山东省青岛市市北区2020-2021学年度第一学期九年级数学期末教学质量检测试题及答案
- 格式:pdf
- 大小:7.46 MB
- 文档页数:10
山东省青岛市市北区2021-2022学年九年级上学期期中化学试题(wd无答案)一、单选题(★) 1. 下列古代生产工艺中主要体现的物理变化的是()A.粮食酿酒B.纺纱织布C.烧制瓷器D.冶炼生铁(★) 2. 下列物质中,属于混合物的是()A.二氧化碳B.氧气C.铜D.生理盐水(★) 3. 运用生物发光现象可检测超微量钙的存在。
这里的“钙”是指()A.元素B.原子C.分子D.单质(★) 4. 下列物质中,放入水里不能形成溶液的是()A.食用油B.白醋C.白糖D.食盐(★) 5. 氧化铟(In 2O 3)是制造触摸屏的主要材料。
氧化铟中铟(In)元素的化合价是()A.+1B.+2C.+3D.+6(★) 6. 减少污染,净化空气,“还我一片蓝天”,已成为世界各国人民的共同心声,下列不会造成空气污染的是()A.二氧化硫B.二氧化碳C.臭氧D.PM2.5(★★) 7. 下列物质的用途中,利用其化学性质的是()A.活性炭可用于净水B.氧气可用于医疗急救C.液氮可用作冷冻剂D.稀有气体用于霓虹灯(★★★) 8. 下列对有关实验现象的描述正确的是()A.铜丝在空气中灼烧时,有黑色物质生成B.铁丝放在纯净氧气中,火星四射,生成四氧化三铁C.石蜡在氧气中燃烧,有水和二氧化碳生成D.红磷在空气中燃烧,产生浓厚白雾(★) 9. 下列有关溶液的说法正确的是()A.凡是均一的、稳定的液体一定是溶液B.饱和溶液变成不饱和溶液,其溶质质量分数一定减小C.物质溶于水时伴随能量的变化,如硝酸铵溶于水时溶液温度升高D.试剂瓶中的溶液在使用时不慎撒出一部分,剩下溶液溶质质量分数不变(★★) 10. 氧气是我们身边常见的物质,以下有关氧气的说法正确的A.工业上获取氧气的过程发生化学变化B.鱼虾能在水中生存,是由于氧气易溶于水C.氧气具有可燃性,可做燃料D.氧化反应不一定是化合反应(★★) 11. 如图是五种粒子的结构示意图,下列说法错误的是()A.图中粒子共能表示四种元素B.图中粒子表示的是阳离子C.图中表示阴离子的是和D.图中粒子在化学反应中易失去电子二、多选题(★★★) 12. 建立宏观与微观的联系是化学常用的思维方式,下列对宏观现象解释正确的是()A.A B.B C.C D.D三、单选题(★★★) 13. 对下列化学用语中的数字“2”的说法正确的是()①2H ②2CO ③CO 2 ④O ⑤Ca 2+ ⑥2OH - ⑦H 2OA.表示离子个数的是⑤⑥B.表示化合价数的是④⑤C.表示分子中原子个数的是③⑦D.表示分子个数的是①②(★★) 14. 下列涉及学科观点的有关说法正确的是()A.根据微粒观:物质都是由原子构成的B.根据守恒观:10mL酒精与10mL水混合后得到20mL液体C.根据转化观:水和氢气在一定条件下可相互转化D.根据结构观:氩原子和氯离子最外层电子数相同,化学性质相同(★★) 15. 为了达到相应的实验目的,某兴趣小组同学设计了以下四个实验,其中能够成功的是()A.A B.B C.C D.D(★★★) 16. 化学概念之间在逻辑上存在并列、交叉和包含等关系。
2020—2021学年度第一学期教学质量检测九年级化学试卷一、选择题(本题包括15小题,每小题1分,共15分。
每小题只有一个选项符合题意)1.下列四个短语中,其原意一定包含化学变化的是:A.海市蜃楼B.木已成舟C.蜡炬成灰D.叶落归根2.下列物质属于纯净物的是:A.洁净的矿泉水B.生理盐水C.冰水混合物D.干净的果汁3.下列能使带火星的木条复燃的气体是:A.氮气B.氧气C.二氧化碳D.水蒸气4.在氧气中能剧烈燃烧、火星四射的物质是:A.硫粉B.木炭C.铁丝D.红磷5.化学使世界变得更加绚丽多彩。
下列认识不合理的是:A.垃圾分类回收有利于保护环境、节约资源B.研制合成新药物为生命键康提供保障C.材料科学的发展为实现“中国制造2025”提供有力支撑D.大量使用化石燃料符合“低碳经济”理念6.下列实验现象描述正确的是:A.红磷在空气中燃烧产生大量白烟B.铁丝在空气中燃烧生成黑色固体C.硫在氧气中燃烧产生淡蓝色火焰D.木炭在氧气中燃烧生成二氧化碳7.正确的实验操作对实验结果、人身安全都非常重要。
下列实验操作正确的是:A.点燃酒精灯B.滴加液体C.加热液体D.读取液体体积8.下列物质直接排放到空气中,不会产生大气污染的是:A.二氧化氮B.二氧化碳C.二氧化硫D.可吸入颗粒物9.在试管中加入少量镁和碘反应时,无明显现象,若向其中滴入几滴水,则迅速反应,且反应前后水的质量和化学性质都未改变,则上述反应中水是:A.催化剂B.反应物C.生成物D.不相干的物质10.属于缓慢氧化的变化是:A.木炭燃烧B.食物腐败C.蜡烛燃烧D.火药爆炸11.下列可在酒精灯上直接加热的玻璃仪器是:A.量筒B.集气瓶C.试管D.烧杯12.下列有关催化剂的说法正确的是:A.只能加快反应速率B.二氧化锰在任何化学反应中都是催化剂C.能增加生成物的质量D.质量和化学性质在化学反应前后不变13.下列反应不属于分解反应的是:A.碳酸钙――→高温氧化钙+二氧化碳B.铁+氧气――→点燃四氧化三铁C.氯酸钾――→二氧化锰加热氯化钾+氧气D.水――→通电氢气+氧气14.下列关于空气及其组成说法错误的是:A.空气中体积占比最大的是氮气B.稀有气体可以制成很多电光源C.硫在空气中燃烧,发出明亮的蓝紫色火焰,产生有刺激性气味的气体D.氧气的化学性质比较活泼,在一定条件下能与许多物质发生化学反应15.某同学用量筒准确量取20mL某液体,倒出一部分后,俯视凹液面最低处,读数为11mL,则该同学倒出的液体体积:A.大于9mLB.小于9mLC.等于9mD.不能确定二、填空与简答题(本题共5小题,共17分)16.(5分)在下列物质中选择适当物质填空(填字母...):A.空气B.二氧化硫C.红磷D.五氧化二磷E.水F.氧气G.氮气(1)无色有刺激性气味的气体是。
2020--2021学年度第一学期期末教学质量检测九年级数学试卷(考试时间:90分钟满分:120分)一.选择题(本大题共10个小题,每小题3分,共30分)1.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.将抛物线y=﹣2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为()A.y=B.y=C.y=D.y=3.已知m,n是方程x2+2x﹣5=0的两个实数根,则下列选项错误的是()A.B.C.D.4.某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为()A.18%B.20%C.36%D.40%5.如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,BC与⊙O交于点D,连结OD.若∠C=50°,则∠AOD的度数为()A.40°B.50°C.80°D.100°6.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A.4B.6.25C.7.5D.97.从甲、乙、丙三人中任选两人参加“青年志愿者”活动,甲被选中的概率为()A.B.C.D.8.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是()A.y3<y2<y1B.y2<y1<y3C.y1<y3<y2D.y1<y2<y39.若二次函数的与的部分对应值如下表:x-2-10123y1472-1-2-1则当x=5时,y的值为()A.-1B.2C.7D.1410.已知,则函数和的图象大致是()A.B.C.D.二.填空题(本大题共7个小题,每小题4分,共28分)11.方程x2=3x根为.12.关于x的一元二次方程(x+3)2=m有实数根,则m的值可以为(写出一个即可).13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是m.14.如图,将△ABC绕点C逆时针旋转得到△A′B′C,其中点A′与A是对应点,点B′与B是对应点,点A′落在直线BC上,连接AB′,若∠ACB=45°,AC=3,BC=2,则AB′的长为.15.一圆锥的底面半径为2,母线长3,则这个圆锥的侧面积为.16.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OABC的顶点A在反比例函数上,顶点B在反比例函数上,点C在x轴的正半轴上,则平行四边形OABC的面积是.17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b>0;②a﹣b+c=0;③当x<﹣1或x>3时,y>0.④一元二次方程ax2+bx+c+1=0(a≠0)有两个不相等的实数根;上述结论中正确的是.(填上所有正确结论的序号)第14题第16题第17题三.解答题(一)(本大题共3个小题,每小题6分,共18分)18.解方程:19.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.⑴画出△OAB绕原点O顺时针旋转90°后得到的OA1B1,并写出点A1的坐标;⑵在⑴的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).19.如图,在⊙O中,半径OC垂直弦AB于D,点E在⊙O上,∠E=22.5°,AB=2.求半径OB的长.三.解答题(二)(本大题共3个小题,每小题8分,共24分)21.如图,反比例函数和一次函数y=kx﹣1的图象相交于A(m,2m),B两点.⑴求一次函数的表达式;⑵求出点B的坐标,并根据图象直接写出满足不等式<kx﹣1的x的取值范围.22.甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.⑴用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;⑵你认为这个游戏对双方公平吗?请说明理由.23.新冠疫情期间,某网店以100元/件的价格购进一批消毒用紫外线灯,该网店店主结合店铺数据发现,日销量(件)是售价(元/件)的一次函数,其售价和日销售量的四组对应值如表:售价(元/件)150160170180日销售量(件)200180160140另外,该网店每日的固定成本折算下来为2000元.注:日销售纯利润=日销售量×(售价-进价)-每日固定成本.(1)求关于的函数解析式(不要求写出自变量的取值范围);(2)日销售纯利润为(元),求出与的函数表达式;(3)当售价定为多少元时,日销售纯利润最大,最大纯利润是多少.