空间自相关统计量备课讲稿
- 格式:doc
- 大小:56.00 KB
- 文档页数:7
空间自相关分析1.1 自相关分析空间自相关分析是指邻近空间区域单位上某变量的同一属性值之间的相关程度,主要用空间自相关系数进行度量并检验区域单位的这一属性值在空间区域上是否具有高高相邻、低低相邻或者高低间错分布,即有无聚集性。
若相邻区域间同一属性值表现出相同或相似的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域也高(低),则称为空间正相关;若相邻区域间同一属性值表现出不同的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域低(高),则称为空间负相关;若相邻区域间同一属性值不表现任何依赖关系,即呈随机分布,则称为空间不相关。
空间自相关分析分为全局空间自相关分析和局部空间自相关分析,全局自相关分析是从整个研究区域内探测变量在空间分布上的聚集性;局域空间自相关分析是从特定局部区域内探测变量在空间分布上的聚集性,并能够得出具体的聚集类型及聚集区域位置,常用的方法有Moran's I 、Gear's C 、Getis 、Morans 散点图等。
1.1.1 全局空间自相关分析全局空间自相关分析主要用Moran's I 系数来反映属性变量在整个研究区域范围内的空间聚集程度。
首先,全局Moran's I 统计法假定研究对象之间不存在任何空间相关性,然后通过Z-score 得分检验来验证假设是否成立。
Moran's I 系数公式如下:112111()()I ()()n nij i j i j n nnij i i j i n w x x x x w x x =====--=-∑∑∑∑∑(式 错误!文档中没有指定样式的文字。
-1)其中,n 表示研究对象空间的区域数;i x 表示第i 个区域内的属性值,j x 表示第j 个区域内的属性值,x 表示所研究区域的属性值的平均值;ij w 表示空间权重矩阵,一般为对称矩阵。
Moran's I 的Z-score 得分检验为:Z =式 错误!文档中没有指定样式的文字。
空间相关和空间自相关以空间相关和空间自相关为题,本文将探讨空间相关的概念、应用以及空间自相关的原理和作用。
一、空间相关的概念和应用空间相关是指在地理空间中,不同地点之间存在的相关性。
它是地理学中一个重要的概念,用于描述地理现象在空间上的分布规律和相互关系。
空间相关的研究对于理解地理现象、预测未来趋势以及制定相应的管理和决策非常重要。
空间相关有两种基本形式:正相关和负相关。
正相关表示两个地点的特征值在空间上呈现相似的分布规律,即一个地点的特征值的增加或减少与另一个地点的特征值的增加或减少是同步的。
负相关则表示两个地点的特征值在空间上呈现相反的分布规律,即一个地点的特征值的增加或减少与另一个地点的特征值的增加或减少是相反的。
空间相关的应用广泛,例如在城市规划中,可以利用空间相关分析来确定不同区域的发展趋势和相互关系,从而为城市的合理布局和规划提供科学依据。
在环境保护领域,可以利用空间相关研究分析不同地区的环境污染程度和相互影响,以制定相应的环境保护政策和措施。
在农业生产中,可以利用空间相关分析来确定不同地区的土壤质量和适宜作物的种植,从而提高农业生产的效益。
二、空间自相关的原理和作用空间自相关是指地理现象在空间上的自相关性。
它是空间统计学中的一个重要概念,用于描述地理现象在空间上的自我关联程度。
空间自相关的研究对于揭示地理现象的内在规律和空间结构,以及解释地理现象的空间分布和相互作用机制非常重要。
空间自相关的原理基于地理现象的空间分布规律和相互作用机制。
如果一个地理现象在空间上呈现出聚集的分布规律,即相似的特征值更有可能在空间上相邻地点之间出现,那么可以说这个地理现象具有正的空间自相关。
反之,如果一个地理现象在空间上呈现出分散的分布规律,即相似的特征值更有可能在空间上远离的地点之间出现,那么可以说这个地理现象具有负的空间自相关。
空间自相关的作用是揭示地理现象的空间结构和相互作用机制。
通过空间自相关分析,可以确定地理现象的空间分布规律和相互关系,从而为地理现象的研究和解释提供依据。
