比赛时,该球队某场比赛不输球的概率为( ) A .0.3B .0.32C .0.68D .0.7 【答案】C 【解析】 【分析】利用全概率公式可求球队某场比赛不输球的概率. 【详解】设1A 表示“乙球员担当前锋”,2A 表示“乙球员担当中锋”,3A 表示“乙球员担当后卫”,4A 表示“乙球员担当守门员”,B 表示“当乙球员参加比赛时,球队输球”. 则()()()()()()()()()12341234P B P A P B A P A P B A P A P B A P A P B A =+++0.20.40.50.20.20.60.10.20.32=⨯+⨯+⨯+⨯=,所以当乙球员参加比赛时,该球队某场比赛不输球的概率为10.320.68-=. 故选:C . 二、多选题9.(2022·全国·模拟预测)有两个箱子,第1个箱子有3个白球,2个红球,第2个箱子有4个白球,4个红球,现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中随机取1个球放到第1个箱子里,则下列判断正确的是()A.从第2个箱子里取出的球是白球的概率为23 45B.从第2个箱子里取出的球是红球的概率为22 45C.从第2个箱子里取出的球是白球前提下,则再从第1个箱子里取出的是白球的概率为15 23D.两次取出的球颜色不同的概率为5 9【答案】ABC【解析】【分析】对于ABD,根据互斥事件和独立事件的概率公式求解,对于C,根据条件概率的公式求解即可【详解】从第2个箱子里取出的球是白球的概率为352423595945⨯+⨯=,故选项A正确;从第2个箱子里取出的球是红球的概率为342522595945⨯+⨯=,故选项B正确;设从第2个箱子取出的球是白球为事件A,再从第1个箱子取出的球是白球为事件B,则()()()351559232345P ABP B AP A ⨯===,故选项C正确;两次取出的球颜色不同的概率为3424459599⨯+⨯=,故选项D错误,10.(2022·山东·青岛二中高三开学考试)从有大小和质地相同的3个红球和2个蓝球的袋子中,每次随机摸出1个球,摸出的球不再放回,则().A.第一次摸到红球的概率为3 5B.第二次摸到红球的概率为3 5C.在第一次摸到蓝球的条件下,第二次摸到红球的概率为4 5D.在前两次都摸到蓝球的条件下,第三次摸到红球的概率为23【答案】AB【解析】【分析】根据对古典概型的理解直接计算,即可判断A;根据独立重复试验的概率公式直接计算,即可判断B;根据对条件概率的理解,即可判断C、D.【详解】第一次摸到红球的概率为33325=+,则A正确;第二次摸到红球的概率为3223354545⨯+⨯=,则B正确;在第一次摸到蓝球的条件下,第二次摸到红球,相当于从4个球中摸出1个红球,其概率为34,则C错误;在前两次都摸到蓝球的条件下,第三次摸到红球相当于从3个球中摸出1个红球,其概率为1,则D错误.。
数学专题复习一个很有趣的条件概率问题:三扇门问题昨天看一片电影《玩转21点》,片中有一个很趣的概率问题。
片中涉及的那个车和羊的问题也被称作蒙提霍尔问题(Monty Hall Problem)或三门问题,是一个源自博弈论的数学游戏问题,大致出自美国的电视游戏节目“Let's Make a Deal”。
问题的名字来自该节目的主持人蒙提·霍尔(Monty Hall)。
这个游戏的玩法是:参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门就可以赢得该汽车,而另外两扇门后面则各藏有一只山羊。
当参赛者选定了一扇门,但未去开启它的时候,节目主持人会开启剩下两扇门的其中一扇,露出其中一只山羊。
主持人其后会问参赛者要不要换另一扇仍然关上的门。
明确的限制条件如下:参赛者在三扇门中挑选一扇。
他并不知道内里有什么。
主持人知道每扇门后面有什么。
主持人必须开启剩下的其中一扇门,并且必须提供换门的机会。
主持人永远都会挑一扇有山羊的门。
如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。
如果参赛者挑了一扇有汽车的门,主持人随机在另外两扇门中挑一扇有山羊的门。
参赛者会被问是否保持他的原来选择,还是转而选择剩下的那一道门。
请问如果是你,你会做哪种选择,哪个选择得到车的概率会更大呢?讨论:•当参赛者转向另一扇门而不是继续维持原先的选择时,赢得汽车的机会将会加倍。