三.解答题(三)(本大题共2个小题,每小题10分,共20分)24.如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC,点Q是上的一点.⑴求证:BC是⊙O的切线;⑵已知∠BAO=25°,求∠AQB的度数;⑶在⑵的条件下,若OA=18,求的长.25.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB 上方抛物线上的一个动点,过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E.⑴求抛物线解析式;⑵当点P运动到什么位置时,DP的长最大?⑶是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.惠城区2020--2021学年度第一学期期末教学质量检测九年级数学试卷答案一.选择题(本大题共10个小题,每小题3分,共30分)1.D2.B3.D4.B5.C6.A7.B8.C9.C10.A二.填空题(本大题共7个小题,每小题4分,共28分)11.0,312.略(m即可)13.1014.15.6π16.417.②③④三.解答题(一)(本大题共3个小题,每小题6分,共18分)18.解:19.解:⑴如图所示,点A1的坐标是(1,﹣4);……2分⑵∵点A(4,1),∴OA=,∴线段OA在旋转过程中扫过的面积是:.……6分20.解:∵半径OC⊥弦AB于点D,∴=,……2分∴∠E=∠BOC=22.5°,∴∠BOD=45°,∴△ODB是等腰直角三角形,……4分∵AB=2,∴DB=OD=1,∴OB=……6分三.解答题(二)(本大题共3个小题,每小题8分,共24分)21.解:⑴∵A(m,2m)在反比例函数图象上,∴2m=,∴m=1,∴A(1,2).……2分又∵A(1,2)在一次函数y=kx﹣1的图象上,∴2=k﹣1,即k=3,∴一次函数的表达式为:y=3x﹣1.……4分⑵由解得或,∴B(﹣,﹣3)……6分∴由图象知满足不等式<kx﹣1的x的取值范围为﹣<x<0或x>1.……8分22.解:树状图如图所示,……3分⑴共有16种等可能的结果数;……5分⑵x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴P(甲胜)=,P(乙胜)=,∴P(甲胜)=P(乙胜),∴这个游戏对双方公平.……8分23.解:(1)(3分)设一次函数的表达式为y=kx+b,将点(150,250),(160,180)代入上式得解得故y关于x的函数解析式为y=-2x+500.(2)(2分)由题意得:=y(x-100)-2000=(-2x+500)(x-100)-2000=-2x2+700x-52000(3)(3分),∵-2<0,∴有最大值,∴当175(元/件)时,的最大值为9250(元).三.解答题(三)(本大题共2个小题,每小题10分,共20分)24.⑴证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵PC=CB,∴∠CPB=∠PBC,∵∠APO=∠CPB,∴∠APO=∠CBP,∵OC⊥OA,∴∠AOP=90°,∴∠OAP+∠APO=90°,∴∠CBP+∠ABO=90°,∴∠CBO=90°,∴BC是⊙O的切线;……4分⑵解:∵∠BAO=25°,∴∠ABO=25°,∠APO=65°,∴∠POB=∠APO﹣∠ABO=40°,∴∠AQB=(∠AOP+∠POB)=130°=65°……7分⑶解:由⑵得,∠AQB=65°,∴∠AOB=130°,∴的长=的长==.……10分25.解:⑴∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3……2分⑵过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t=∵∴当时,DP的长最大此时,点P运动到坐标为(﹣,).……6分⑶存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴E、P关于对称轴对称∴﹣(﹣1)=(﹣1)﹣t∴=﹣2﹣t∴PE=|﹣|=|﹣2﹣2t|……8分∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t,如图(1)∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t,如图(2)∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时,使△PDE为等腰直角三角形.……10分图(1)图(2)备用图。
CBA2020—2021学年度第一学期期末调研试卷九年级数学一、选择题(本题共16分,每小题2分)第1- 8题均有四个选项,符合题意的选项只有..一个. 1. 点P (2,1)关于原点对称点的坐标是A .(2,1)B .(2,1)C .(1,2)D .(1,2)2.抛物线2yx 的对称轴是A .直线1xB .直线1xC .y 轴D .x 轴3.如果右图是某几何体的三视图,那么该几何体是A .球B .正方体C .圆锥D .圆柱4.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其它差别,从中随机摸出一个小球,恰好是黄球的概率为 A .16B .13C .12D .235.⊙O 的半径为5,点P 到圆心O 的距离为3,点P 与⊙O 的位置关系是A .无法确定B .点P 在⊙O 外C .点P 在⊙O 上D .点P 在⊙O 内6.如图,AB 是⊙O 的直径,C ,D 为⊙O 上的点,AD CD ,如果∠CAB =40°,那么∠CAD的度数为 A .25° B .50° C .40°D .80°7.如果左图是一个正方体的展开图,那么该正方体是A B C DxyOABxyOCA8.加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a ,b ,c 是常数),下图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为 A .4.25分钟 B .4.00分钟 C .3.75分钟D .3.50分钟二、填空题(本题共16分,每小题2分) 9.已知∠A 为锐角,1sin 2A =,那么∠A = °. 10.在Rt △ABC 中,∠C =90°,AB = 5,BC =4,那么cos B11.写出一个图象位于第一,三象限的反比例函数的表达式 . 12.如图,等边三角形ABC 的外接圆半径OA = 2,其内切圆的半径为 .13.函数2y ax bx c =++(a ≠0)的图象如图所示,那么ac 0.(填“>”,“=”,或“<”)14.将抛物线2y x =沿y 轴向上平移2个单位长度后的抛物线的表达式为 . 15.如图,在平面直角坐标系xOy 中,A (1,1),B (3,1),如果抛物线2y ax =(a >0)与线段AB 有公共点, 那么a 的取值范围是 .16.电影公司随机收集了2 000部电影的有关数据,经分类整理得到下表:注:好评率是指一类电影中获得好评的部数与该类电影的部数的比值.(1)如果电影公司从收集的电影中随机选取1部,那么抽到的这部电影是获得好评的第四类电影的概率是 ;(2)电影公司为了增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,可使改变投资策略后总的好评率达到最大? 答: .xyO 三、解答题 (本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤. 17.计算:(1112cos 454-⎛⎫+-︒+ ⎪⎝⎭.18.已知二次函数243y x x =-+.(1)用配方法将其化为()2y a x h k =-+的形式; (2)在所给的平面直角坐标系xOy 中,画出它的图象.19.下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.已知:如图1,⊙O 和⊙O 外的一点P . 求作:过点P 作⊙O 的切线. 作法:如图2,① 连接OP ;② 作线段OP 的垂直平分线MN ,直线MN 交OP 于C ; ③ 以点C 为圆心,CO 为半径作圆,交⊙O 于点A 和B ; ④ 作直线P A 和PB .则P A ,PB 就是所求作的⊙O 的切线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形; (2)完成下面的证明: 证明:连接OA ,OB ,∵ 由作图可知OP 是⊙C 的直径, ∴ ∠OAP =∠OBP = 90°, ∴ OA ⊥P A ,OB ⊥PB , 又∵ OA 和OB 是⊙O 的半径,∴ P A ,PB 就是⊙O 的切线( )(填依据).OP图1图 2OPNMC20.如图,在平面直角坐标系xOy 中,点A (3,3),B (4,0),C (0,1-).xyO ABC(1)以点C 为旋转中心,把△ABC 逆时针旋转90°,画出旋转后的△''A B C ; (2)在(1)的条件下,① 点A 经过的路径'AA 的长度为 (结果保留π); ② 点'B 的坐标为 .21.如图,在四边形ABCD 中,AB = AD ,∠A = 90°,∠CBD = 30°,∠C = 45°,如果AB =求CD 的长.ABCD22.如果抛物线2224y x x k =++-与x 轴有两个不同的公共点.(1)求k 的取值范围;(2)如果k 为正整数,且该抛物线与x 轴的公共点的横坐标都是整数,求k 的值.23.如图,直线4y ax =-(0a ≠)与双曲线ky x=(0k ≠)只有一个公共点A (1,2-). (1)求k 与a 的值;(2)在(1)的条件下,如果直线y ax b =+(0a ≠)与双曲线ky x=(0k ≠)有两个 公共点,直接写出b 的取值范围.xyO A1-224.如图,AB 是⊙O 的直径,过点B 作⊙O 切线BM ,弦CD ∥BM ,交AB 于F ,AD DC =,连接AC 和AD ,延长AD 交BM 于点E . (1)求证:△ACD 是等边三角形; (2)连接OE ,如果DE = 2,求OE 的长.DBEM OFCA25.阅读材料:工厂加工某种新型材料,首先要将材料进行加温处理,使这种材料保持在一定的温度范围内方可进行继续加工.处理这种材料时,材料温度y(℃)是时间x(min)的函数.下面是小明同学研究该函数的过程,把它补充完整:(1)在这个函数关系中,自变量x的取值范围是.