《空间统计与分析》教学大纲一、课程基本信息1.课程代码:211227002.课程中文名称:空间统计与分析课程英文名称:Spatial Statistics and Analysis3.面向对象:地理信息科学,软件工程,信息工程及遥感科学与技术专业4.开课学院(课部)、系(中心、室):信息工程学院空间信息工程系5.总学时数:40讲课学时数:28,实验学时数:126.学分数:2.57.授课语种:中文,考试语种:中文8.教材:二、课程内容简介本课程介绍了空间数据、空间统计和空间分析的概念、基础理论、方法和技术,并结合具体的应用案例,使学生了解空间数据的基本类型、特性和应用潜力,掌握相关空间统计分析方法,并能应用这些方法解决地理、环境、经济、生态等相关领域的空间问题,锻炼学生基本的分析问题与解决问题的科研能力。
三、课程的地位、作用和教学目标尽管空间分析和空间统计已经存在了半个多世纪,但是GIS一一不管其中的S是代表系统(system)还是代表"科学(science)" 的历史却相对较短。
GIS近些年的开展与成熟与空间分析和空间统计的进步密切相关。
空间统计分析,即空间数据的统计分析,是现代计量地理学中的一个快速开展的方向和领域,其核心是认识与地理位置相关的数据间的空间依赖、空间关联或空间自相关,通过空间位置建立数据间的统计关系。
《空间统计与分析》是地理信息科学专业本科生必修的一门专业主干课程,面向地理信息科学专业的大三学生,该课程从基础理论、方法与技术、应用实践三个层次来对空间统计与分析技术进行讲解,由浅入深地引导学生学习、回顾和总结低年级时所学的基本概率统计知识,并逐渐过渡到空间统计与地学分析方法的学习和实践中来。
其目的是帮助学生掌握空间数据的定量统计分析方法,学会对空间数据进行表示、描述、测度,学习如何利用统计知识来挖掘空间模式,进行空间相关性、空间自相关等规律的探索,增强学生的基本科研能力,学会能够针对具体案例,综合利用多种统计方法和软件来解决具体空间问题。
空间自相关分析1.1 自相关分析空间自相关分析是指邻近空间区域单位上某变量的同一属性值之间的相关程度,主要用空间自相关系数进行度量并检验区域单位的这一属性值在空间区域上是否具有高高相邻、低低相邻或者高低间错分布,即有无聚集性。
若相邻区域间同一属性值表现出相同或相似的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域也高(低),则称为空间正相关;若相邻区域间同一属性值表现出不同的相关程度,即属性值在空间区域上呈现高(低)的地方邻近区域低(高),则称为空间负相关;若相邻区域间同一属性值不表现任何依赖关系,即呈随机分布,则称为空间不相关。
空间自相关分析分为全局空间自相关分析和局部空间自相关分析,全局自相关分析是从整个研究区域内探测变量在空间分布上的聚集性;局域空间自相关分析是从特定局部区域内探测变量在空间分布上的聚集性,并能够得出具体的聚集类型及聚集区域位置,常用的方法有Moran's I 、Gear's C 、Getis 、Morans 散点图等。
1.1.1 全局空间自相关分析全局空间自相关分析主要用Moran's I 系数来反映属性变量在整个研究区域范围内的空间聚集程度。
首先,全局Moran's I 统计法假定研究对象之间不存在任何空间相关性,然后通过Z-score 得分检验来验证假设是否成立。
Moran's I 系数公式如下:112111()()I ()()n nij i j i j n nnij i i j i n w x x x x w x x =====--=-∑∑∑∑∑(式 错误!文档中没有指定样式的文字。
-1)其中,n 表示研究对象空间的区域数;i x 表示第i 个区域内的属性值,j x 表示第j 个区域内的属性值,x 表示所研究区域的属性值的平均值;ij w 表示空间权重矩阵,一般为对称矩阵。
Moran's I 的Z-score 得分检验为:Z =式 错误!文档中没有指定样式的文字。
空间自相关;空间自相关是地理信息系统中的一个重要概念。
它是研究空间数据的相互依存关系的一种方法,利用统计学模型来揭示空间数据的空间自相关性,用于空间数据的空间模式识别和空间预测分析。
空间自相关与数据的空间分布和空间结构密切相关,可以帮助我们理解和预测自然和人类活动的空间分布及其影响,从而对地理空间信息的应用提供支持。
空间自相关的定义空间自相关指的是一个空间变量值的自我相关性。
它是用来描述相邻空间点之间相互影响程度的指标,表示空间上相邻点之间同一特征的值之间的相似程度。
空间自相关通常通过计算相关系数来衡量同一特征在空间上的相关性。
例如,如何判断一块土地上的植被分布,就需要通过分析该地区内不同处的植被变量之间的相关性程度,以及它们在空间上的分布特点。
空间自相关的应用空间自相关有广泛的应用,主要体现在以下几个方面:1. 空间自相关分析在分类和识别中的应用:空间自相关可以引出地理实体数据的空间分布和空间结构的信息,用于地物分类和识别。