解释如下:有三种可能的情况,全部都有相等的可能性(1/3)︰参赛者挑山羊一号,主持人挑山羊二号。
转换将赢得汽车。
参赛者挑山羊二号,主持人挑山羊一号。
转换将赢得汽车。
参赛者挑汽车,主持人挑两头山羊的任何一头。
转换将失败。
在头两种情况,参赛者可以通过转换选择而赢得汽车。
第三种情况是唯一一种参赛者通过保持原来选择而赢的情况。
因为三种情况中有两种是通过转换选择而赢的,所以通过转换选择而赢的概率是2/3。
•历史上这个问题刚被提出的时候却引起了相当大的争议。
高考数学冲刺条件概率考点精讲高考对于每一位学子来说都是人生中的一次重要挑战,而数学作为其中的关键学科,更是让众多考生为之努力拼搏。
在高考数学中,概率问题一直是一个重要的考点,其中条件概率更是让不少同学感到困惑。
在高考冲刺阶段,掌握好条件概率的相关知识,对于提高数学成绩至关重要。
接下来,就让我们一起深入了解条件概率这个考点。
一、什么是条件概率在概率论中,条件概率是指事件 A 在事件 B 发生的条件下发生的概率。
记为 P(A|B),其计算公式为:P(A|B) = P(AB) / P(B) (其中P(AB) 表示事件 A 和事件 B 同时发生的概率)。
为了更好地理解条件概率,我们来看一个简单的例子。
假设一个盒子里有 5 个红球和 3 个白球,从中随机取出一个球,不放回,再取一个球。
第一次取出红球的概率为 5/8,在第一次取出红球的条件下,第二次取出红球的概率就发生了变化。
此时盒子里剩下 4 个红球和 3 个白球,所以第二次取出红球的概率为 4/7。
这就是条件概率的一个直观体现。
二、条件概率的性质1、非负性:对于任意事件 A 和 B,条件概率 P(A|B) 大于等于 0。
2、规范性:如果 B 是必然事件,那么 P(A|B) = P(A)。
3、可加性:如果 A1、A2、、An 是两两互斥的事件,那么P(∪Ai|B) =∑P(Ai|B) 。
三、条件概率的计算方法1、公式法如前面所提到的,直接运用公式 P(A|B) = P(AB) / P(B) 进行计算。
但在实际应用中,需要先求出 P(AB) 和 P(B) 的值。
2、缩小样本空间法当样本空间缩小为事件 B 发生的情况时,计算事件 A 在这个缩小后的样本空间中发生的概率。
四、条件概率与独立事件的关系独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响。
如果事件 A 和事件 B 相互独立,那么 P(A|B) = P(A) ,P(B|A) =P(B) 。
反之,如果P(A|B) ≠ P(A) 或者P(B|A) ≠ P(B) ,则事件 A 和事件 B不相互独立。
版高考数学一轮总复习概率与统计中的条件概率计算1.条件概率的定义和计算方法:条件概率是指在其中一条件下事件发生的概率。
设A、B为两个事件,且P(B)不为0,则事件B发生的条件下事件A发生的概率记为P(A,B)。
条件概率的计算方法如下:P(A,B)=P(A∩B)/P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
若事件A与事件B相互独立,则有P(A,B)=P(A),即事件B的发生与事件A的发生无关。
2.条件概率的应用举例:考虑一个简单的例子:一袋中有红球和蓝球,总共有10个球,其中4个是红球,6个是蓝球。
现在从袋中随机取出一个球,如果这个球是红球,则把它放回袋中;如果是蓝球,则把它放回袋外。
然后再次从袋中随机取出一个球。
求第二次取出的球是红球的概率。
设事件A表示第二次取出的球是红球,事件B表示第一次取出的球是红球。
根据题意,我们可以知道P(B)=4/10=2/5,也就是说第一次取出的球是红球的概率为2/5、又因为第一次取出的球是红球,所以袋中的球数不变,红球数仍为4个,蓝球数仍为6个。
因此根据袋中球数,我们可以知道第二次取出的球是红球的概率为P(A,B)=4/10=2/5,与第一次取出的球是否为红球无关。
从这个例子可以看出,事件B对事件A的发生没有影响,即事件B的发生与事件A的发生是相互独立的。
3.乘法定理:乘法定理是条件概率的一个重要定理。
设A、B为两个事件,且P(B)不为0,则有:P(A∩B)=P(B)×P(A,B)乘法定理的应用举例:假设一个班级中有50人,其中30人喜欢数学,20人喜欢物理,15人同时喜欢数学和物理。
现在从这个班级中随机选择一名同学,他同时喜欢数学和物理的概率是多少?设事件A表示该同学喜欢数学,事件B表示该同学喜欢物理。