(2)下表记录了17min内10个时间点材料温度y随时间x变化的情况:上表中m的值为.(3)如下图,在平面直角坐标系xOy中,已经描出了上表中的部分点.根据描出的点,画出该函数的图象.yO x(4)根据列出的表格和所画的函数图象,可以得到,当0≤x≤5时,y与x之间的函数表达式为,当x>5时,y与x之间的函数表达式为.(5)根据工艺的要求,当材料的温度不低于30℃时,方可以进行产品加工,在图中所示的温度变化过程中,可以进行加工的时间长度为min.26.在平面直角坐标系xOy 中,抛物线22y x mx n 经过点A (0,2),B (3,4).(1)求该抛物线的函数表达式及对称轴;(2)设点B 关于原点的对称点为C ,点D 是抛物线对称轴上一动点,记抛物线在A ,B 之间的部分为图象G (包含A ,B 两点),如果直线CD 与图象G 有两个公共点,结合函数的图象,直接写出点D 纵坐标t 的取值范围.xyO27.如图,在△ABC 中,AC = BC ,∠ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ⊥BD 于E .(1)求证:∠CAE =∠CBD .(2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE .① 依题意补全图形;② 用等式表示线段EF ,CE ,BE 之间的数量关系,并证明.ABCDE28.对于平面直角坐标系xOy 中的⊙C 和点P ,给出如下定义:如果在⊙C 上存在一个动点Q ,使得△PCQ 是以CQ 为底的等腰三角形,且满足底角∠PCQ ≤60°,那么就称点P 为⊙C 的“关联点”.(1)当⊙O 的半径为2时,① 在点P 1(2,0),P 2(1,1),P 3(0,3)中,⊙O 的“关联点”是 ; ② 如果点P 在射线3yx (x ≥0)上,且P 是⊙O 的“关联点”,求点P 的横坐标m 的取值范围.(2)⊙C 的圆心C 在x 轴上,半径为4,直线22yx与两坐标轴交于A 和B ,如果线段AB 上的点都是⊙C 的“关联点”,直接写出圆心C 的横坐标n 的取值范围.xyO第(1)问图xyO第(2)问图2020—2021学年度第一学期期末调研试卷九年级数学答案及评分参考三、解答题(本题共68分,第17~22题每小题5分,第23~26题每小题6分,第27~28题每小题7分)17.(本小题满分5分)解:(1 0112cos454-⎛⎫+-︒+ ⎪⎝⎭124=+…………………………………………………………………………………………4分5.=……………………………………………………………………………………………………………5分18.(本小题满分5分)解:(1)配方正确;……………………………………………………………………………………………3分(2)图象正确.……………………………………………………………………………………………5分19.(本小题满分5分)解:(1)补图正确;……………………………………………………………………………………………3分(2)依据正确.……………………………………………………………………………………………5分20.(本小题满分5分)解:(1)画图正确;…………………………………………………………………………………………3分(2)①52;……………………………………………………………………………………………4分②(-1,3). ………………………………………………………………………………………5分21.(本小题满分5分) 解:过点D 作DE ⊥BC 于E . ……………………………………………………………………………1分∵ 在Rt △ABD 中,∠BAD = 90°,2ABAD,∴ 由勾股定理得B D =2. ………………………………………………………………………………2分∵ DE ⊥BC ,∴ 在Rt △DBE 中,∠DEB = 90°,∠CBD = 30°,∴DE =1, (4)分又∵ 在Rt △DEC 中,∠DEC = 90°,∠C = 45°, ∴ 由勾股定理得2CD.…………………………………………………………………………5分22.(本小题满分5分)解:(1)由题意,得 △=()44240.k -->∴5.2k <……………………………………………………………………………………………2分(2)∵ k 为正整数,∴ k =1,2.………………………………………………………………………………………3分当k =1时,方程2220x x +-=的根1x =-±不是整数;………………………………4分当k =2时,方程220x x +=的根12x =-,20x =都是整数;综上所述,k =2.…………………………………………………………………………………5分23.(本小题满分6分)解:(1)∵ 直线4y ax =-(0a ≠)过点A (1,2-),∴24a -=-,……………………………………………………………………………………1分∴2.a =……………………………………………………………………………………………2分又∵ 双曲线ky x=(0k ≠)过点A (1,2-), ∴21k-=,…………………………………………………………………………………………3分 ∴2.k =-………………………………………………………………………………………4分(2)b <-4,b >4. ………………………………………………………………………………………6分24.(本小题满分6分)(1)证明:∵ AB 是⊙O 的直径,BM 是⊙O 的切线, ∴ AB ⊥BM .∵ CD ∥BM , ∴ AB ⊥CD .∴ AD AC .…………………………………………1分∵ AD DC .∴AD AC DC .………………………………………………………………………………2分∴ AD =AC =DC . ∴ △A C D 是等边三角形. …………………………………………………………3分(2)解:连接BD ,如图.∵ AB 是⊙O 的直径,∴ ∠ADB =90°. ∵ ∠ABD =∠C =60°, ∴ ∠DBE =30°. 在Rt △BDE 中,DE =2,可得BE =4,BD = ………………………………………………………………………………………………………4分在Rt △ADB 中,可得AB =∴OB = . ……………………………………………………………………………………5分在R t △O B E 中,由勾股定理得O E =. ……………………………………………………6分25.(本小题满分6分) 解:(1)x≥0;…………………………………………………………………………………………………1分 (2)20;……………………………………………………………………………………………………2分 (3)略;……………………………………………………………………………………………………3分(4)915y x ,300yx;……………………………………………………………………………5分 A E MA BE M(5)25.3……………………………………………………………………………………………………6分26.(本小题满分6分)解:(1)∵ 点A ,B 在抛物线y =2x 2+mx +n 上,∴22,4233.n m n =⎧⎨-=⨯++⎩……………………………………………………………………………1分 解得4,2.m n =⎧⎨=⎩...................................................................................................2分 ∴ 抛物线的表达式为y =-2x 2+4x +2. (3)分 ∴ 抛物线的对称轴为x =1. ………………………………………………………………………4分 (2)43≤t<4. ……………………………………………………………………………………………6分27.(本小题满分7分) (1)证明:如图1,∵ ∠ACB = 90°,AE ⊥BD , ∴ ∠ACB =∠AEB = 90°, 又∵ ∠1=∠2,∴ ∠CAE =∠CBD .………………………………3分(2)① 补全图形如图2. ………………………………………4分②2EFCEBE (5)分证明:在AE 上截取AM ,使AM =BE . 又∵ AC =CB ,∠CAE =∠CBD , ∴ △ACM ≌△BCE .∴ CM =CE ,∠ACM =∠BCE . 又∵ ∠ACB =∠ACM +∠MCB =90°, ∴ ∠MCE =∠BCE +∠MCB =90°. ∴ 2.MECE又∵ 射线AE 绕点A 顺时针旋转45°后得到AF ,且∠AEF =90°,图2图1∴EF=AE=AM+ME=BE.………………………………………………………………………7分28.(本小题满分7分)解:(1)①P1,P2;……………………………………………………………………………………………2分②由题意可知⊙O的“关联点”所围成的区域是以O为圆心,半径分别为1和2的圆环内部(包含2,不包含1). ……………………………………………………………………………3分设:射线3y x(x≥0)与该圆环交于点P1和点P2,由题意易得P1,0),P20).∴<m……………………………………………………………………………………5分(2)23≤n<3,1<n≤ 3.…………………………………………………………………7分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。
第一单元《物体的运动》一.填空(每空2分,共16分)1.运动状态2.力3.直线运动,曲线运动4.平动、振动、转动等5.安全线二.选择(每空1分,共5分)1.C2.A3.C4.B5.A三.连线(每空1分,共4分)风扇手拨动尺子行驶的电动车车身直升机的螺旋桨平动转动振动四.观察与操作(每空2分,共8分)(1) 画图略直线 (2) 画图略曲线五.猜想与探究(共10分)答:我的猜想:车辆快速通过时,空气流动变大。
我的方案:1.两张纸平行放置2.向中间吹气,观察两张纸的变化现象预判:两张纸向内压。
在列车快速通过时,会带动空气流动速度变大,站台上乘客和列车之间气压变小,形成气压差,人容易被压向列车的方向。
六.科学与生活(共7分)答:车前后轮:转动;车身、车座:平动;车脚踏板:转动。
第二单元《声音的秘密》一.填空(每空2分,共22分)1.振动振动停止振动2.固体液体气体各个方向3.高低强弱4.汽车消音器5.具有二.选择(每空1分,共5分)1.A2.A3.C4.C5.B三.判断(每空1分,共5分)1.×2.√3.√4.×5.√四.观察与操作(每空1分,共4分)(1) ②③ (2) 气体固体(3)A五.猜想与探究(共10分)答:我的猜想:声音是由物体振动产生的。