通过对空间自相关的分析,可以掌握实体对象在空间上的相互依存关系,从而更准确地识别复杂的地物类型。
2. 空间自相关在地形分析和灾害研究中的应用:通过空间自相关研究山区地形上地貌变化的空间分布规律,可以更加深入地探究地表形态的变化、山体滑坡、地面沉降等生态环境问题。
在灾害研究中,空间自相关的分析有助于预测和识别自然灾害的潜在危险区域,可以提高灾害管理和应急救援的效果和准确性。
3. 空间自相关在城市规划和交通运输中的应用:空间自相关可以更加精确地描述城市规划和交通运输的发展模式和趋势,并为建立城市交通服务网络提供重要的决策基础。
空间自相关的分析可以帮助我们了解不同城市区域之间的相互依存性和交通通达性,为公共交通资源的合理使用提供科学依据。
空间自相关分析的方法在实际的地理空间数据分析过程中,我们需要依据不同的数据类型和分析需求,选择相应的空间自相关方法。
一般而言,空间自相关的分析方法包括以下几种:1. 基于空间距离的自相关分析方法:这种方法是指通过计算数据点之间的距离和权重系数来衡量它们之间的空间相互依存程度。
浅析空间自相关的内容及意义教学内容浅析空间自相关的内容及意义摘要:本文主要介绍了空间自相关的含义、测度指标及研究空间自相关的意义。
首先,明确空间自相关是检验某一要素的属性值是否显著地与其相邻空间点上的属性值相关联的重要指标,揭示空间参考单元与其邻近的空间单元属性特征值之间的相似性或相关性。
其次,介绍用来测度空间自相关性的指标,可以分为全局指标和局部指标,常用的指标有:Moran’s I、Geary’s C和Getis-Ord G。
最后,进一步阐述了空间自相关的研究意义。
关键字:空间自相关;全局指标;局部指标The content and research significance of spatial autocorrelation analysis Abstract: In this paper, the content, the index and the research significance of spatial autocorrelation were analyzed. Firstly, the content of spatial autocorrelation is discussed. Spatial autocorrelation is related to the correlation of the same variables, and also can be used to measure the degree of concentration of the attribute value, in order to reveal the correlation between the space reference unit and its near unit, including global spatial autocorrelation and local spatial autocorrelation. Secondly, it analyzes the index of spatial autocorrelation, the main index included Moran’s I, Geary’s C and Getis-Ord G. Thirdly, this paper discussed the research signification of spatial autocorrelation analysis.Key words: spatial autocorrelation; global index; local index 0引言空间自相关是研究空间中某位置的观察值与其相邻位置的观察值是否相关以及相关程度的一种空间数据分析方法[1]。
空间自相关统计量集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)空间自相关的测度指标1全局空间自相关全局空间自相关是对属性值在整个区域的空间特征的描述[8]。
表示全局空间自相关的指标和方法很多,主要有全局Moran ’s I 、全局Geary ’s C 和全局Getis-Ord G [3,5]都是通过比较邻近空间位置观察值的相似程度来测量全局空间自相关的。
全局Moran ’s I全局Moran 指数I 的计算公式为: 其中,n 为样本量,即空间位置的个数。