根据题意可以知道P(A)=30/50=3/5,P(B)=20/50=2/5,P(A∩B)=15/50=3/10。
专题04条件概率与全概率公式(4个知识点2个拓展1个突破7种题型1个易错点)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.条件概率知识点2.乘法公式知识点3.全概率公式知识点4.贝页斯公式拓展1.条件概率的求解拓展2.全概率公式的应用突破:全概率公式与贝叶斯公式的应用【方法二】实例探索法题型1.条件概率的概念与计算题型2.事件的独立性与条件概率的关系题型3.乘法公式的应用题型4条件概率的综合应用题型5.全概率公式的应用题型6.贝叶斯公式的应用题型7.全概率公式与贝叶斯公式的综合应用【方法三】差异对比法易错点:混淆“条件概率”与“交事件的概率”【方法四】成果评定法【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.条件概率一、条件概率的概念一般地,设A ,B 为两个随机事件,且P (A )>0,我们称P (B |A )=P AB P A 为在事件A 发生的条件下,事件B 发生的条件概率.二、 条件概率的性质设P (A )>0,则(1)P (Ω|A )=1.(2)如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).(3)设B 和B 互为对立事件,则P (B |A )=1-P (B |A ).例1.单选题(2024·全国·模拟预测)我国的生态环境越来越好,旅游的人越来越多.现有两位游客慕名来江苏旅游,他们分别从“太湖鼋头渚、苏州拙政园、镇江金山寺、常州恐龙园、南京夫子庙、扬州瘦西湖”这6个景点中随机选择1个景点游玩.记事件A 为“两位游客中至少有一人选择太湖鼋头渚”,事件B 为“两位游客选择的景点相同”,则()P B A 等于( ) A .111 B .211 C .19 D .29知识点2.乘法公式对任意两个事件A 与B ,若P (A )>0,则P (AB )=P (A )P (B |A )为概率的乘法公式.例2.填空题(2024上·山东滨州·高三统考期末)甲和乙两个箱子中各装有10个除颜色外完全相同的球,其中甲箱中有4个红球、3个白球和3个黑球,乙箱中有5个红球、2个白球和3个黑球.先从甲箱中随机取出一球放入乙箱,分别用1A 、2A 和3A 表示由甲箱取出的球是红球、白球和黑球的事件;再从乙箱中随机取出一球,用B 表示由乙箱取出的球是红球的事件,则()2P A B =知识点3.全概率公式一般地,设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,有P (B )= 1n i =∑P (A i )P (B |A i ),我们称该公式为全概率公式.例3.多选题(2024上·湖南长沙·高三湖南师大附中校考阶段练习)今年是共建“一带一路”倡议提出十周年.某校进行“一带一路”知识了解情况的问卷调查,为调动学生参与的积极性,凡参与者均有机会获得奖品.设置3个不同颜色的抽奖箱,每个箱子中的小球大小相同质地均匀,其中红色箱子中放有红球3个,黄球2个,绿球2个;黄色箱子中放有红球4个,绿球2个;绿色箱子中放有红球3个,黄球2个,要求参与者先从红色箱子中随机抽取一个小球,将其放入与小球颜色相同的箱子中,再从放入小球的箱子中随机抽取一个小球,抽奖结束.若第二次抽取的是红色小球,则获得奖品,否则不能获得奖品,已知甲同学参与了问卷调查,则( ) A .在甲先抽取的是黄球的条件下,甲获得奖品的概率为47 B .在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为1314C .甲获得奖品的概率为2449D .若甲获得奖品,则甲先抽取绿球的机会最小知识点4.贝叶斯公式设A 1,A 2,…,A n 是一组两两互斥的事件,A 1∪A 2∪…∪A n =Ω,且P (A i )>0,i =1,2,…,n ,则对任意的事件B ⊆Ω,P (B )>0,有P (A i |B )=P A i P B |A i P B = 1()(B )()(B )i i n k ki P A P A P A P A =∑,i =1,2,…,n .例4.(2023·全国·高二随堂练习)现在一些大的建筑工程都实行招投标制.