实验方案:1.将正在发声的音叉插入盛有水的水槽中,观察现象;2.用两只烧杯交替倒水制造声音,观察现象;3.用手将钢尺一端压在桌面上,用另一只手拨动钢尺,观察现象;4.对着空塑料瓶瓶口吹气,观察现象。
现象预判:如果将音叉放入水中水面溅起水花;交替倒水水在振动;拨动钢尺时钢尺在振动;对着瓶口吹气瓶内空气振动,则可以说明声音是由物体(固体、液体、气体)振动产生的。
六.科学与生活(共4分)答:自己说话时听到的声音除了空气以外,骨骼作为传播媒介进行传播,播放自己录制的声音是空气作为传播媒介进行传播。
第三单元《太阳˙地球˙月球》一.填空(每空2分,共18分)1.不规则球体2.气体星球 6000℃ 1500万℃3.恒星行星4.卫星月球5.阿姆斯特朗二.选择(每空2分,共10分)1.A2.C3.A4.C5.A三.观察与操作(每空2分,共8分)1.没有变化逐渐西移2.发生变化3.保持一致四.猜想与探究(共10分)答:我的猜想:月球上的环形山是由于流星体的撞击而形成的。
2020-2021学年度第一学期教学质量检测九年级 数学试卷题号 一 二 三 四 总分得分一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项. 1.下列实数:2π、3、4、722、﹣1.010010001…中,无理数有 ( ) A .1个B .2个C .3个D .4个2.下列方程是一元二次方程的是 ( ) A.2x+3=0 B.y 2+x ﹣2=0 C.+x 2=1 D.x 2+1=03.方程x 2-4=0的解是 ( ) A.x 1=2,x 2=-2 B.x 1=1,x 2=4 C.x 1=0,x 2=4 D.x 1=1,x 2=-44.将抛物线y=x 2向左平移5个单位后得到的抛物线对应的函数解析式是 ( ) A.y=﹣x 2+5 B.y=x 2﹣5 C.y=(x ﹣5)2 D.y=(x+5)25.如果2是方程x 2﹣3x+k=0的一个根,则常数k 的值为 ( ) A.1B.2C.﹣1D.﹣26.抛物线y=﹣(x+)2﹣3的顶点坐标是 ( )A.(,﹣3) B.(﹣,﹣3)C.(,3)D.(﹣,3)7.对于函数y=﹣2(x ﹣m )2的图象,下列说法不正确的是 ( ) A .开口向下B .对称轴是x=mC .最大值为0D .与y 轴不相交8.一元二次方程x 2﹣6x ﹣6=0配方后化为 ( ) A.(x ﹣3)2=15 B.(x ﹣3)2=3C.(x+3)2=15D.(x+3)2=39.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是 ( ) A.100(1+x )=121 B.100(1﹣x )=121 C.100(1+x )2=121 D.100(1﹣x )2=12110.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A.(32﹣2x )(20﹣x )=570 B .32x+2×20x=32×20﹣570 C.(32﹣x )(20﹣x )=32×20﹣570 D .32x+2×20x ﹣2x 2=570二、填空题:本大题共8小题,每小题3分,共24分. 11.方程(x ﹣3)(x ﹣9)=0的根是 .12.一个三角形的两边长分别为 3 和 5 ,第三边长是方程2680x x -+=的根, 则三角形的周长为 . 13.已知函数 y =(m +2)是二次函数,则 m 等于 .14.关于x 的一元二次方程(k ﹣1)x 2+6x+k 2﹣k=0的一个根是0,则k 的值是 . 15.当x= 时,二次函数y=x 2﹣2x+6有最小值.16.若x=1是一元二次方程x 2+2x+a=0的一根,则另一根为________.17.已知函数2y ax bx c =-+的部分图象如右图所示,当x______时,y 随x 的增大而减小.18.如下图为二次函数y=ax 2+bx +c 的图象,在下列说法中:①ac <0; ②方程ax 2+bx +c=0的根是x 1= -1, x 2= 3 ③a +b +c >0 ④当x >1时,y 随x 的增大而增大. 以上说法中,正确的有__________。
(五四制鲁教版)2023-2024学年度九年级上学期期末复习化学试卷一、选择题(每小题3分,共30分)1.溶液对自然界中的生命活动和人类的生产活动具有重要意义。
下列说法正确的是()A.只有固体和液体物质可以作为溶质B.长期放置不分层的液体就是溶液C.溶液一定是液体D.溶液中溶质可以是一种或者多种2.现有室温下100 g溶质质量分数为10%的氯化钠溶液。
下列有关说法错误的是()A.将10 g氯化钠溶于90 g水中,可制得该溶液B.恒温蒸发水可将此溶液转化为氯化钠的饱和溶液C.加入10 g氯化钠完全溶解后所得溶液的溶质质量分数为20%D.溶解氯化钠时,钠离子和氯离子向水中扩散的过程中需要吸收热量3.如图是我们生活中一些物质的pH,下列说法中正确的是()A.酱油呈碱性B.肥皂水能使无色酚酞试液变蓝C.西瓜汁的酸性比苹果汁的酸性强D.皮肤被蚂蚁蜇咬,可用牙膏涂抹消肿4.关于海水的说法正确的是()A.海水中含量最多的元素是氯元素B.海水中盐的质量分数约为3.5%C.直接电解海水可获得金属镁D.可燃冰的开采与利用不会带来环境问题5.下列各组物质反应后的溶液一定能使酚酞试液变红的是()A.在澄清石灰水中通入适量的二氧化碳使之恰好沉淀B.将二氧化碳通入氢氧化钠溶液中,使之完全反应C.将硫酸铜溶液不断滴入氢氧化钡溶液中,使之完全反应D.相同质量分数、相同质量的氢氧化钾溶液与盐酸混合6.某实验小组提纯粗盐并配制10% NaCl溶液的部分操作如下,下列有关叙述错误的是()A.④中缺少玻璃棒引流溶液B.①中玻璃棒的作用是搅拌,加速粗盐溶解C.装瓶保存时洒出少量溶液会导致浓度偏低D.当②中蒸发皿内出现较多固体时,停止加热7.稀盐酸、稀硫酸以及其他的酸溶液中都含有氢离子,所以它们具有相似的化学性质。
下列一组“稀盐酸酸性的实验”中,其本质不是由氢离子参加反应的是()A.AgNO3溶液B.NaOH溶液C.Fe粉D.CuO8.推理是学习化学常用的思维方法,下列推理正确的是()A.中和反应生成盐和水,生成盐和水的反应一定是中和反应B.向某固体中滴加稀盐酸,有气泡产生,该固体不一定是碳酸盐C.碱溶液能使无色酚酞试液变红,所以能使无色酚酞变红的溶液一定是碱溶液D.溶液具有均一性和稳定性,所以具有均一性和稳定性的液体一定是溶液9.小金完成了图示实验①②③,下列判断正确的是()A.实验①中无明显现象,石灰水一定有剩余B.实验②中产生白色沉淀,碳酸钠一定有剩余C.实验③中没有明显现象,稀盐酸一定有剩余D .实验③所得溶液中一定含CaCl 2和NaCl10.下列选项所示的物质间的转化均能一步实现的是( )A .Cu →稀硫酸CuSO 4→氢氧化钠溶液Cu(OH)2 B .Fe Fe 2O 3→稀硫酸Fe 2(SO 4)3C .CaCO 3→高温CaO →水Ca(OH)2→溶液碳酸钠NaOH D .MgCl 2→氢氧化钠溶液Mg(OH)2→电解Mg二、填空及简答题(化学方程式每空2分,其余每空1分,共36分)11.下列是一些与人类的生产、生活密切相关的物质。
九年级第一学期期中质量分析XXX10质量检测分析马王中学〔九年级组〕2020-11-172020—2021学年上学期期中质量检测分析2020年11月3、4日在区教育局总体工作安排下,进行了九年级上学期期中质量检测,为了发挥考试的检测诊断学情,服务指导教学的功能,我校周密部署,成绩业已揭晓,在九年级全体任课教师的共同努力下,本次我校取得了全区第8名的好成绩。
在现有的基础上各年级如何实现跨更加展、稳健进展、赶超进展的目标特对本次考试情形认真分析:一、成绩1、总体分析:各科总分:语文100分,数学100分,英语120分,政治100分,历史100分,物理100分,化学100分。
总分720分中考总分是630分,上一届重高录用线是495,普高分数线是348分,按照我们这次期中考试总分合算系数是1.14,重高线为564分。
普高分数线大致在397分。
在本次期中考试564分以上有73人〔月考是62人〕,这些是重点高中培养对象。
397—563分有189人〔月考是188人〕,这些是普高期望生。
与月考成绩对比来看,重高上线和普高上线人数都有上升趋势,说明在月考以后,大伙儿的仍旧兢兢业业,教育教学稳中有升,势头专门好。
依照教育局对各分数段人数的统计,600分以上我校是26〔实际是29,8.55,10名〕人,比值为7.67%,全区排11名,500分以上143人,比值42.18%,在全区排第11名,200分以下没有〔不算有缺考科目的学生〕,说明我们有专门大的优势,只要我们大伙儿齐心协力,制造辉煌指日可待。
各班具体情形如下:各班各科的排名见下发的表:通过各班在本级排名来看,与第一次月考相比,各班之间竞争专门猛烈,5班和4班这次进步幅度最大,专门是5班,上次第八名,这次是第一名各人各科的三率以及综合成绩在全级均都排了名次,各科任教师以及班主任能够依照本学科和本班在本级位次,切实做好下一时期的教育教学工作。
2、个人成绩分析语文、数学、英语三科教师名次有变动之外,其他科目没有变。