x i 、x j 是空间位置i 和j 的观察值,w ij 表示空间位置i 和j 的邻近关系,当i 和j 为邻近的空间位置时,w ij =1;反之,w ij =0。
全局Moran 指数I 的取值范围为[-1,1]。
对于Moran 指数,可以用标准化统计量Z 来检验n 个区域是否存在空间自相关关系,Z 的计算公式为:)()(I VAR I E I Z -==i n w n w S x x d w i i i n i j i j ij≠----∑≠j )2/()1())((E(I i )和VAR(I i )是其理论期望和理论方差。
数学期望EI=-1/(n-1)。
当Z 值为正且显着时,表明存在正的空间自相关,也就是说相似的观测值(高值或低值)趋于空间集聚;当Z 值为负且显着时,表明存在负的空间自相关,相似的观测值趋于分散分布;当Z 值为零时,观测值呈独立随机分布。
全局Geary ’s C全局Geary’s C测量空间自相关的方法与全局Moran’s I相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为:全局Moran’s I的交叉乘积项比较的是邻近空间位置的观察值与均值偏差的乘积,而全局Geary’s C比较的是邻近空间位置的观察值之差,由于并不关心x i是否大于x j,只关心x i和x j之间差异的程度,因此对其取平方值。
空间自相关
空间自相关是指地理空间相邻位置之间的相关性。
它在地理信息系统、自然资
源管理、生态学等领域起着重要作用。
空间自相关的存在可以帮助我们更好地理解地理现象之间的关联性和空间分布规律,为决策和规划提供科学依据。
空间自相关的概念
空间自相关是指地理空间上相邻位置单位之间的相似性或相关性。
在地理学中,地点之间的邻近性往往意味着它们之间存在某种联系或影响。
空间自相关可以通过计算空间上不同地点之间的相似性指标来衡量,如Moran’s I 等统计方法。
Moran’s I 统计量是一种常用的空间自相关指标,它可以通过计算空间上点或区域之间的相
互关联性来表征空间分布的模式。
空间自相关的应用
在地理信息系统中,空间自相关常常用于地图分析、地理模型构建和区域规划
等方面。
通过研究地理现象之间的空间关联性,可以揭示地理现象背后的规律和机制,为环境保护、资源管理、城市规划等提供科学支持。
例如,在生态学中,研究生物种群分布的空间自相关性可以帮助我们了解生物
种群的迁移和扩散规律,帮助科学家保护生物多样性。
在城市规划中,空间自相关可以帮助规划者更好地了解不同区域之间的发展差异和联系,为城市的合理规划和发展提供依据。
总结
空间自相关是地理学、地理信息科学等领域常用的重要概念,它可以帮助我们
揭示地理现象之间的联系和规律。
通过研究空间自相关,可以更好地理解和探索地理空间的复杂性,为决策和规划提供科学依据。
希望通过对空间自相关的深入研究,可以更好地利用地理信息系统和地理空间数据,为人类社会的可持续发展提供支持。
空间相关和空间自相关空间相关和空间自相关是统计学中常用的概念,用于描述和分析数据中的空间结构和空间关联性。
本文将从理论和实际应用两个方面介绍空间相关和空间自相关的概念、计算方法以及在不同领域的应用。
一、空间相关和空间自相关的概念空间相关是指在空间中两个地点的数据值之间的相似程度。
空间自相关则是指数据自身在空间中的自相似性。
具体而言,空间相关和空间自相关是通过计算数据点之间的距离和差异来衡量的。
二、空间相关的计算方法常见的空间相关计算方法包括欧氏距离、曼哈顿距离和切比雪夫距离等。
欧氏距离是最常用的距离计算方法,通过计算两个点之间的直线距离来衡量它们之间的差异。
曼哈顿距离则是通过计算两个点在坐标轴上的差值的绝对值之和来衡量它们之间的差异。
切比雪夫距离是通过计算两个点在坐标轴上的差值的最大值来衡量它们之间的差异。
三、空间自相关的计算方法空间自相关的计算方法包括全局自相关和局部自相关。
全局自相关衡量的是整个研究区域的空间自相关程度,常用的指标有Moran's I 和Geary's C等。
局部自相关则衡量的是每个点周围邻近点之间的空间关联性,常用的指标有Local Moran's I和Getis-Ord G等。
空间相关和空间自相关广泛应用于地理信息系统、环境科学、城市规划和社会学等领域。
在地理信息系统中,空间相关和空间自相关可以帮助研究者分析地理现象的分布规律和空间格局。
在环境科学中,空间相关和空间自相关可以用于分析环境污染的扩散和传播路径。