在发包过程中,对参加招标的施工企业的资质(含施工质量、信誉等)进行调查和评定是非常重要的.设B =“被调查的施工企业资质不好”,A =“被调查的施工企业资质评定为不好”.由过去的资料知()0.97P A B =,()0.95P A B =.现已知在被调查的施工企业当中有6%确实资质不好,求评定为资质不好的施工企业确实资质不好的概率(精确到0.01).拓展1.条件概率的求解1.(2024·广东肇庆·统考模拟预测)小明去书店买了5本参考书,其中有2本数学,2本物理,1本化学.小明从中随机抽取2本,若2本中有1本是数学,则另1本是物理或化学的概率是 . 拓展2.全概率公式的应用2.(2024上·福建泉州·高三统考期末)一个袋子中有10个大小相同的球,其中红球7个,黑球3个.每次从袋中随机摸出1个球,摸出的球不再放回.(1)求第2次摸到红球的概率;(2)设第1,2,3次都摸到红球的概率为1P ;第1次摸到红球的概率为2P ;在第1次摸到红球的条件下,第2次摸到红球的概率为3P ;在第1,2次都摸到红球的条件下,第3次摸到红球的概率为4P .求1234,,,P P P P ;(3)对于事件,,A B C ,当()0P AB >时,写出()()()(),,,P A P BA P C AB P ABC ∣∣的等量关系式,并加以证明.突破:全概率公式与贝叶斯公式的应用1.多选题(2024上·辽宁抚顺·高二校联考期末)在某班中,男生占40%,女生占60%,在男生中喜欢体育锻炼的学生占80%,在女生中喜欢体育锻炼的学生占60%,从这个班的学生中任意抽取一人.则下列结论正确的是()【方法二】实例探索法题型1.条件概率的概念与计算1.(2024上·天津和平·高三统考期末)将3个黑球和2个白球放入一个不透明的盒中,各球除颜色不同外完全相同,现从盒中两次随机抽取球,每次抽取一个球.(ⅰ)若第一次随机抽取一个球之后,将抽取出来的球放回盒中,第二次随机抽取一个球,则两次抽到颜色相同的球的概率是;(ⅱ)若第一次随机抽取一个球之后,抽取出来的球不放回盒中,第二次从盒中余下的球中随机抽取一个球,则在已知两次抽取的球颜色相同的条件下,第一次抽取的球是白球的概率是.题型2.事件的独立性与条件概率的关系2.多选题(2023上·山东德州·高二校考阶段练习)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球(球除颜色外,大小质地均相同).先从甲罐中随机取出一球放入乙罐,分别A和3A表示由甲罐中取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B表示由以1A,2题型3.乘法公式的应用3.(2024上·上海·高二校考期末)某校中学生篮球队集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练都从中任意取出2个球,用完后放回.已知第题型4条件概率的综合应用4.(2024上·天津河北·高三统考期末)甲乙两人射击,甲射击两次,乙射击一次.甲每次射击命中的概题型5.全概率公式的应用5.(2024·贵州·校联考模拟预测)甲、乙、丙为完全相同的三个不透明盒子,盒内均装有除颜色外完全相同的球.甲盒装有4个白球,8个黑球,乙盒装有1个白球,5个黑球,丙盒装有3个白球,3个黑球.(1)随机抽取一个盒子,再从该盒子中随机摸出1个球,求摸出的球是黑球的概率;(2)已知(1)中摸出的球是黑球,求此球属于乙箱子的概率.题型6.贝叶斯公式的应用6.(2023·全国·高二随堂练习)某一地区患有癌症的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04.现抽查了一个人,试验反应是阳性,则此人是癌症患者的概率有多大?题型7.全概率公式与贝叶斯公式的综合应用7.(2024·天津·校考模拟预测)第三次人工智能浪潮滚滚而来,以ChatGPT 发布为里程碑,开辟了人机自然交流的新纪元.ChatGPT 所用到的数学知识并非都是遥不可及的高深理论,概率就被广泛应用于ChatGPT 中,某学习小组设计了如下问题进行研究:甲和乙两个箱子中各装有5个大小相同的小球,其中甲箱中有3个红球、2个白球,乙箱中有4个红球、1个白球,从甲箱中随机抽出2个球,在已知抽到红箱子中随机抽出1个球;如果点数大于等于5,从乙箱子中随机抽出1个球,若抽到的是红球,则它是来【方法三】差异对比法易错点:混淆“条件概率”与“交事件的概率”1.