2020-2021学年山东省青岛市市北区高一(下)期末数学试卷一、选择题(共8小题,每小题5分,共40分).1.一个家庭中先后有两个小孩,则他(她)们的性别情况可能为()A.男女、男男、女女B.男女、女男C.男男、男女、女男、女女D.男男、女女2.向量,,且,则实数λ=()A.3B.﹣3C.7D.﹣13.已知复数z=,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.在△ABC中,若A=105°,C=30°,,则边c=()A.2B.C.D.15.已知直线m,n及平面α,β,下列命题中正确的是()A.若m⊥α,n∥β,且m∥n,则α∥βB.若m∥α,n∥β,且m∥n,则α∥βC.若m⊥α,n∥β,且m⊥n,则α⊥βD.若m⊥α,n⊥β,且m⊥n,则α⊥β6.如图是我国2016年第1季度至2020年第2季度重点城市分季度土地供应统计图,针对这些季度的数据,下列说法错误的是()A.各季度供应规划建筑面积的极差超过15000万平方米B.各季度供应规划建筑面积的平均数超过15000万平方米C.2019年第4季度与2018年第4季度相比,供应规划建筑面积上涨幅度高于10% D.2020年第1季度与2019年第1季度相比,供应规划建筑面积下降幅度高于10% 7.如图,已知=,=,=3,=2,则=()A.﹣+B.﹣C.﹣D.﹣+8.在△ABC中,==,则sin A:sin B:sin C=()A.5:3:4B.5:4:3C.::2D.:2:二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.设,是平面内两个不共线的向量,则以下,可作为该平面内一组基底的()A.,B.,C.,D.,10.袋中装有形状完全相同的3个白球和4个黑球,从中一次摸出了3个球,下列事件是互斥事件的是()A.摸出三个白球事件和摸出三个黑球事件B.恰好有一黑球事件和都是黑球事件C.至少一个黑球事件和至多一个白球事件D.至少一个黑球事件和全是白球事件11.有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i =x i+c(i=1,2,…,n),c为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同12.设一空心球是在一个大球(称为外球)的内部挖去一个有相同球心的小球(称为内球),已知内球面上的点与外球面上的点的最短距离为1,若某正方体的所有顶点均在外球面上、所有面均与内球相切,则()A.该正方体的棱长为2B.该正方体的体对角线长为3+C.空心球的内球半径为﹣1D.空心球的外球表面积为(12+6)π二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.圆柱的底面积为S,侧面展开图为一个正方形,那么这个圆柱的侧面积是.14.数据7.0,8.4,8.4,8.4,8.6,8.7,9.0,9.1的第30百分位数是15.△ABC的内角A,B,C的对边分别为a,b,c,已知sin B﹣cos B=0,a=3,b=7,则c=.16.某校学生参加社会劳动实践活动,把一个半径为R的球形钢材切削成一个圆锥,当圆锥的体积最大时,高为h,则=.四、解答题:本题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤. 17.已知复数(i是虚数单位).(Ⅰ)求复数z的模长;(Ⅱ)若z2+az+b=1+i(a,b∈R),求a,b的值.18.已知向量,.(1)求向量与的夹角;(2)若(m∈R),且,求m的值19.在一次考试中,考生要从5道题中随机抽取3道进行回答,答对其中2道题为优秀,答对其中1道题为及格,某考生能答对5道题中的2道题,试求:(1)他获得优秀的概率为多少;(2)他获得及格及及格以上的概率为多少.20.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?21.已知三棱锥A﹣PBC,∠ACB=90°,AB=20,BC=4,PA⊥PC,D为AB边中点且△PDB为正三角形.(1)求证:BC⊥平面PAC;(2)求三棱锥D﹣PBC的体积.22.如图,已知△ABC中,AB=,∠ABC=45°,∠ACB=60°.(1)求AC的长;(2)若CD=5,求AD的长.参考答案一、选择题(共8小题,每小题5分,共40分).1.一个家庭中先后有两个小孩,则他(她)们的性别情况可能为()A.男女、男男、女女B.男女、女男C.男男、男女、女男、女女D.男男、女女解:根据题意,用列举法可知,性别情况有:男男、男女、女男、女女,共4 种可能.故选:C.2.向量,,且,则实数λ=()A.3B.﹣3C.7D.﹣1解:根据题意,若,则有•=2+2λ=0,解可得:λ=﹣1,故选:D.3.已知复数z=,则在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解:z===1+i,则=1﹣i在复平面内对应的点(1,﹣1)位于第一象限.故选:D.4.在△ABC中,若A=105°,C=30°,,则边c=()A.2B.C.D.1解:因为A=105°,C=30°,所以B=45°,则,即,解得c=2,故选:A.5.已知直线m,n及平面α,β,下列命题中正确的是()A.若m⊥α,n∥β,且m∥n,则α∥βB.若m∥α,n∥β,且m∥n,则α∥βC.若m⊥α,n∥β,且m⊥n,则α⊥βD.若m⊥α,n⊥β,且m⊥n,则α⊥β解:(1)∵若m⊥α,n∥β,且m∥n,∴n⊥α,n∥β,∴α⊥β故A不正确;(2)若m∥α,n∥β,且m∥n,则α∥β.不正确,如两个面相交,两个相交的墙面,直线m,n都平行于交线,也满足,m∥α,n∥β,所以B不正确;(3)若m⊥α,n∥β,且m⊥n,则有可能α∥β,不一定α⊥β,所以C不正确;(4)若m⊥α,n⊥β,且m⊥n可以判断α⊥β是正确的,因为可以设两个平面的,,可得数量积为零,⊥,所以可判断α⊥β是正确的,故D正确,故选:D.6.如图是我国2016年第1季度至2020年第2季度重点城市分季度土地供应统计图,针对这些季度的数据,下列说法错误的是()A.各季度供应规划建筑面积的极差超过15000万平方米B.各季度供应规划建筑面积的平均数超过15000万平方米C.2019年第4季度与2018年第4季度相比,供应规划建筑面积上涨幅度高于10% D.2020年第1季度与2019年第1季度相比,供应规划建筑面积下降幅度高于10%解:对于A,供应规划建筑面积最大的是2019年Q4,约为30000万平方米,最小的是2020年Q1,约为10000万平方米,故各季度供应规划建筑面积的极差约为2000万平方米,故选项A正确;对于B,2016年平均略低于15000万平方米,2017年和2020年平均约为15000万平方米,2018和2019年平均远高于15000万平方米,所以总平均应该高于15000万平方米,故选项B正确;对于C,2019年Q4同比增长约15%,上涨幅度超过10%,故选项C正确;对于D,2020Q1同比增长约﹣8%,下降幅度低于10%,故选项D错误.故选:D.7.如图,已知=,=,=3,=2,则=()A.﹣+B.﹣C.﹣D.﹣+解:因为=3,=2,所以=,=,由图可得=+=﹣,因为,则上式可得=()﹣=﹣=,故选:D.8.在△ABC中,==,则sin A:sin B:sin C=()A.5:3:4B.5:4:3C.::2D.:2:解:△ABC中,∵==,∴==,即==,即==bc•,即2a2+2c2﹣2b2=3a2+3b2﹣3c2=6b2+6c2﹣6a2,求得a2=,b2=,∴a=,b=c,∴由正弦定理可得a:b:c=sin A:sin B:sin C=c:c:c=::2,故选:C.二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.设,是平面内两个不共线的向量,则以下,可作为该平面内一组基底的()A.,B.,C.,D.,解:对A,不能用表示,故,不共线,所以符合;对B,,所以,共线,故不符合;对C,不能用表示,故,不共线,所以符合;对D,不能用表示,故,不共线,所以符合.故选:ACD.10.袋中装有形状完全相同的3个白球和4个黑球,从中一次摸出了3个球,下列事件是互斥事件的是()A.摸出三个白球事件和摸出三个黑球事件B.恰好有一黑球事件和都是黑球事件C.至少一个黑球事件和至多一个白球事件D.至少一个黑球事件和全是白球事件解:根据题意,依次分析选项:对于A,摸出三个白球事件和摸出三个黑球事件不可能同时发生,故它们为互斥事件,故A正确.对于B,恰好有一黑球事件和都是黑球事件不可能同时发生,故它们为互斥事件,故B 正确.对于C,比如三个球中两个黑球和 1 个白球,则至少一个黑球事件和至多一个白球事件可同时发生,故C错误.对于D,至少一个黑球事件和全是白球事件也不可能同时发生,故D正确.故选:ABD.11.有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i =x i+c(i=1,2,…,n),c为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同解:对于A,两组数据的平均数的差为c,故A错误;对于B,两组样本数据的样本中位数的差是c,故B错误;对于C,∵标准差D(y i)=D(x i+c)=D(x i),∴两组样本数据的样本标准差相同,故C正确;对于D,∵y i=x i+c(i=1,2,…,n),c为非零常数,x的极差为x max﹣x min,y的极差为(x max+c)﹣(x min+c)=x max﹣x min,∴两组样本数据的样本极差相同,故D正确.故选:CD.12.设一空心球是在一个大球(称为外球)的内部挖去一个有相同球心的小球(称为内球),已知内球面上的点与外球面上的点的最短距离为1,若某正方体的所有顶点均在外球面上、所有面均与内球相切,则()A.该正方体的棱长为2B.该正方体的体对角线长为3+C.空心球的内球半径为﹣1D.空心球的外球表面积为(12+6)π解:设内外球的半径分别为r,R,则正方体的棱长为2r,体对角线长为2R,可得R=,又由题意可知,R﹣r=1,联立,解得R=,r=,∴正方体的棱长为,体对角线长为3+,故AC错误,B正确;外球的表面积为S=4πR2=4π×=(12+6)π,故D正确.故选:BD.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.圆柱的底面积为S,侧面展开图为一个正方形,那么这个圆柱的侧面积是4πs.解:圆柱的底面积为S,所以底面半径为:,底面周长为:;侧面展开图为一个正方形,所以圆柱的高为:,所以圆柱的侧面积为:=4πS故答案为:4πs14.数据7.0,8.4,8.4,8.4,8.6,8.7,9.0,9.1的第30百分位数是8.4解:∵数据共有8个,8×30%=2.4,故这组数据的30百分位数是第三项数据8.4,故答案为:8.4.15.△ABC的内角A,B,C的对边分别为a,b,c,已知sin B﹣cos B=0,a=3,b=7,则c=8.解:因为sin B﹣cos B=0,即tan B=,因为B为三角形内角,所以B=60°,由余弦定理得,cos B===,整理得c2﹣3c﹣40=0,因为c>0,所以c=8或c=﹣3(舍),故答案为:8.16.某校学生参加社会劳动实践活动,把一个半径为R的球形钢材切削成一个圆锥,当圆锥的体积最大时,高为h,则=.解:问题转化为圆锥内接于半径为R的球,当圆锥体积最大时,求圆锥的高与球半径R 的比值.作出圆锥的轴截面如图,设圆锥的高为h,底面半径为r,则r2=R2﹣(h﹣R)2=2Rh﹣h2=h(2R﹣h),∴圆锥的体积V==.V′=,由V′=0,得h=或h=0(舍去).当h∈(0,)时,V′>0,当h∈(,2R)时,V′<0,∴当h=时,圆锥的体积最大,此时=.故答案为:.四、解答题:本题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤. 