在城市规划中,空间相关和空间自相关可以帮助规划者评估城市发展的均衡性和可持续性。
在社会学中,空间相关和空间自相关可以用于分析社会现象的空间分布和空间关联性。
空间相关和空间自相关是统计学中重要的概念,用于描述和分析数据中的空间结构和空间关联性。
通过计算数据点之间的距离和差异,可以衡量空间相关和空间自相关的程度。
空间相关和空间自相关在地理信息系统、环境科学、城市规划和社会学等领域有着广泛的应用。
空间相关性的统计分析摘要院空间自相关统计量是用于度量地理数据的一个基本性质,空间分析学者结合日益成熟的电脑科技GIS、空间计量方法、以及大型资料库,目的在精确地界定空间因素的重要性及影响力,空间权重矩阵用fij 符号来表示空间的对象i,j的互相关联,fij=0 就是表示空间权重矩阵的对角元素为零。
空间权重矩阵有可以根据文中的几个函数方法来确定。
Abstract: Spatial autocorrelation statistics is a basic property used to measure geographic data. Spatial analysis scholars aim toaccurately define the importance and influence of space factors combined with the increasingly mature computer scienceand technologyGIS, spatial econometric methods andlarge database. In spatial weight matrix, fij denotes the correlationbetween i,j. fij=0 means thediagonalelements of spatial weight matrix is zero. Spatial weight matrix can be determined according to the following function methods.关键词院空间信息特殊关系;空间依赖性;空间自相关性;统计方法;空间权重矩阵Key words: spatial information special relationship;spatial dependence;spatial autocorrelation;statistical methods;spatial weight matrix中图分类号院P208 文献标识码院A 文章编号院1006-4311(2014)27-0243-021 空间的引入地理学第一定律,Tobler's First Law 或者Tobler's FirstLaw of Geography,地理事物或属性在空间分布上互为相关,存在集聚(clustering)、随机(random)、规则(Regularity)分布。
空间相关和空间自相关空间相关和空间自相关是统计学中常用的两个概念,用于描述数据之间的关系和变化趋势。
在统计学中,空间相关指的是两个或多个随机变量之间的相互关系,而空间自相关则是随机变量自身的变化趋势。
在地理学和地球科学中,空间相关和空间自相关也有着重要的应用。
地理学研究地理现象在空间上的分布和变化规律,而地球科学探索地球系统各个组成部分之间的相互作用。
空间相关和空间自相关的概念和方法为这些研究提供了重要的工具。
空间相关分析可以帮助我们理解地理现象的空间分布规律。
例如,研究城市人口密度分布的空间相关性可以揭示城市规模和人口分布的规律。
通过空间相关性分析,我们可以发现城市中心区域的人口密度往往比较高,而远离城市中心的地区人口密度逐渐减小。
空间相关性的分析结果可以为城市规划和资源配置提供科学依据。
空间自相关分析则可以帮助我们了解地理现象的变化趋势。
例如,研究气候变化的空间自相关性可以揭示不同地区气候变化的相似性。
通过空间自相关性分析,我们可以发现接近的地理区域在气候变化上往往具有较高的相似性,而相距较远的地理区域则可能存在较大的差异。
空间自相关性的分析结果可以为气候预测和适应性调整提供参考。
空间相关和空间自相关的分析方法有很多种。
其中常用的方法包括空间协方差函数和空间相关图。
空间协方差函数可以量化随机变量之间的相关程度,而空间相关图可以直观地展示随机变量的空间分布和变化趋势。
空间相关和空间自相关的研究不仅在学术领域有重要价值,在实际应用中也具有广泛的应用前景。