判断题(2023上·高二课时练习)判断正误(正确的填“正确”,错误的填“错误”) (1)()()|P B A P AB <.( )(2)事件A 发生的条件下,事件B 发生的概率,相当于,A B 同时发生的概率.( )(3)()|0P A A =.( )(4)()()||P B A P A B =.( )【方法五】 成果评定法一、单选题1.(2023下·浙江·高二校联考阶段练习)从1,2,3,4,5,6,7,8,9中依次不放回地取2个数,事件A 为“第2.(2021·高二课时练习)英国数学家贝叶斯(17011763)在概率论研究方面成就显著,创立了贝叶斯有一种试剂可以检验被检者是否患病.已知该试剂的准确率为99%,即在被检验者患病的前提下用该试剂检测,有99%的可能呈现阳性;该试剂的误报率为10%,即在被检验者未患病的情况下用该试剂检测,有10%的可能会误报阳性.现随机抽取该地区的一个被检验者,用该试剂来检验,结果呈现阳性的概率为( )A .0.01B .0.0099C .0.1089D .0.13.(2021上·山东淄博·高三统考阶段练习)甲袋中有5个白球、1个红球,乙袋中有4个白球、2个红4.(2023下·江苏·高二校联考阶段练习)从3,4,5,6,7,8中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P (B|A )等于( )A .0.5B .0.4C .0.25D .0.1256.(2022下·江苏泰州·高二泰州中学校考期中)医生按照某流行病检验指标将人群分为感染者和正常者,针对该病的快速检验试剂有阴性和阳性2种结果.根据前期研究数据,该试剂将感染者判为阳性的概率是80%,将正常者判为阳性的概率是10%.专家预测,某小区有5%的人口感染了该病,则在单次检验的8.(2023上·湖北·高三校联考阶段练习)某人从A 地到B 地,乘火车、轮船、飞机的概率分别为0.3,0.3,0.4,乘火车迟到的概率为0.2,乘轮船迟到的概率为0.3,乘飞机迟到的概率为0.4,则这个人从A 地到B 地迟到的概率是( )A .0.16B .0.31C .0.4D .0.32 二、多选题9.(2023·全国·模拟预测)某儿童乐园有甲、乙两个游乐场,小王同学第一天去甲、乙两家游乐场游玩的概率分别为0.4和0.6.如果他第一天去甲游乐场,那么第二天去甲游乐场的概率为0.6;如果第一天去乙游乐场,那么第二天去甲游乐场的概率为0.5,则王同学( )10.(2023下·重庆沙坪坝·高二重庆一中校考阶段练习)已知编号为1,2,3的三个盒子,其中1号盒子内装有两个1号球,一个2号球和一个3号球;2号盒子内装有两个1号球,一个3号球;3号盒子内装有三个1号球,两个2号球.若第一次先从1号盒子内随机抽取1个球,将取出的球放入与球同编号的盒子中,第二次从该盒子中任取一个球,则下列说法正确的是( )11.(2023下·辽宁抚顺·高二校联考期中)已知,A B 为两个随机事件,且()0,()0P A P B >>,则下列结论正确的是( )12.(2024上·河南南阳·高三方城第一高级中学校联考期末)某公司成立了甲、乙、丙三个科研小组,三、填空题13.(2023下·湖南·高二临澧县第一中学校联考期中)从编号为1~5号的球中随机抽取一个球,记编号为i ,再从剩下的球中取出一个球,记编号为j ,在i j <的条件下,2j i <+的概率为 . 14.一只袋内装有大小相同的3个白球,4个黑球,从中依次取出2个小球,已知第一次取出的是黑球,则第二次取出白球的概率是 .15.(2023下·北京西城·高二统考期末)抛掷甲、乙两枚质地均匀的骰子,在甲骰子的点数为奇数的条件下,乙骰子的点数不小于甲骰子点数的概率为 .16. 10张奖券中有3张是有奖的,某人从中依次抽两张,则在第一次抽到中奖券的条件下,第二次也抽到中奖券的概率为 .四、解答题17.(2023上·重庆北碚·高二西南大学附中校考期中)为了考察学生对高中数学知识的掌握程度,准备了甲、乙两个不透明纸箱.其中,甲箱有2道概念叙述题,2道计算题;乙纸箱中有2道概念叙述题,3道计算题(所有题目均不相同).现有A ,B 两个同学来抽题回答;每个同学在甲或乙两个纸箱中逐个随机抽取两道题作答.每个同学先抽取1道题作答,答完题目后不放回,再抽取一道题作答(不在题目上作答).两道题答题结束后,再将这两道题目放回原纸箱.(1)如果A 同学从甲箱中抽取两道题,则第二题抽到的是概念叙述题的概率;(2)如果A 同学从甲箱中抽取两道题,解答完后,误把题目放到了乙箱中.B 同学接着抽取题目回答,若他(2)若在三个年级中随机抽取1名学生是志愿者,根据以上表中所得数据,求该学生来自于高一年级的概率.。