17.已知复数(i是虚数单位).(Ⅰ)求复数z的模长;(Ⅱ)若z2+az+b=1+i(a,b∈R),求a,b的值.解:(Ⅰ)∵===1﹣i,∴|z|==,(Ⅱ)∵z2+az+b=1+i,∴(1﹣i)2+a(1﹣i)+b=1+i,∴(a+b)﹣(a+2)i=1+i,∴,∴.18.已知向量,.(1)求向量与的夹角;(2)若(m∈R),且,求m的值解:(1)根据题意,,,则,,,设向量与的夹角为θ,则,又由θ∈[0,π],,即向量与的夹角为(2)根据题意,,,则,若,则,又由,则有(﹣4)×3+3m=0,解可得m=4.19.在一次考试中,考生要从5道题中随机抽取3道进行回答,答对其中2道题为优秀,答对其中1道题为及格,某考生能答对5道题中的2道题,试求:(1)他获得优秀的概率为多少;(2)他获得及格及及格以上的概率为多少.解:不妨设这5 道题的题号分别为1,2,3,4,5,其中该考生能答对的题的题号为4,5,则从这 5 道题中任取 3 道回答,该试验的样本空间Ω=(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10 个样本点.(1)记“获得优秀”为事件A,则随机事件A中包含的样本点个数为3,故;(2)记“获得及格及及格以上”为事件B,则随机事件B中包含的样本点个数为9,故.20.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?解:(1)由直方图的性质可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得x=0.0075,∴直方图中x的值为0.0075;(2)月平均用电量的众数是=230,∵(0.002+0.0095+0.011)×20=0.45<0.5,∴月平均用电量的中位数在[220,240)内,设中位数为a,由(0.002+0.0095+0.011)×20+0.0125×(a﹣220)=0.5可得a=224,∴月平均用电量的中位数为224;(3)月平均用电量为[220,240)的用户有0.0125×20×100=25,月平均用电量为[240,260)的用户有0.0075×20×100=15,月平均用电量为[260,280)的用户有0.005×20×100=10,月平均用电量为[280,300)的用户有0.0025×20×100=5,∴抽取比例为=,∴月平均用电量在[220,240)的用户中应抽取25×=5户.21.已知三棱锥A﹣PBC,∠ACB=90°,AB=20,BC=4,PA⊥PC,D为AB边中点且△PDB为正三角形.(1)求证:BC⊥平面PAC;(2)求三棱锥D﹣PBC的体积.【解答】证明:(1)∵D为AB边中点且△PDB为正三角形∴AP⊥PB又∵PA⊥PC,PB∩PC=B,PB,PC⊂平面PBC∴PA⊥平面PBC又∵BC⊂平面PBC∴PA⊥BC∵∠ACB=90°,∴AC⊥BC又∵PA∩AC=A,PA,AC⊂平面PAC∴BC⊥平面PAC;解:(2)在Rt△PAB中,AB=20,PB=AB=10∴PA==10∵D为AB边中点∴三棱锥D﹣PBC的高h=PA=5底面PBC中,BC=4,∴PC==2故S△PBC=•PC•BC=4故三棱锥D﹣PBC的体积V=•S△PBC•h=2022.如图,已知△ABC中,AB=,∠ABC=45°,∠ACB=60°.(1)求AC的长;(2)若CD=5,求AD的长.解:(1)如图所示:已知△ABC中,AB=,∠ABC=45°,∠ACB=60°.利用正弦定理,整理得=3.(2)利用AC=3,∠ACD=120°,CD=5,利用余弦定理==7.。
2022-2023学年第一学期九年级数学期末数学模拟试题(21)考试时间:120分钟试卷满分:150分考试范围:第1章-第8章一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2021秋•宜州区期中)下列方程中,一定是关于x的一元二次方程的是()A.ax2+bx+c=0B.2(x﹣9)2﹣(x+1)2=1C.x2++5=0D.x2+5x﹣6=x22.(3分)(2021•惠城区一模)若m,n为方程x2﹣3x﹣1=0的两根,则m+n的值为()A.1B.﹣1C.﹣3D.33.(3分)(2020•渝中区校级模拟)如图,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径,则∠A+∠B+∠C的度数为()A.45°B.60°C.90°D.120°4.(3分)(2019秋•南通期中)已知点A与⊙O在同一平面内,⊙O的半径是3,且点A到圆心O的距离是4,则点A与⊙O的位置关系是()A.点A在⊙O外B.点A在⊙O内C.点A在⊙O上D.不能确定5.(3分)(2020•龙湾区二模)若20件外观相同的产品中有3件不合格产品,现从这20件产品中任意抽取1件进行检测,则抽到合格产品的概率是()A.B.C.D.6.(3分)(2022春•雨花区校级期末)一组数据2,1,4,x,6的平均值是4,则x的值为()A.3B.5C.6D.77.(3分)(2022•雁塔区校级模拟)在同一平面直角坐标系中,有两条抛物线关于y轴对称,且它们的顶点与原点的连线互相垂直,若其中一条抛物线的表达式为y=x2﹣4x+m,则m的值为()A.2或﹣6B.﹣2或6C.2或6D.﹣2或﹣68.(3分)(2022•泰安)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x﹣2﹣101y0466下列结论不正确的是()A.抛物线的开口向下B.抛物线的对称轴为直线x=C.抛物线与x轴的一个交点坐标为(2,0)D.函数y=ax2+bx+c的最大值为二.填空题(共8小题,满分24分,每小题3分)9.(3分)(2021秋•崆峒区校级月考)请任写一个二次函数解析式,使这个函数的图象具备以下两个特点:①开口向上;②对称轴为y轴.这个函数可以是.10.(3分)(2022•牡丹区三模)已知方程2x2+bx+c=0的两根为2和﹣2,分解因式2x2+bx+c=.11.(3分)(2021春•两江新区期末)重庆市6月1号至6月7号,每天的最高温度的数值分别是22,18,25,27,30,32,34,则这几天最高气温温度数值的中位数是.12.(3分)(2022秋•射阳县校级月考)若圆锥的侧面积为14π,底面圆半径为2,则该圆锥母线长是.13.(3分)(2022秋•通榆县月考)抛物线y=﹣(x﹣h)2+k的部分图象如图所示,则此抛物线的顶点坐标是.14.(3分)(2022春•青岛期末)如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在阴影区域的概率是.15.(3分)(2020秋•赤峰期末)如图,已知二次函数y=ax2+bx+c的图象,其对称轴方程为x=1.下列结论;①a<0;②c<0;③=﹣1;④b2﹣4ac<0;⑤图象与x轴的另一个交点坐标是(﹣2,0);⑥当x>1时,y随x的增大而增大.其中正确的是.(填序号)16.(3分)(2020•浙江自主招生)将等边三角形(记为“雪花曲线(1)”,如图(1))每一边三等分,以居中的那条线段为底边向外作等边三角形,并去掉所作的等边三角形的一条边,得到一个六角星(记为“雪花曲线(2)”,如图(2)),接着对每个等边三角形凸出的部分继续作上述过程,即在每条边三等分后的中段,像图(3)那样向外画新的等边三角形.不断重复这样的过程,得到一系列的“雪花曲线”,记第n 个图形为“雪花曲线(n)”,其周长为l n,若“雪花曲线(2012)”的周长为l2012=2013,则l2013=.三.解答题(共11小题,满分102分)17.(6分)(2021秋•娄星区校级月考)(1)用直接开平方法解下列方程:9x2﹣81=0;(2)用配方法解一元二次方程:x2﹣6x﹣9=0.18.(6分)已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程的两实数根分别为x1,x2,且满足5x1+2x2=2,求二次函数y=x2﹣4x+m的图象与x轴的两个交点间的距离.19.(8分)(2017秋•交城县期中)已知二次函数.(1)将其配方成y=a(x﹣k)2+h的形式,并写出它的图象的开口方向、顶点坐标、对称轴;(2)在如图所示的直角坐标系中画出函数图象,并指出当y<0时x的取值范围;(3)当0≤x≤4时,求出y的最小值及最大值.20.(8分)(2021秋•中宁县月考)已知关于x的一元二次方程x2﹣(2m﹣3)x+m2=0.(1)当m取何值时,该方程有实数根?(2)当m=0时,用合适的方法求此时该方程的解.21.(8分)(2021•南通)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸取一个小球的标号是奇数,该事件的概率为;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.22.(10分)(2021秋•聊城期末)下面的表格是小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题.考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩889290869096(1)小明6次成绩的众数是分;中位数是分;(2)计算小明平时成绩的平均分;(3)计算小明平时成绩的方差;(4)按照学校规定,本学期的综合成绩的权重如图所示,请你求出小明本学期的综合成绩,要写出解题过程.23.(10分)(2022•岳池县模拟)如图,AB为⊙O的直径,点D为圆外一点,连接AD、BD,分别与⊙O相交于点C、E,且,过点C作CF⊥BD于点F,连接BC.(1)求证:CF是⊙O的切线;(2)若∠CBD=30°,AC=5,求阴影部分面积(结果保留π).24.(10分)(2020•锡山区一模)如图,在平面直角坐标系中,点A的坐标为(6,0),点B的坐标为(0,2),点M从点A出发沿x轴负方向以每秒3cm的速度移动,同时点N从原点出发沿y轴正方向以每秒1cm的速度移动.设移动的时间为t秒.(1)若点M在线段OA上,试问当t为何值时,△ABO与以点O、M、N为顶点的三角形相似?(2)若直线y=x与△OMN外接圆的另一个交点是点C.①试说明:当0<t<2时,OM、ON、OC在移动过程满足OM+ON=OC;②试探究:当t>2时,OM、ON、OC之间的数量关系是否发生变化,并说明理由.25.(12分)(2022•双峰县一模)为了落实国务院惠农的指示精神,最近市政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为40元/千克.