例如,在城市规划中,空间相关分析可以帮助规划师合理规划城市布局和交通网络;在环境保护中,空间自相关分析可以帮助决策者制定合理的环境政策和资源管理措施。
空间相关和空间自相关是统计学、地理学和地球科学中重要的概念和方法。
它们能够帮助我们理解地理现象的分布和变化规律,为决策和规划提供科学依据。
通过深入研究空间相关和空间自相关,我们可以更好地认识和探索我们的世界。
空间自相关统计量
空间自相关的测度指标
1全局空间自相关
全局空间自相关是对属性值在整个区域的空间特征的描述[8]。
表示全局空间自相关的指标和方法很多,主要有全局Moran ’s I 、全局Geary ’s C 和全局Getis-Ord G [3,5]都是通过比较邻近空间位置观察值的相似程度来测量全局空间自相关的。
全局Moran ’s I
全局Moran 指数I 的计算公式为:
()()
()∑∑∑∑∑=====---=n i n j n i i
ij n i n j j i ij x x w x x x x w n I 111211
∑∑∑∑=≠=≠--=n i n i j ij n i n i j j i ij w S x x x x w 121))((
其中,n 为样本量,即空间位置的个数。
x i 、x j 是空间位置i 和j 的观察值,w ij 表示空间位置i 和j 的邻近关系,当i 和j 为邻近的空间位置时,w ij =1;反之,w ij =0。
全局Moran 指数I 的取值范围为[-1,1]。
对于Moran 指数,可以用标准化统计量Z 来检验n 个区域是否存在空间自相关关系,Z 的计算公式为:
)()(I VAR I E I Z -==i
n w n w S x x d w i i i n i j i j ij
≠----∑≠j )2/()1())((
E(I i )和VAR(I i )是其理论期望和理论方差。
数学期望EI=-1/(n-1)。
当Z 值为正且显著时,表明存在正的空间自相关,也就是说相似的观测值(高值或低值)Z 关,相似的观测值趋于分散分布;当Z 值为零时,观测值呈独立随机分布。
全局Geary ’s C
全局Geary ’s C 测量空间自相关的方法与全局Moran ’s I 相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为:
()()()
∑∑∑∑∑=====---=
n i n j n i i ij n i n j j i ij x x w x x w n C 1112112
21
差的乘积,而全局Geary ’s C 比较的是邻近空间位置的观察值之差,由于并不关心x i 是否大于x j ,只关心x i 和x j 之间差异的程度,因此对其取平方值。
全局Geary ’s C 的取值范围为[0,2],数学期望恒为1。
当全局Geary ’s C 的观察值<1,并且有统计学意义时,提示存在正空间自相关;当全局Geary ’s C 的观察值>1时,存在负空间自相关;全局Geary ’s C 的观察值=1时,无空间自相关。
其假设检验的方法同全局Moran ’s I 。
值得注意的是,全局Geary ’s C 的数学期望不受空间权重、观察值和样本量的影响,恒为1,导致了全局Geary ’s C 的统计性能比全局Moran ’s I 要差,这可能是全局Moran ’s I 比全局Geary ’s C 应用更加广泛的原因。
全局Geti-Ord G
全局Getis-Ord G 与全局Moran ’s I 和全局Geary ’s C 测量空间自相关的方法相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为:
()()()i
j i i i j i j wij d x x
G d i j x x =≠∑∑∑∑
全局Getis-Ord G 直接采用邻近空间位置的观察值之积来测量其近似程
度,与全局Moran ’s I 和全局Geary ’s C 不同的是,全局Getis-Ord G 定义空间
邻近的方法只能是距离权重矩阵w ij(d),是通过距离d定义的,认为在距离d 内的空间位置是邻近的,如果空间位置j在空间位置i的距离d内,那么权重w ij(d)=1,否则为0。
从公式中可以看出,在计算全局Getis-Ord G时,如果空间位置i和j在设定的距离d内,那么它们包括在分子中;如果距离超过
d,则没有包括在分子中,而分母中则包含了所有空间位置i和j的观察值
xi、xj,即分母是固定的。
如果邻近空间位置的观察值都大,全局Getis-Ord G的值也大;如果邻近空间位置的观察值都小,全局Getis-Ord G的值也小。