数学专题复习
一个很有趣的条件概率问题:三扇门问题
昨天看一片电影《玩转21点》,片中有一个很趣的概率问题。
片中涉及的那个车和羊的问题也被称作蒙提霍尔问题(Monty Hall Problem)或三门问题,是一个源自博弈论的数学游戏问题,大致出自美国的电视游戏节目
“Let's Make a Deal”。
问题的名字来自该节目的主持人蒙提·霍尔(Monty Hall)。
这个游戏的玩法是:参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门就可以赢得该汽车,而另外两扇门后面则各藏有一只山羊。
当参赛者选定了一扇门,但未去开启它的时候,节目主持人会开启剩下两扇门的其中一扇,露出其中一只山羊。
主持人其后会问参赛者要不要换另一扇仍然关上的门。
明确的限制条件如下:
参赛者在三扇门中挑选一扇。
他并不知道内里有什么。
主持人知道每扇门后面有什么。
主持人必须开启剩下的其中一扇门,并且必须提供换门的机会。
主持人永远都会挑一扇有山羊的门。
如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。
如果参赛者挑了一扇有汽车的门,主持人随机在另外两扇门中挑一扇有山羊的门。
参赛者会被问是否保持他的原来选择,还是转而选择剩下的那一道门。
请问如果是你,你会做哪种选择,哪个选择得到车的概率会更大呢?
讨论:
•当参赛者转向另一扇门而不是继续维持原先的选择时,赢得汽车的机会将会加倍。
解释如下:
有三种可能的情况,全部都有相等的可能性(1/3)︰
参赛者挑山羊一号,主持人挑山羊二号。
转换将赢得汽车。
参赛者挑山羊二号,主持人挑山羊一号。
转换将赢得汽车。
参赛者挑汽车,主持人挑两头山羊的任何一头。
转换将失败。
在头两种情况,参赛者可以通过转换选择而赢得汽车。
第三种情况是唯一一种参赛者通过保持原来选择而赢的情况。
因为三种情况中有两种是通过转换选择而赢的,所以通过转换选择而赢的概率是2/3。
•历史上这个问题刚被提出的时候却引起了相当大的争议。
这个问题源自美国电视娱乐节目Let’s Make a Deal,内容如前所述。
作为吉尼斯世界纪录中智商最高的人,Savant在Parade Magazine对这一问题的解答是应该换,因为换了之后有2/3的概率赢得车,不换的话概率只有1/3。
她的这一解答引来了大量读者信件,认为这个答案太荒唐了。
因为直觉告诉人们:如果被打开的门后什么都没有,这个信息会改变剩余的两种选择的概率,哪一种都只能是1/2。
持有这种观点的大约有十分之一是来自数学或科学研究机构,有的人甚至有博士学位。
还有大批报纸专栏作家也加入了声讨
Savant的行列。
在这种情况下,Savant向全国的读者求救,有数万名学生进行了模拟试验。
一个星期后,实验结果从全国各地飞来,是2/3和1/3。
随后,MIT的数学家和阿拉莫斯国家实验室的程序员都宣布,他们用计算机进行模拟实验的结果,支持了Savant的答案。
•可以看出,这是一个概率论和人的直觉不太符合的例子,这告诉我们在做基于量化的判断的时候,要以事实和数据为依据,而不要凭主观来决定。
否则,想当然的结果往往会在我们不自知的情况下,把我们引入歧途。
如片中的老师所说:在校园里骑车可比骑头羊要酷多了。
问题是你要做出正确的选择,而这需要以事实为依据。
因此有些时候,你选择股票或大盘趋势,不能以感情为基础,要根据事实。
•Even when given a completely unambiguous statement of the Monty Hall problem, explanations, simulations, and formal mathemati cal proofs, many people still meet the correct answer with disbe lief.
•这个问题我是这么看的:换,就意味着认为第一次是选错的;不换,就意味着认为第一次选的是对的。
第一次选错的的概率是2/3;第一次选对的概率是1/3。
第二次选择其实不是1/2的概率,是100%,因为你的行为是对第一次选择的确认。
基于第一次选错的概率大,所以,应该换。