市场调查发现,该产品每天的销售量y(千克)与售价x(元/千克)有如下关系:y=﹣2x+200.设这种产品每天的销售利润为w(元).(1)求w与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定每天至少获得1000元的销售利润,销售价应在什么范围?26.(12分)(2022•丽水)如图,以AB为直径的⊙O与AH相切于点A,点C在AB左侧圆弧上,弦CD⊥AB交⊙O于点D,连结AC,AD.点A关于CD的对称点为E,直线CE交⊙O于点F,交AH于点G.(1)求证:∠CAG=∠AGC;(2)当点E在AB上,连结AF交CD于点P,若=,求的值;(3)当点E在射线AB上,AB=2,以点A,C,O,F为顶点的四边形中有一组对边平行时,求AE的长.27.(12分)(2021•烟台模拟)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴的负半轴交于点C,且A(1,0),sin∠OBC=.过点B作线段BC的垂线交抛物线于点D,交y轴于点E.设直线x=﹣2与直线BD相交于点M,与x轴交于点N.(1)求该抛物线的表达式;(2)试判断以点A为圆心,AD长为半径的圆与y轴的位置关系,并给出证明;(3)如图2,作直线OM.问:在(2)中的⊙A上是否存在一点P,使△OPM的面积最大?若存在,求出△OPM面积的最大值;若不存在,请说明理由.答案与解析一.选择题(共8小题,满分24分,每小题3分)1.(3分)(2021秋•宜州区期中)下列方程中,一定是关于x的一元二次方程的是()A.ax2+bx+c=0B.2(x﹣9)2﹣(x+1)2=1C.x2++5=0D.x2+5x﹣6=x2解:A.ax2+3x+1=0,当a=0时不是一元二次方程,故本选项不合题意;B.2(x﹣9)2﹣(x+1)2=1是一元二次方程,故本选项符合题意;C.是分式方程,故本选项不合题意;D.x2+5x﹣6=x2,整理后不含二次项,不是一元二次方程,故本选项不合题意;故选:B.2.(3分)(2021•惠城区一模)若m,n为方程x2﹣3x﹣1=0的两根,则m+n的值为()A.1B.﹣1C.﹣3D.3解:∵m,n为方程x2﹣3x﹣1=0的两根,∴m+n=3.故选:D.3.(3分)(2020•渝中区校级模拟)如图,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径,则∠A+∠B+∠C的度数为()A.45°B.60°C.90°D.120°解:∵AC为⊙O的直径,∴++的度数是180°,∴∠A+∠B+∠C=90°,故选:C.4.(3分)(2019秋•南通期中)已知点A与⊙O在同一平面内,⊙O的半径是3,且点A到圆心O的距离是4,则点A与⊙O的位置关系是()A.点A在⊙O外B.点A在⊙O内C.点A在⊙O上D.不能确定解:∵点A到圆心O的距离d=4,⊙O的半径r=3,∴d>r,则点A在⊙O外,故选:A.5.(3分)(2020•龙湾区二模)若20件外观相同的产品中有3件不合格产品,现从这20件产品中任意抽取1件进行检测,则抽到合格产品的概率是()A.B.C.D.解:根据题意抽到合格产品的概率是=,故选:D.6.(3分)(2022春•雨花区校级期末)一组数据2,1,4,x,6的平均值是4,则x的值为()A.3B.5C.6D.7解:∵一组数据2,1,4,x,6的平均值是4,∴(2+1+4+x+6)÷5=4,解得x=7,故选:D.7.(3分)(2022•雁塔区校级模拟)在同一平面直角坐标系中,有两条抛物线关于y轴对称,且它们的顶点与原点的连线互相垂直,若其中一条抛物线的表达式为y=x2﹣4x+m,则m的值为()A.2或﹣6B.﹣2或6C.2或6D.﹣2或﹣6解:∵一条抛物线的函数表达式为y=x2﹣4x+m,∴这条抛物线的顶点为(2,m﹣4),∴关于y轴对称的抛物线的顶点(﹣2,m﹣4),∵它们的顶点与原点的连线互相垂直,∴2×[22+(m﹣4)2]=42,整理得m2﹣8m+12=0,解得m=2或m=6,∴m的值是2或6.故选:C.8.(3分)(2022•泰安)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x﹣2﹣101y0466下列结论不正确的是()A.抛物线的开口向下B.抛物线的对称轴为直线x=C.抛物线与x轴的一个交点坐标为(2,0)D.函数y=ax2+bx+c的最大值为解:由表格可得,,解得,∴y=﹣x2+x+6=﹣(x﹣)2+=(﹣x+3)(x+2),∴该抛物线的开口向下,故选项A正确,不符合题意;该抛物线的对称轴是直线x=,故选项B正确,不符合题意,∵当x=﹣2时,y=0,∴当x=×2﹣(﹣2)=3时,y=0,故选项C错误,符合题意;函数y=ax2+bx+c的最大值为,故选项D正确,不符合题意;故选:C.二.填空题(共8小题,满分24分,每小题3分)9.(3分)(2021秋•崆峒区校级月考)请任写一个二次函数解析式,使这个函数的图象具备以下两个特点:①开口向上;②对称轴为y轴.这个函数可以是y=2x2﹣1(答案不唯一).解:∵抛物线的对称轴为y轴,∴该抛武线的解析式为y=ax2+c,又∵二次函数的图象开口向上,∴a>0,∴这个二次函数的解析式可以是y=2x2﹣1,故答案为:y=2x2﹣1(答案不唯一).10.(3分)(2022•牡丹区三模)已知方程2x2+bx+c=0的两根为2和﹣2,分解因式2x2+bx+c=2(x+2)(x﹣2).解:∵方程2x2+bx+c=0的两根为2和﹣2,∴2x2+bx+c=2(x+2)(x﹣2),故答案为:2(x+2)(x﹣2).11.(3分)(2021春•两江新区期末)重庆市6月1号至6月7号,每天的最高温度的数值分别是22,18,25,27,30,32,34,则这几天最高气温温度数值的中位数是27.解:将这组数据从小到大排列为:18,22,25,27,30,32,34,处在中间位置的一个数是27,因此中位数是27,故答案为:27.12.(3分)(2022秋•射阳县校级月考)若圆锥的侧面积为14π,底面圆半径为2,则该圆锥母线长是7.解:设圆锥的母线长为l,设由题意得,14π=πl×2,解得,l=7,故答案为:7.13.(3分)(2022秋•通榆县月考)抛物线y=﹣(x﹣h)2+k的部分图象如图所示,则此抛物线的顶点坐标是(1,4).解:把(0,3)代入y=﹣(x﹣1)2+k,3=﹣1+kk=4,∴抛物线的顶点坐标是(1,4).故答案为:(1,4).14.(3分)(2022春•青岛期末)如图是一个可以自由转动的转盘,转动转盘,当转盘停止时,指针落在阴影区域的概率是.解:根据题意可得:指针落在阴影区域的概率是=.故答案为:.15.(3分)(2020秋•赤峰期末)如图,已知二次函数y=ax2+bx+c的图象,其对称轴方程为x=1.下列结论;①a<0;②c<0;③=﹣1;④b2﹣4ac<0;⑤图象与x轴的另一个交点坐标是(﹣2,0);⑥当x>1时,y随x的增大而增大.其中正确的是①③.(填序号)解:由图象可知:抛物线开口向下,交y轴的正半轴,∴a<0,故①正确,②错误;∵抛物线对称轴为直线x=1,∴﹣=1,∴=﹣1,故③正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故④错误;∵(3,0)关于直线x=1的对称点为(﹣1,0),∴图象与x轴的另一个交点坐标是(﹣1,0),故⑤错误;当x>1时,由图象可知y随x的增大而减小,故⑥错误;正确的是①③.故答案为①③.16.(3分)(2020•浙江自主招生)将等边三角形(记为“雪花曲线(1)”,如图(1))每一边三等分,以居中的那条线段为底边向外作等边三角形,并去掉所作的等边三角形的一条边,得到一个六角星(记为“雪花曲线(2)”,如图(2)),接着对每个等边三角形凸出的部分继续作上述过程,即在每条边三等分后的中段,像图(3)那样向外画新的等边三角形.不断重复这样的过程,得到一系列的“雪花曲线”,记第n 个图形为“雪花曲线(n)”,其周长为l n,若“雪花曲线(2012)”的周长为l2012=2013,则l2013=2684.解:设图(1)中等边三角形的边长为a,∴第一个三角形的周长=3a,观察发现:第二个图形在第一个图形的周长的基础上多了它的周长的,第三个在第二个的基础上,多了其周长的.第二个周长:×3a,第三个周长:=×3a;第四个周长:=×3a;…故第n个图形的周长是第一个周长的()n﹣1倍,即周长是3a×,∵“雪花曲线(2012)”的周长为l2012=2013,即2013=3a×,则l2013=3a×=2013×=2684,故答案为:2684.三.解答题(共11小题,满分102分)17.(6分)(2021秋•娄星区校级月考)(1)用直接开平方法解下列方程:9x2﹣81=0;(2)用配方法解一元二次方程:x2﹣6x﹣9=0.解:(1)9x2﹣81=0,x2=9,∴x=±3,∴x1=3,x2=﹣3;(2)x2﹣6x﹣9=0,x2﹣6x=9,x2﹣6x+9=9+9,即(x﹣3)2=18,∴x﹣3=±3,∴x1=3+3,x2=3﹣3.18.(6分)已知关于x的一元二次方程x2﹣4x+m=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程的两实数根分别为x1,x2,且满足5x1+2x2=2,求二次函数y=x2﹣4x+m的图象与x轴的两个交点间的距离.解:(1)∵方程x2﹣4x+m=0有实数根,∴Δ=b2﹣4ac=(﹣4)2﹣4m≥0,∴m≤4.(2)∵方程x2﹣4x+m=0有两个实数根x1,x2,∴x1+x2=4.∵5x1+2x2=2,x1+x2=4,∴x1=﹣2,x2=6,∴二次函数y=x2﹣4x+m的图象与x轴的两个交点间的距离为|x1﹣x2|=|﹣2﹣6|=8.19.(8分)(2017秋•交城县期中)已知二次函数.(1)将其配方成y=a(x﹣k)2+h的形式,并写出它的图象的开口方向、顶点坐标、对称轴;(2)在如图所示的直角坐标系中画出函数图象,并指出当y<0时x的取值范围;(3)当0≤x≤4时,求出y的最小值及最大值.解:(1)=,开口向上,顶点为(3,),对称轴为:直线x=3,(2)如图所示,由图可知,当2<x<4时,y<0;(3)当x=0时,y有最大值4,当x=3时,y有最小值﹣.20.(8分)(2021秋•中宁县月考)已知关于x的一元二次方程x2﹣(2m﹣3)x+m2=0.(1)当m取何值时,该方程有实数根?(2)当m=0时,用合适的方法求此时该方程的解.解:(1)△=(2m﹣3)2﹣4m2≥0,整理得﹣12m+9≥0,解得,所以,当时,方程有实数根;(2)当m=0时,方程为x2+3x=0,∴x(x+3)=0,∴x=0或x+3=0,∴x1=0,x2=﹣3.21.