因此,可以区分“热点区”和“冷点区”两种不同的正空间自相关,这是全局
Getis-Ord G的典型特性,但是它在识别负空间自相关时效果不好。
全局Getis-Ord G的数学期望E(G)=W/n(n-1),当全局Getis-Ord G的观察值大于数学期望,并且有统计学意义时,提示存在“热点区”;当全局Getis-Ord G的观察值小于数学期望,提示存在“冷点区”。
假设检验方法同全局Moran’s I 和全局Geary’s C。
2局部空间自相关
局部空间自相关统计量LISA的构建需要满足两个条件[9]:①局部空间自相关统计量之和等于相应的全局空间自相关统计量;②能够指示每个空间位置的观察值是否与其邻近位置的观察值具有相关性。
相对于全局空间自相关而言,局部空间自相关分析的意义在于:①当不存在全局空间自相关时,寻找可能被掩盖的局部空间自相关的位置;②存在全局空间自相关时,探讨分析是否存在空间异质性;③空间异常值或强影响点位置的确定;④寻找可能存在的与全局空间自相关的结论不一致的局部空间自相关的位置,如全局空间自相关分析结论为正全局空间自相关,分析是否存在有少量的负局部空间自相关的空间
位置,这些位置是研究者所感兴趣的。
由于每个空间位置都有自己的局部空间自相关统计量值,因此,可以通过显著性图和聚集点图等图形将局部空间自相关的分析结果清楚地显示出来,这也是局部空间自相关分析的优势所在[3,5]。
局部Moran ’s I
为了能识别局部空间自相关,每个空间位置的局部空间自相关统计量的值都要计算出来,空间位置为i 的局部Moran ’s I 的计算公式为:
∑--=j
j ij i i x x w S x x I )()(2 局部Moran 指数检验的标准化统计量为:
)()
()(i i i i I VAR I E I I Z -=
E(I i )和VAR(I i )是其理论期望和理论方差。
局部Moran ’s I 的值大于数学期望,并且通过检验时,提示存在局部的正空间自相关;局部Moran ’s I 的值小于数学期望,提示存在局部的负空间自相关。
缺点是不能区分“热点区”和“冷点区”两种不同的正空间自相关。
局部Geary ’s C
局部Geary ’s C 的计算公式为:
2
()()X i j j wij x x i j μ=-≠∑
()i U C = 局部Geary ’s C 的值小于数学期望,并且通过假设检验时,提示存在局部的正空间自相关;局部Geary ’s C 的值大于数学期望,提示存在局部的负空间自相关。
缺点也是不能区分“热点区”和“冷点区”两种不同的正空间自相关。
局部Getis-Ord G
局部Getis-Ord G 同全局Getis-Ord G 一样,只能采用距离定义的空间邻近方法生成权重矩阵,其计算公式为:
∑∑=i j
j j ij i x x w G /
对统计量的检验与局部Moran 指数相似,其检验值为
)()()(i i i
i G VAR G E G G Z -= =i
n w n w S x x d w i i i n i j i j ij ≠----∑≠j )2/()1())((
当局部Getis-Ord G 的值大于数学期望,并且通过假设检验时,提示存在“热点区”;当局部Getis-Ord G 的值小于数学期望,并且通过假设检验时,提示存在“冷点区”。
缺点是识别负空间自相关时效果较差。
全局自相关与局部自相关适用性对比分析
对于定量资料计算全局空间自相关时,可以使用全局Moran ’s I 、全局
Geary ’s C 和全局Getis-Ord G 统计量。
全局空间自相关是对整个研究空间的一个总体描述,仅仅对同质的空间过程有效,然而,由于环境和社会因素等外界条件的不同,空间自相关的大小在整个研究空间,特别是较大范围的研究空间上并不一定是均匀同质的,可能随着空间位置的不同有所变化,甚至可能在一些空间位置发现正空间自相关,而在另一些空间位置发现负空间自相关,这种情况在全局空间自相关分析中是无法发现的,这种现象称为空间异质性。
为了能识别这种空间异质性,需要使用局部空间自相关统计量来分析空间自相关性,如局部Moran ’s I 、局部Geary ’s C 和局部Getis-Ord G [3,6-7]。
全局自相关统计量仅仅为整个研究空间的空间自相关情况提供了一个总体描述,其正确应用的前提是要求同质的空间过程,当空间过程为异质时结论不可靠。
为了能正确识别空间异质性,需要应用局部空间自相关统计量。