(8分)(2021•南通)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸取一个小球的标号是奇数,该事件的概率为;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.解:(1)随机摸取一个小球的标号是奇数,该事件的概率为=,故答案为:;(2)画树状图如图:共有16种等可能的结果,两次取出小球标号的和等于5的结果有4种,∴两次取出小球标号的和等于5的概率为=.22.(10分)(2021秋•聊城期末)下面的表格是小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题.考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩889290869096(1)小明6次成绩的众数是90分;中位数是90分;(2)计算小明平时成绩的平均分;(3)计算小明平时成绩的方差;(4)按照学校规定,本学期的综合成绩的权重如图所示,请你求出小明本学期的综合成绩,要写出解题过程.解:(1)成绩从大到小排列为96,92,90,90,88,86,则中位数是:=90分,众数是90分,故答案是:90,90;(2)小明平时成绩的平均分为=89(分);(3)小明平时成绩的方差为×[(88﹣89)2+(92﹣89)2+(90﹣89)2+(86﹣89)2]=5;(4)89×10%+90×30%+96×60%=93.5(分).答:小明的总评分应该是93.5分.23.(10分)(2022•岳池县模拟)如图,AB为⊙O的直径,点D为圆外一点,连接AD、BD,分别与⊙O相交于点C、E,且,过点C作CF⊥BD于点F,连接BC.(1)求证:CF是⊙O的切线;(2)若∠CBD=30°,AC=5,求阴影部分面积(结果保留π).(1)证明:连接OC,∵CF⊥BD,∴∠CFD=90°,∵,∴∠ABC=∠CBD,∵OC=OB,∴∠ABC=∠OCB,∴∠OCB=∠CBD,∴OC∥BD,∴∠OCF=∠CFD=90°,∵OC是圆O的半径,∴CF是⊙O的切线;(2)∵AB为⊙O的直径,∴∠ACB=90°,∵∠CBD=30°,∴∠ABC=∠CBD=30°,∴∠AOC=2∠ABC=60°,∵OA=OC,∴△AOC是等边三角形,∴∠CAB=60°,AO=AC=5,∴BC=AC tan60°=5,∴△ABC的面积=AC•BC=×5×5=,∵OA=OB,∴△AOC的面积=△ABC的面积=,∴阴影部分面积=扇形AOC的面积﹣△AOC的面积=﹣=,答:阴影部分面积为:.24.(10分)(2020•锡山区一模)如图,在平面直角坐标系中,点A的坐标为(6,0),点B的坐标为(0,2),点M从点A出发沿x轴负方向以每秒3cm的速度移动,同时点N从原点出发沿y轴正方向以每秒1cm的速度移动.设移动的时间为t秒.(1)若点M在线段OA上,试问当t为何值时,△ABO与以点O、M、N为顶点的三角形相似?(2)若直线y=x与△OMN外接圆的另一个交点是点C.①试说明:当0<t<2时,OM、ON、OC在移动过程满足OM+ON=OC;②试探究:当t>2时,OM、ON、OC之间的数量关系是否发生变化,并说明理由.解:(1)由题意,得OA=6,OB=2.当0<t<2时,OM=6﹣3t,ON=t.若△ABO∽△MNO,则=,即=,解得t=1.若△ABO∽△NMO,则=,即=,解得t=1.8.综上,当t为1或1.8时,△ABO与以点O、M、N为顶点的三角形相似.(2)①当0<t<2时,在ON的延长线的截取ND=OM,连接CD、CN、CM,如图所示:∵直线y=x与x轴的夹角为450,∴OC平分∠AOB.∴∠AOC=∠BOC.∴CN=CM.又∵在⊙O中∠CNO+∠CMO=180°,∠DNC+∠CNO=180°,∴∠CND=∠CMO.∴△CND≌△CMO(SAS).∴CD=CO,∠DCN=∠OCM.又∵∠AOB=90°,∴MN为⊙O的直径,∴∠MCN=90°.∴∠OCM+∠OCN=90°.∴∠DCN+∠OCN=90°.∴∠OCD=90°.又∵CD=CO,∴OD=OC.∴ON+ND=OC.∴OM+ON=OC.②当t>2时,过点C作CD⊥OC交ON于点D,连接CM、CN,如图所示:∵∠COD=45°,∴△CDO为等腰直角三角形,∴OD=OC.∵MN为⊙O的直径,∴∠MCN=90°.又∵在⊙O中,∠CMN=∠CNM=45°,∴MC=NC.又∵∠OCD=∠MCN=90°,∴∠DCN=∠OCM.∴△CDN≌△COM(SAS).∴DN=OM.又∵OD=OC,∴ON﹣DN=OC.∴当2<t<3时,ON﹣OM=OC;当t>3时,OM﹣ON=OC.当t=3时,OM=ON.25.(12分)(2022•双峰县一模)为了落实国务院惠农的指示精神,最近市政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为40元/千克.市场调查发现,该产品每天的销售量y(千克)与售价x(元/千克)有如下关系:y=﹣2x+200.设这种产品每天的销售利润为w(元).(1)求w与x之间的函数关系式;(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定每天至少获得1000元的销售利润,销售价应在什么范围?解:(1)由题意得,w与x之间的函数关系式是w=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000,∵,解得:40<x<100,∴w与x之间的函数关系式是w=﹣2x2+280x﹣8000(40<x<100);(2)由(1)可知,w=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当x=70时,w取得最大值1800,答:当售价定为70元/千克时,每天的销售利润最大,最大利润为1800元;(3)由(1)可得,w=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,令﹣2(x﹣70)2+1800=1000,解得x1=50,x2=90,∵﹣2(x﹣70)2+1800≥1000,∴50≤x≤90,答:至少获得1000元的销售利润,销售价应在50≤x≤90这个范围内.26.(12分)(2022•丽水)如图,以AB为直径的⊙O与AH相切于点A,点C在AB左侧圆弧上,弦CD⊥AB交⊙O于点D,连结AC,AD.点A关于CD的对称点为E,直线CE交⊙O于点F,交AH于点G.(1)求证:∠CAG=∠AGC;(2)当点E在AB上,连结AF交CD于点P,若=,求的值;(3)当点E在射线AB上,AB=2,以点A,C,O,F为顶点的四边形中有一组对边平行时,求AE的长.(1)证明:∵AH是⊙O的切线,∴AH⊥AB,∴∠GAB=90°,∵A,E关于CD对称,AB⊥CD,∴点E在AB上,CE=CA,∴∠CEA=∠CAE,∵∠CAE+∠CAG=90°,∠AEC+∠AGC=90°,∴∠CAG=∠AGC;(2)解:∵AB是直径,AB⊥CD,∴=,∴AC=AD,∴∠ACD=∠ADC,∵∠ACD=∠ECD,∴∠ADC=∠ECD,∴CF∥AD,∴=,∵CE=AC=AD,∴=,∵=,∴=,∴=;(3)解:如图1中,当OC∥AF时,连接OC,OF.设∠AGF=α,则∠CAG=∠ACD=∠DCF=∠AFG=α,∵OC∥AF,∴∠OCF=∠AFC=α,∵OC=OA,∴∠OCA=∠OAC=3α,∵∠OAG=90°,∴4α=90°,∴α=22.5°,∵OC=OF,OA=OF,∴∠OFC=∠OCF=∠AFC=22.5°,∴∠OF A=∠OAF=45°,∴AF=OF=OC,∵OC∥AF,∴==,∵OA=1,∴AE=×1=2﹣.如图2中,当OC∥AF时,连接OC,AD,设CD交AE点M.设∠OAC=α,∵OC∥AF,∴∠F AC=∠OCA=α,∴∠COE=∠F AE=2α,∵∠AFG=∠D,∠AGF=∠D,∴∠AGC=∠AFG=∠AEC+∠F AE=3α,∵∠AGC+∠AEC=90°,∴4α=90°,∴α=22.5°,2α=45°,∴△COM是等腰直角三角形,∴OC=OM,∴OM=,AM=+1,∴AE=2AM=2+;如图3中,当AC∥OF时,连接OC,OF.设∠AGF=α,∵∠ACF=∠ACD+∠DCF=2α,∵AC∥OF,∴∠CFO=∠ACF=2α,∴∠CAO=∠ACO=4α,∵∠AOC+∠OAC+∠ACO=180°,∴10α=180°,∴α=18°,∴∠COE=∠ECO=∠CFO=36°,∴△OCE∽△FCO,∴OC2=CE×CF,∴1=CE(CE+1),∴CE=AC=OE=,∴AE=OA﹣OE=.如图4中,当AC∥OF时,连接OC,OF,BF.设∠F AO=α,∵AC∥OF,∴∠CAF=∠OF A=α,∴∠COF=∠BOF=2α,∵AC=CE,∴∠AEC=∠CAE=∠EFB,∴BF=BE,由△OCF≌△OBF,∴CF=BF=BE,∵∠BEF=∠COF,∴△COF∽△CEO,∴OC2=CE•CF,∴BE=CF=,∴AE=AB+BE=.综上所述,满足条件的AE的长为2﹣或2+或或,27.(12分)(2021•烟台模拟)如图1,平面直角坐标系xOy中,抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴的负半轴交于点C,且A(1,0),sin∠OBC=.过点B作线段BC的垂线交抛物线于点D,交y轴于点E.设直线x=﹣2与直线BD相交于点M,与x轴交于点N.(1)求该抛物线的表达式;(2)试判断以点A为圆心,AD长为半径的圆与y轴的位置关系,并给出证明;(3)如图2,作直线OM.问:在(2)中的⊙A上是否存在一点P,使△OPM的面积最大?若存在,求出△OPM面积的最大值;若不存在,请说明理由.解:(1)∵y=ax2+bx﹣3,∴OC=3.∵sin∠OBC=,∴∠OBC=45°.∴OB=OC=3.∴B(3,0).∵A(1,0),∴,∴.∴y=﹣x2+4x﹣3.(2)相交.证明:∵BD⊥BC,∴∠OBE=45°.∴OE=OB=3.∴E(0,3 ).设直线BE为y=kx+t,∴.∴,∴y=﹣x+3,联立.解得,.∴D(2,1).∴AD==,∵AD>OA,∴以点A为圆心,AD长为半径的圆与y轴相交.(3)存在,如图,过A点作OM的垂线交⊙A于第一象限内点P,垂足为H.此时,△OPM的面积最大.由,得.∴M(﹣2,5).OM=,∵∠ONM=∠OHA=90°,∠MON=∠AOH,∴△ONM∽△OHA.∴.∴AH=.∵AP=,∴PH=+,∴S△OPM=OM⋅PH=××(+)=.。